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Abstract—Software Heritage is the largest existing public
archive of software source code and accompanying development
history: it currently spans more than five billion unique source
code files and one billion unique commits, coming from more
than 80 million software projects.

This paper introduces the Software Heritage graph dataset: a
fully-deduplicated Merkle DAG representation of the Software
Heritage archive. The dataset links together file content iden-
tifiers, source code directories, Version Control System (VCS)
commits tracking evolution over time, up to the full states of VCS
repositories as observed by Software Heritage during periodic
crawls. The dataset’s contents come from major development
forges (including GitHub and GitLab), FOSS distributions (e.g.,
Debian), and language-specific package managers (e.g., PyPI).
Crawling information is also included, providing timestamps
about when and where all archived source code artifacts have
been observed in the wild.

The Software Heritage graph dataset is available in multiple
formats, including downloadable CSV dumps and Apache Par-
quet files for local use, as well as a public instance on Amazon
Athena interactive query service for ready-to-use powerful ana-
lytical processing.

Source code file contents are cross-referenced at the graph
leaves, and can be retrieved through individual requests using
the Software Heritage archive API.

Index Terms—mining software repositories, source code,
dataset, open source software, free software, digital preservation,
development history graph

I. INTRODUCTION

Public software development, i.e., the practice of collabo-
ratively developing software using collaborative development
platforms (also known as “forges” [1]) such as GitHub or Git-
Lab is now well established. Further source code distribution
mechanisms, by the means of GNU/Linux distributions and
language-specific package managers [2], [3] are also becoming
more and more popular, realizing in practice the half-century-
old vision of off-the-shelf software components [4], [5].

The extensive public availability of software source code
artifacts (source code files, commits, release information,
etc.) is a significant asset for mining software repositories
and, more generally, empirical software engineering research.
The topics of corresponding studies range from the study of
code clones [6]–[8] to automated vulnerability detection and
repair [9]–[11]; and from code recommenders [12], [13] to
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software licence analysis and license compliance [14], [15].
However, many research studies are still being conducted on
significantly smaller subsets of the entire corpus of publicly
available source code artifacts.

The Software Heritage project [16], [17] aims at fixing this
gap, by collecting, preserving, and sharing the entire body
of publicly available software source code, together with the
associated development history, as it is captured by modern
version control systems (VCS) [18].

In this paper we introduce the Software Heritage Graph
Dataset, a graph representation of all the source code artifacts
archived by Software Heritage. The graph is a fully dedu-
plicated Merkle DAG [19] that links together: source code
file contents, source trees (directories) containing them, VCS
commits and releases, up to crawling information indicating
when and where (URLs) a given VCS repository state (which
in turn binds all other artifacts together) has been observed.

The dataset captures the state of the Software Heritage
archive on September 25th 2018, spanning a full mirror of
Github and GitLab.com, the Debian distribution, Gitorious,
Google Code, and the PyPI repository. Quantitatively it corre-
sponds to 5 billion unique file contents and 1.1 billion unique
commits, harvested from more than 85 million software origins
(see Section III for more detailed figures).

Dataset availability: The Software Heritage graph is
encoded in the dataset as a set of relational tables—roughly,
one for each node type; see Section III for details—that can be
queried using SQL. The dataset is available in three alternative
formats, catering for different use cases:
• a Postgres [20] database dump in CSV format (for the

data) and DDL queries (for recreating the DB schema):
this format is best for local processing on a single server
or high-end workstation;

• a set of Apache Parquet files [21] suitable for loading
into columnar storage and scale-out processing solutions,
e.g., Apache Spark [22];

• a public dataset on Amazon Athena [23], where the
sample queries of Section IV can be tried live.

The first two formats are available for download (≈1 TB
each) from Zenodo at https://zenodo.org/record/2583978,
(doi:10.5281/zenodo.2583978). The Athena dataset 1 can also

1https://registry.opendata.aws/software-heritage/
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be queried from the AWS console by following the instructions
in the README.md file.

II. DATA GATHERING

The Software Heritage Graph Dataset has been assembled
as part of the regular crawling activities of Software Heritage,
dating back to 2015. Due to the long-term archival nature of
Software Heritage, the dataset is not entirely reproducible,
because the archived source code artifacts might have dis-
appeared from the original hosting place: a VCS might have
been deleted, a commit or branch rewritten (e.g., using git
rebase), a package removed from a distribution.

What we list below are hence the steps needed to recreate
the dataset from scratch, archiving what is available today from
the included software distribution places.

