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« If the users don't control the program,

the program controls the users. With propri-

etary software, there is always some entity, the

�owner� of the program, that controls the pro-

gram � and through it, exercises power over its

users. A nonfree program is a yoke, an instru-

ment of unjust power. »

� rms,

Free Software Is Even More Important Now

« When we've got these people who have prac-

tically limitless powers within a society, if they

get a pass without so much as a slap on the wrist,

what example does that set for the next group of

o�cials that come into power? To push the lines

a little bit further, a little bit further, a little bit

further, and we'll realize that we're no longer

citizens � we're subjects. »

� Edward Snowden,

War on Whistleblowers

« I parigini erano sempre interessati al teatro,

ma il teatro era divenuto grande quanto Pa-

rigi. I migliori oratori della Convenzione pren-

devano lezioni da attori consumati e la gente an-

dava ad ascoltarli e applaudirli come se stessero

sulla scena. Gli spettacoli più emozionanti erano

quelli dove la gente perdeva la testa per davvero,

i cannoni tuonavano e poteva capitare, da un

momento all'altro, che gli spettatori si trovassero

a recitare. »

� Wu Ming,

L'armata dei sonnambuli

« Ogni movimento rivoluzionario è romantico,

per de�nizione. »

� Antonio Gramsci,

L'Ordine Nuovo, 17 gennaio 1922
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having taking care of tzdata.
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Chapter 1

Introduction

Free and Open Source Software (or FOSS, for short) is software that is licensed in a way
that allows its users to freely use, study, modify, and redistribute it with or without
modi�cation [145]. Born in the 80s as a political movement to liberate users from the
power imbalance that originates from the asymmetry between developers (who have full
access to the source code of the software they write) and users (who generally don't),
FOSS has taken the software industry by storm [165, 166, 109].

Today, every company who develops software, for their own needs or otherwise, uses
FOSS; virtually every company who ships software as part of their products, also ships

FOSS as part of them; more and more companies who use or ship FOSS, contribute to
its development in a way or another [75]. As a result, most computer users around the
world interact daily with FOSS, often without realizing it. Just to name a few examples
think of the most popular operating systems for smartphones and Internet servers (An-
droid, GNU/Linux), the leading content management system and web server (Wordpress,
Apache), or the state-of-the-art in private and public �clouds� (OpenStack), not to mention
programming languages implementations and development platforms that are invariably
ending up being released as FOSS.

The potential impact of the quality, for better or worse, that such a vast body of freely
licensed code has on the daily lives of billions of people around the world is beyond
imaginable. It surfaces in global news only when very bad things happens, as it was the
case in 2014 �thanks� to the Heartbleed vulnerability [61], because that's how news and
hype work. But the fact remains that a substantial, and increasingly more so, amount of
the software that runs the world is FOSS and seems to be here to remain.

The relevance of FOSS to computer science researchers and teachers, while well-
known by activists who also happen to work in those �elds, is much less discussed
though. Those of us researchers who are also educators in programming-related classes
know that FOSS has had a profound impact on course syllabuses. We now have to teach
not only team collaboration, but also how to interact with third party communities to
get patches reviewed and accepted; not only how to write code, but also how to �nd,
evaluate, and reuse existing pieces of FOSS; not only how to release software, but also
how to license it, choosing among the many FOSS licenses available; not only how to test
software, but also how to nurture and e�ciently manage communities of volunteers that,

2
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observe FOSS

practices

identify

problems

investigate

& model

build solutions

contribute back

Figure 1.1: A virtuous cycle for applied software engineering in FOSS

if interested in a piece of FOSS, might come and join its development reducing mainte-
nance costs. These changes are much more profound and durable than those induced by
the rise and fall of speci�c technologies, that too often we build our teaching curricula
upon.

But it is in the context of research, and in particular of applied software engineering,
that FOSS has shined the most in terms of impact. On the one hand, the free availability
of billions of lines of source code, together with their development histories as captured
by version control systems (VCSs), is a treasure trove for empirical research. Brand new
research �elds were built on top of datasets coming out of FOSS, as exempli�ed by the
Mining Software Repository case [82, 96]. On the other hand, open and collaborative
development that is so typical of FOSS [131] has created a real opportunity to break the
equivalent of the theatrical �fourth wall� between software developers and researchers
in software engineering, as depicted in Figure 1.1.

Researchers can simply start by observing FOSS practices from the sidelines, thanks
to the fact that all FOSS development outputs�releases, version control systems, build
logs, bug tracking systems, code reviews, mailing list discussions, etc.�are public. They
can then identify pain points and problems, either by mere observation, or by direct
interaction with FOSS developers, who have shown to be very accessible to researchers
that understand FOSS culture and are genuinely trying to help. This gives a wealth of
information and real data that researchers can leverage to do what they do best, capture
the problem in a more abstract way that it is amenable to abstract reasoning and analysis.
The fact that data and information are real rather than synthetic allows to focus on
the issues that actually matter and avoid �gold plating� theoretical models. While there
is no silver bullet for the next step in the diagram, clear understanding of a problem
often leads to natural solutions that weren't visible before�a novel algorithm, a clever
optimization, or a di�erent data model that makes the initial problem shallow.

The next, and �nal, two steps in the diagram are the key to a virtuous cycle between
FOSS communities and applied software engineering: building real systems that show
the e�ectiveness of the solution found to the original problem, and contributing them



4 Introduction

back to the FOSS community making sure they are used in practice by the designated
public. While stopping at the prototype level, or even before that, is totally �ne for the
needs of abstract research, it is a risky tactic for applied research. By not implementing
solutions that are factually proven to work in the real world, we risk overlooking practical
constraints that might turn a (in theory) perfectly �ne solution into just another paper
that (in practice) will have no visible impact on the day-by-day activities of software
developers and users. Or, as Knuth famously quipped, �Beware of bugs in the above
code; I have only proved it correct, not tried it.�

Furthermore, as some sort of long-term investment, it is only by actually contributing
back tools and solutions to FOSS communities that researchers will show they were in-
terested in helping out, building reputation that will help them having even easier access
to the community at the next iteration.

Overall, this is a virtuous collaboration cycle that helps FOSS communities tackling
hard problems that might be beyond their skill sets, and researchers in �nding interesting
problems that, if solved, might impact the daily lives of millions of users.

1.1 Contributions

In the context of our research work over the past decade�that this manuscript attempts
to brie�y summarize�both FOSS and constant collaboration with FOSS communities
have been de�ning themes and our modus operandi.

Mancoosi We have �rst witnessed the aforedescribed virtuous cycle in the context of
the EU-funded Mancoosi project, which we joined since its very beginning in 2008. The
objects of study of Mancoosi were FOSS distributions, who are the most common way of
distributing FOSS, in the form of packages, to �nal users. Distribution packages form very
large (in the tens of thousands packages) curated collections of software components,
that evolve rapidly and exhibit complex inter-component dependencies that needs to be
�solved� every time a package is installed on, upgraded, or removed from user machines.

Our contribution in the context of Mancoosi are aligned along two main research
directions:

distribution-wide quality assurance modeling and studying the relationships among dis-
tribution packages to various ends:

1. e�ciently identify �broken� packages, i.e., packages that cannot be installed in
any possible valid con�guration due to their dependencies and con�icts

2. e�ciently identify �sensible� packages, i.e., packages that many others depend
upon�often invisibly so, without explicit dependencies declared on them by
maintainers�and hence should we treated with extreme care,

Tools based on this work has since been adopted and are used daily by popular
GNU/Linux distributions like Debian.

upgrade optimization to allow users to express �ne-grained preferences (in the form of
optimization criteria) that package managers can take into account when satisfying
user requests to manipulate software packages installed on their machines.
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To this end we have developed a uniform, cross-distribution semantics of package
upgrades, a corresponding document format and reference implementation, and
used them as a basis to run a package upgrade competition' that tens of solvers
implemented using a variety of techniques have participated into.