As a preliminary step one should setup local storage. As the
official getting started guide for Software Heritage developers
covers this in detail, we refer readers to it.2

Software Heritage tracks a curated list of software distri-
bution places. For each different type of distribution place
there exists a “lister” component, capable of enumerating all
software origins (VCS repository, source package, etc.) hosted
there. The next step to recreate the dataset is hence to run
the lister for each tracked software distribution place, that is:
GitHub, GitLab.com, Debian, and PyPI. (Gitorious and Google
Code having disappeared, they cannot be re-archived today).
All listers are available from the Software Heritage forge.34

Then, all software origins enumerated by running the listers
should be crawled, retrieving all the source code artifacts
found there (file contents, commits, directories, releases, etc.).
For each origin having a different type (Git repository, Debian
package, PyPI package, etc.), this step boils down to running
the matching “loader” component on the origin URL. Be
warned that as of this writing Software Heritage tracks more
than 80 million origins, and therefore crawling all of them
might require months, if not years, and significant computing
and bandwidth resources. By default loaders also store file
contents, which are not included in the graph dataset and
would require ≈200 TB of storage space as of this writing; the
storage layer can be configured to not store contents, reducing
the storage fingerprint (the database storing the graph will still
need ≈5 TB of fast storage, e.g., SSDs).

At the end of the process, database dumps can be obtained
by running pg_dump; Parquet files by using PyArrow. A
public dataset on Athena can be obtained by importing the
Parquet files on Amazon S3.

III. DATA MODEL

A particular property of software development is that
source code artifacts are massively duplicated across hosts
and projects [17]. In order to enable tracking of software
artifacts across projects, and reduce the storage size of the

2https://docs.softwareheritage.org/devel/getting-started.html
3https://forge.softwareheritage.org/source/swh-lister/
4Specific versions of these software components are available as part of the

dataset, in swh-environment.tar.gz.

Fig. 1: Data model: a uniform Merkle DAG containing
source code artifacts and their development history

graph, the Software Heritage Graph Dataset is stored as a
Merkle directed acyclic graph (DAG) [19]. By using persistent,
cryptographically-strong hashes as node identifiers [24], the
graph can be deduplicated by sharing all identical nodes.

As shown in Fig. 1, the Software Heritage DAG is organized
in five logical layers, which we describe from bottom to top.

Contents (or “blobs”) form the graph’s leaves, and contain
the raw content of source code files, not including their
filenames (which are context-dependent and stored only as
part of directory entries). The dataset contains cryptographic
checksums for all contents though, that can be used to retrieve
the actual files from any Software Heritage mirror using a
Web API5 and cross-reference files encountered in the wild,
including other datasets.

Directories are lists of named directory entries. Each entry
can point to content objects (“file entries”), revisions (“revision
entries”), or other directories (“directory entries”).

Revisions (or “commits”) are point-in-time captures of the
entire source tree of a development project. Each revision
points to the root directory of the project source tree, and
a list of its parent revisions.

Releases (or “tags”) are revisions that have been marked as
noteworthy with a specific, usually mnemonic, name (e.g., a
version number). Each release points to a revision and might
include additional descriptive metadata.

Snapshots are point-in-time captures of the full state of
a project development repository. As revisions capture the

5https://archive.softwareheritage.org/api/
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content

revisions

directoriessnapshots

origins

releases

content

sha1 sha1   

sha1_git sha1_git   

length bigint   

directory

id sha1_git   

dir_entries bigint[]   

file_entries bigint[]   

rev_entries bigint[]   

directory_entry_dir

id bigserial   

target sha1_git   

name unix_path   

perms file_perms   

directory_entry_file

id bigserial   

target sha1_git   

name unix_path   

perms file_perms   

directory_entry_rev

id bigserial   

target sha1_git   

name unix_path   

perms file_perms   

skipped_content

sha1 sha1   

sha1_git sha1_git   

length bigint   

revision

id sha1_git   

date timestamp   

committer_date timestamp   

directory sha1_git   

message bytea   

author bigint   

committer bigint   

origin

id bigserial   

type text   

url text   

origin_visit

origin bigint   

visit bigint   

date timestamp   

snapshot_id bigint   

snapshot

object_id bigserial   

id sha1_git   

person

id bigserial   

release

id sha1_git   

target sha1_git   

date timestamp   

name bytea   

comment bytea   

author bigint   

revision_history

id sha1_git   

parent_id sha1_git   

parent_rank integer   

snapshot_branch

object_id bigserial   

name bytea   

target bytea   

target_type snapshot_target   
snapshot_branches

snapshot_id bigint   

branch_id bigint   

Table # of objects
origin 85 143 957
snapshot 57 144 153
revision 1 125 083 793
directory 4 422 303 776
content 5 082 263 206

Fig. 2: Simplified schema of the Software Heritage Graph Dataset and the number of artifacts in it

Listing 1: Most frequent file name
SELECT FROM_UTF8(name, ’?’) AS name,
COUNT(DISTINCT target) AS cnt

FROM directory_entry_file
GROUP BY name
ORDER BY cnt DESC
LIMIT 1;

state of a single development line (or “branch”), snapshots
capture the state of all branches in a repository and allow to
deduplicate unmodified forks across the archive.