This work has paved the way to a more modular architecture for package managers,
that has since seen adoption in state-of-the-art package managers like Eclipse P2
and OPAM.

Aeolus Two main future work directions emerged at the end of Mancoosi: scaling �up�
to modeling systems beyond single machine boundaries and delving �down� into the
actual source code of individual software packages. The ANR1-funded Aeolus project,
which we contributed to create and participated into since day one, picked up the �rst
direction.

As part of Aeolus we have designed the homonymous component model, that is ca-
pable to capture not only relationships between FOSS packages within a single machine,
but also the relationships among software services that run on di�erent machines that
communicate via local network or the Internet. The Aeolus component model is �exible
enough to express the fact that service interfaces evolve over time, depending on the
current readiness state of the service (e.g., �not installed�, �installed but not con�gured�,
�starting up�, �up and running�, etc.), which wasn't the case for distribution packages.

Nonetheless, services are deployed on machines as packages. Aeolus hence preserves
those mappings to avoid planning service deployment obliviously of package constraints,
like con�icts, that might negatively impact it. The Aeolus component model also caters
for service capacity (needed to models service load and request shaping) and dynami-
cally spinning up and down machines, as it is common place in state-of-the-art �cloud�
o�erings.

The Aeolus component model has been used as the formal basis for tooling that has
been built to plan optimal service deployment in �cloud� settings, with a guarantee of
minimizing the needed resources, and hence deployment costs. Such tooling has seen
industrial adoption by a well-known commercial distribution editor and has been used in
production to formally verify the correctness of deployment plans.

Debsources Component analysis a la Mancoosi stops at the abstraction level of inter-
package relationships. But those dependencies and con�icts generally stem from imple-
mentation characteristics, such as a source �le in a package (e.g., an application) invoking
a function implemented in a di�erent package (e.g., a library). While we can detect global
inconsistencies in package relationships with the Mancoosi approach, dependency cor-
rectness for individual packages can only be assessed by studying the underlying source
code. Furthermore, other problematic aspects of components upgrades, such as runtime
failures during deployments, can be �xed only at the source code level, and in particular
by analyzing maintainer scripts that are shipped as part of distribution packages.

Studying and addressing these problems require dropping down to the abstraction
level of source code. Unfortunately, systematic study of the source code of vast curated

1French national funding agency
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software collections is often challenging for researchers due to the tendency of FOSS
developer communities to develop ad hoc development tools, conventions, language ele-
ments, etc. To address this problem in the speci�c context of the Debian distribution we
created Debsources, which is actually two things at once:

a software platform to observe live and long-term software evolution trends in the con-
text of FOSS distributions, catering to a wide range of source code indexing and
measuring needs thanks to a �exible plugin system

a dataset obtained using the Debsources platform on the Debian distribution, that cov-
ers 2 decades of FOSS evolution history for more than 3 billion lines of source code
(SLOCs), as well as metadata about them such as: size metrics (lines of code, disk
usage), developer-de�ned symbols, �le-level checksums, �le media types, release
information, and license information.

Debsources is the largest dataset of its kind, has been adopted as a code browsing and
searching platform by the Debian community, and is used by industrial consortium as a
reference base for accessing Debian licensing information in a machine readable way.

Software Heritage Debsources has been a successful experiment in making a very large
code base (billions SLOCs) of curated FOSS, as well as interesting metadata about it, ac-
cessible to software researchers. But it also raised a relevant question: given the intrinsic
public nature of source code in FOSS, can we do more? Namely, can we collect the entire
corpus of all FOSS source code ever published and systematize access to it so that soft-
ware researchers can easily and reproducibly run massive-scale experiments on the entire
software commons [21, 100] collected over the past decades? Our�tentative, for now�
answer is that yes, we can. Proof comes in the form of the Software Heritage project, that
we have co-founded with Roberto Di Cosmo and launched publicly in 2016.