Deduplication happens implicitly, automatically tracking
byte-identical clones. If a file or a directory is copied to
another project, both projects will point to the same node
in the graph. Similarly for revisions, if a project is forked
on a different hosting platform, the past development history
will be deduplicated as the same nodes in the graph. Likewise
for snapshots, each “fork” that creates an identical copy of
a repository on a code host, will point to the same snapshot
node. By walking the graph bottom-up, it is hence possible
to find all occurrences of a source code artifact in the archive
(e.g., all projects that have ever shipped a specific file content).

The Merkle DAG is encoded in the dataset as a set of
relational tables. In addition to the nodes and edges of the
graph, the dataset also contains crawling information, as a set
of triples capturing where (an origin URL) and when (a times-
tamp) a given snapshot has been encountered. A simplified
view of the corresponding database schema is shown in Fig. 2;
the full schema is available as part of the dataset distribution.
The sizes of the dataset’s most notable tables are shown in the
legend appearing in the Figure’s top right.

IV. SAMPLE QUERIES AND RESEARCH QUESTIONS

To further illustrate the dataset’s affordances and as moti-
vating examples regarding the research possibilities it opens,
below are some sample SQL queries that can be executed with
the dataset on AWS Athena.

Listing 2: Most common commit operations
SELECT COUNT(*) AS c, word
FROM
(SELECT LOWER(REGEXP_EXTRACT(FROM_UTF8(

message), ’ˆ\w+’)) AS word
FROM revision )

WHERE word != ’’
GROUP BY word
ORDER BY COUNT(*) DESC LIMIT 20;

Listing 1 shows a simple query that finds the most frequent
file name across all the revisions. The result, obtained by
scanning 151GB in 3′40′′, is index.html, which occurs in
the dataset 182 million times.

As an example of a query useful in software evolution
research, consider the Listing 2. It is based on the convention
dictating that commit messages should start with a summary
expressed in the imperative mood [25, 3.3.2.1]. Based on
that idea, the query uses a regular expression to extract the
first word of each commit message and then tallies words by
frequency. By scanning 37 GB in 30′′ it gives us that commits
concern the following common actions ordered by descending
order of frequency: add, fix, update, remove, merge, initial,
create. (We had to manually stem some verbs, because the
most recent version of the Presto query engine, which provides
a built-in stemming function, is not yet available on Athena.)

SQL queries can also be used to express more complex
tasks. Consider the research hypothesis that weekend work
on open source projects is decreasing over the years as
evermore development work is done by companies rather than
volunteers. The corresponding data can be obtained by finding
the ratio between revisions committed on the weekends of
each year and the total number of that year’s revisions (see
Listing 3). The results, obtained by scanning 14 GB in 7′′ are
inconclusive, and point to the need for further analysis, which
is left as an exercise to the reader.

The provided dataset forms a graph, which can be dif-



Listing 3: Ratio of commits performed during each year’s
weekends

WITH revision_date AS
(SELECT FROM_UNIXTIME(date / 1000000) AS date
FROM revision)

SELECT yearly_rev.year AS year,
CAST(yearly_weekend_rev.number AS DOUBLE)
/ yearly_rev.number * 100.0 AS weekend_pc

FROM
(SELECT YEAR(date) AS year, COUNT(*) AS number
FROM revision_date
WHERE YEAR(date) BETWEEN 1971 AND 2018
GROUP BY YEAR(date) ) AS yearly_rev

JOIN
(SELECT YEAR(date) AS year, COUNT(*) AS number
FROM revision_date
WHERE DAY_OF_WEEK(date) >= 6

AND YEAR(date) BETWEEN 1971 AND 2018
GROUP BY YEAR(date) ) AS yearly_weekend_rev
ON yearly_rev.year = yearly_weekend_rev.year

ORDER BY year DESC;

Listing 4: Average number of a revision’s parents
SELECT AVG(fork_size)
FROM (SELECT COUNT(*) AS fork_size

FROM revision_history
GROUP BY parent_id);

ficult query with SQL. Therefore, questions associated with
the graph’s characteristics, such as closeness, distance, and
centrality, will require the use of other query mechanisms. Yet,
interesting metrics can be readily obtained by limiting scans
to specific cases, such as merge commits. As an example,
Listing 4 calculates the average number of parents of each
revision (1.088, after scanning 23 GB in 22′′) by grouping
revisions by their parent identifier. Such queries can be used
to examine in depth the characteristics of merge operations.