The ambitious goal of Software Heritage is to collect, organize, preserve, and share
with everyone who needs access to it, the entire corpus of software that has ever been
published in source code form�i.e., a strict superset of the FOSS corpus�together with
its full development history as captured by state-of-the-art VCSs.

In addition to massive-scale source code analysis for software engineering, Software
Heritage is also meant to address the following use cases:

cultural heritage by preserving source code in the very long-term, as the sole represen-
tation of software where precious human knowledge about the technologies that
run our lives resides, against increasing threats of losing some of it forever

scienti�c reproducibility by providing a place where source code that is relevant to sci-
enti�c papers can be deposited, completing the science preservation triangle that
already have good deposits for papers and dataset, but lacks one for source code

industrial software tracking by providing intrinsic and standardized identi�ers for
source code artifacts (individual versions of �les, commits, releases, etc.), indepen-
dent of third party indexes, that will allow industry players to easily track software
for a variety of purposes, including security issues and the preparation of software
bills of material
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education by providing a stable basis on top of which a global community of educators
can collaboratively curate the ultimate �source book� (spanning aspects like: the
evolution of algorithm implementations across the entire history of software, real-
world optimizations and data structure corresponding to pseudo-code taught in
class, etc.) to train future generations of developers

1.2 Reading guide

Part I The �rst part of this manuscript (�Research Overview�) summarizes our contri-
butions to the state of the art of FOSS software engineering over the past decade. The
presentation follows closely the organic evolution of our research interests as presented
in the previous section.

Chapter 2 and Chapter 3 present our contributions in the context of the Mancoosi
and Aeolus projects, respectively. Chapter 4 is dedicated to the Debsources experience.
Software Heritage is described in Chapter 5. A discussion of our future research direc-
tions, all foreseen to revolve around Software Heritage, concludes the research overview
part in Chapter 6.

Our research work has been published in peer reviewed journals or conference pro-
ceedings. Material from the most representative among those papers has hence been
reused in preparing the relevant chapters of the research overview, putting their content
in the broader context of this manuscript. Each chapter clearly indicates which papers it
is based on. In the case of multi-author papers, only research work that we have either
authored ourselves or contributed to in a very signi�cant manner has been included in
the research overview.

Part II The second part consists of a single chapter (Chapter 7): a detailed curriculum
vitae that also includes a full list of our publications irrespectively of whether they have
been covered in the research overview part or not. As it is customary nowadays for
habilitation theses in France, this chapter is meant to give a broader overview of our
academic work, spanning both research and non research (but still academically relevant)
activities.

Part III The third and last part (�Selected Publications�) of this document is a short an-
thology of selected papers that we have authored, and that are highlights of our research
work on the various topics discussed in Part I. Some of them have been used as basis
for research overview chapters, in which case they can be used as reference material to
lookup omitted details, such as theorem proofs; others have not, but have been included
as further readings on the discussed research topics.

The articles available in the anthology are:

[1] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Dependency
solving: a separate concern in component evolution management. Journal of Systems

and Software, 85(10):2228�2240, October 2012.
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[2] Pietro Abate, Jaap Boender, Roberto Di Cosmo, and Stefano Zacchiroli. Strong depen-
dencies between software components. In ESEM 2009: 3rd International Symposium

on Empirical Software Engineering and Measurement, pages 89�99, 2009.

[3] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi Zavattaro. Aeolus:
a component model for the cloud. Information and Computation, 239:100�121, 2014.

[4] Roberto Di Cosmo, Michael Lienhardt, Ralf Treinen, Stefano Zacchiroli, Jakub
Zwolakowski, Antoine Eiche, and Alexis Agahi. Automated synthesis and deploy-
ment of cloud applications. In ASE 2014: 29th IEEE/ACM International Conference on

Automated Software Engineering, pages 211�222. ACM, 2014.