Although the performance of Athena can be impressive,
there are cases where the available memory resources will be
exhausted causing an expensive query to fail. This typically
happens when joining two equally large tables consisting
of hundreds of millions of records. This restriction can be
overcome by sampling the corresponding tables. Listing 5
demonstrates such a case. The objective here is to deter-
mine the modularity at the level of files among diverse
programming languages, by examining the size of popular
file types. The query joins two 5 billion row tables: the file
names and the content metadata. To reduce the number of
joined rows a 1% sample of the rows is processed, thus
scanning 317 GB in 1′20′′. The order of the resulting lan-
guage files (JavaScript>C>C++>Python>PHP>C#> Ruby)
indicates that, with the exception of JavaScript, languages
offering more abstraction facilities are associated with smaller
source code files.

V. LIMITATIONS AND EXTENSIONS

As discussed in Section II, the dataset is not fully repro-
ducible. This is a limitation, but one that is very hard to avoid
for datasets originating from long-term archival.

The dataset cannot claim full coverage of the entire software
commons, and several forges and package repositories are still
missing from it. Still, it is the largest dataset of its kind (by
several order of magnitude). Also, to mitigate this limitation

Listing 5: Average size of the most popular file types
SELECT suffix,
ROUND(COUNT(*) * 100 / 1e6) AS Million_files,
ROUND(AVG(length) / 1024) AS Average_k_length

FROM
(SELECT length, suffix
FROM
-- File length in joinable form
(SELECT TO_BASE64(sha1_git) AS sha1_git64, length
FROM content ) AS content_length

JOIN
-- Sample of files with popular suffixes
(SELECT target64, file_suffix_sample.suffix AS suffix
FROM
-- Popular suffixes
(SELECT suffix FROM (

SELECT REGEXP_EXTRACT(FROM_UTF8(name),
’\.[ˆ.]+$’) AS suffix

FROM directory_entry_file) AS file_suffix
GROUP BY suffix
ORDER BY COUNT(*) DESC LIMIT 20 ) AS pop_suffix

JOIN
-- Sample of files and suffixes
(SELECT TO_BASE64(target) AS target64,

REGEXP_EXTRACT(FROM_UTF8(name),
’\.[ˆ.]+$’) AS suffix
FROM directory_entry_file TABLESAMPLE BERNOULLI(1))
AS file_suffix_sample

ON file_suffix_sample.suffix = pop_suffix.suffix)
AS pop_suffix_sample
ON pop_suffix_sample.target64 = content_length.sha1_git64)

GROUP BY suffix
ORDER BY AVG(length) DESC;

we plan to periodically publish new versions of it, as the
Software Heritage archive extends its coverage.

As a first future extension we plan to include actual file
contents as part of the dataset. This is currently impractical
due to the storage size (≈200 TB ), but we are exploring cloud
storage with bring-your-own-compute service model solutions.

As further extensions, it would be useful to combine the
Software Heritage Graph Dataset with neighboring datasets
that contain non-source-code development artifacts, such as
issues, code review discussions, wiki pages, etc. We are
exploring an integrated dataset with GHTorrent [26], even
thought that would narrow the scope to GitHub “only”.

VI. RELATED WORK

To the best of the authors’ knowledge no existing dataset
contains a comparable amount of data about source code
artifacts extracted from public software development.

GHTorrent [26] covers GitHub and includes non-source-
code artifacts (e.g., issues, pull requests, etc.), but lacks other
software distribution places (e.g., GitLab, Debian, PyPI). Also,
no deduplication applies to GHTorrent, making cloning track-
ing more challenging. CodeFeedr [27] is a natural evolution
of GHTorrent, but it is oriented toward expanding coverage
for additional sources of non-source-code artifacts.

The Debsources dataset [28] contains a wealth of informa-
tion about Debian releases over several decades, but stops at
the release granularity (rather than commits) and is at least
three orders of magnitude smaller than the present dataset.

Acknowledgements: We thank the Amazon AWS Public
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