[5] Matthieu Caneill and Stefano Zacchiroli. Debsources: Live and historical views on
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Chapter 2

Modeling FOSS packages and

their relationships

This chapter is based on the parts of [53] related to

our research work as part of the Mancoosi project.

From the outset, most Free and Open Source Software (FOSS) products are installed,
deployed, and maintained over time relying on so-called distributions [69]. The most rel-
evant aspect of software distributions for us here is that each distribution provides a
repository: a typically large set of software packages maintained and curated by distri-
bution editors as software components (in the sense of [152]) that are designed to work
well together.

While speci�c technological choices vary from distribution to distribution, many as-
pects, problems, and solutions are common across distributions. For instance, packages
have expectations on the deployment context: they may require other packages to func-
tion properly�declaring this fact by means of dependencies�and may be incompatible
with some other packages�declaring this fact by means of con�icts. Dependencies and
con�icts are captured as part of package metadata. Figure 2.1 shows as an example of
the popular Firefox web browser as a package in the Debian distribution.

A couple of observations are in order. First, note how the general form of inter-
package relationships (con�icts, dependencies, etc.) is that of propositional logic formu-
lae, having as atoms predicates on package names and their versions. Second, we have

Package: firefox

Version: 18.0.1-1

Depends: libc6 (>= 2.4), libgtk2.0-0 (>= 2.10), libstdc++6,

fontconfig, procps, xulrunner-18.0, libsqlite3-0, ...

Suggests: fonts-stix | otf-stix, mozplugger,

libgssapi-krb5-2 | libkrb53

Conflicts: mozilla-firefox (<< 1.5-1)

Provides: www-browser, gnome-www-browser

Figure 2.1: Package relationships for the Firefox web browser in Debian.

9
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# aptitude install baobab

[...]

The following packages are BROKEN: gnome-utils

The following NEW packages will be installed: baobab [...]

The following actions will resolve these dependencies:

Remove the following packages: gnome gnome-desktop-environment libgdict-1.0-6

Install the following packages: libgnome-desktop-2 [2.22.3-2 (stable)]

Downgrade the following packages:

gnome-utils [2.26.0-1 (now) -> 2.14.0-5 (oldstable)] [...]

0 packages upgraded, 2 newly installed, 1 downgraded,

180 to remove and 2125 not upgraded. Need to get 2442kB

of archives. After unpacking 536MB will be freed.

Do you want to continue? [Y/n/?]

Figure 2.2: Attempt to install the disk space monitoring utility baobab using the Aptitude
package manager (excerpt). In response to the request, the package manager proposes to
downgrade the GNOME desktop environment all together to a very old version compared
to what is currently installed. As shown in [6] a trivial alternative solution exists that
minimizes system changes: remove a couple of dummy �meta� packages.

various degrees of dependencies, strong ones (like �Depends�) that must be satis�ed as
deployment preconditions and weak ones (like �Suggests� and �Recommends�, the latter
not shown). Finally, we also observe an indirection layer in the package namespace im-
plemented by �Provides�. Provided packages are sometimes referred to as features, or
virtual packages and mean that the providing package can be used to satisfy dependen-
cies for�or induce con�icts with�the provided name.

To maintain package assemblies, semi-automatic package manager applications are
used to perform package installation, removal, and upgrades on user machines�the term
upgrade is often used to refer to any combination of those actions. Package managers in-
corporate numerous functionalities: trusted retrieval of components from remote repos-
itories, planning of upgrade paths in ful�llment of deployment expectations (also known
as dependency solving), user interaction to allow for interactive tuning of upgrade plans,
and the actual deployment of upgrades by removing and adding components in the right
order, aborting the operation if problems are encountered at deploy-time [54].

Unfortunately, due to the sheer size of package repositories in popular FOSS distribu-
tions (in the order of tens of thousands [80]), several challenges need to be addressed to
make the distribution model viable in the long run. In the following we will focus on two
classes of issues and our related research work:

1. issues faced by distribution users, who carry the burden of maintaining their own
installations functional, and

2. issues faced by distribution editors, who are in charge of maintaining the consistency
of distribution repositories to the bene�t of their users.

As motivating example of issues that are faced by users consider the seemingly simple
requirement that a package manager should change as little as possible on the target
machine in order to satisfy user requests. Unfortunately, as demonstrated in Figure 2.2,
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Package: cyrus-common-2.2

Version: 2.4.12-1

Depends: cyrus-common-2.4

Package: cyrus-common-2.4

Version: 2.4.12-1

Conflicts: cyrus-common-2.2

Figure 2.3: (Broken) dependencies for the Cyrus mail system in Debian.

that property is generally not guaranteed by mainstream package managers. A related
issue, that we will also discuss in the following, is that of providing expressive languages
that allow users of package managers to express their preferences, e.g., the demand to
minimize the size occupied by packages installed on their machines.

Distribution editors, on the other hand, face the challenging task of avoiding incon-
sistencies in huge package archives. A paradigmatic example of inconsistency that they
should avoid is that of shipping uninstallable packages, i.e., packages that, no matter
what, cannot be installed on user machines because there is no way to satisfy their de-
pendencies and con�icts.

Consider the (real) example involving the Cyrus mail system given in Figure 2.3. It is
easy to verify that it is not possible to install the above cyrus-common-2.2 package�a
dummy package made to ease upgrades to Cyrus 2.4�out of any package repository that
also contains the cyrus-common-2.4 package shown in the example.

Even worse, it can be shown that the issue is not transitional, i.e., the team responsible
for cyrus-common-2.2 (its maintainers) cannot simply wait for it to go away (e.g., due
to changes in other packages), they have to manually �x the metadata of their package
so that the cause of the uninstallability goes away. The challenge here is that, while it is
easy to reason on simple cases like this one, distribution editors actually need semi- or
fully-automated tools able to spot this kind of quality assurance issues and point them to
the most likely causes of troubles in the large maze of packages and their relationships.

2.1 Formal package modeling

Di�erent formal treatments of packages and their relationships are needed for di�erent
purposes. Syntactic (or concrete) modeling captures the syntax of inter-package relation-
ships, so that they can be treated symbolically, in a way that is close to how package
maintainers reason about them. Such an approach is useful to reason about the future
evolution of repositories [9, 7], as well as a basis for designing interchange formats that
capture the essence of upgrade operations [154].

A more abstract package model is useful too, in order to make the modeling more in-
dependent from speci�c component technologies and their requirement languages. This
kind of modeling is useful to recast the problem of verifying package installability as
a SAT problem [114] and to capture the actual semantics of the graph of inter-package
relationships [1].
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2.1.1 Concrete package model

A concrete package model, originally inspired by Debian packages, has been given in [7]
and further detailed in [9]. In that model packages are captured as follows:

De�nition 1 (package). A package �n;v;D;C� consists of

� a package name n 2 N,

� a version v 2 V,

� a set of dependencies D � }�N� Con�,

� a set of con�icts C � N� Con,

where N is a given set of possible package names, V a set of package versions, and Con a
set of syntactic constraints on them like >, � v , > v , � v , . . .

The intuition is that dependencies should be read as conjunctions of disjunctions. For
example: ff�p;� 1�; �q;� 2�g; f�r ;< 5�gg should be read as ��p � 1�_ �q � 2�� & �r <
5�. Starting from this intuition, the expected semantics of package constraints can be
easily formalized as described below.

Notation 1. Given a package p we write p:n (resp. p:v , p:D, p:C) for its name (resp.

version, dependencies, con�icts).

Repositories can then be de�ned as package sets, with the additional constraint that
name/version pairs are unambiguous package identi�ers:

De�nition 2 (repository). A repository is a set of packages, such that no two di�erent

packages carry the same name and version.

A pair of a name and a constraint has a meaning with respect to a given repository R,
the precise de�nition of which would depend on the formal de�nition of constraints and
their semantics:

Notation 2. Given a repository R, n 2 N and c 2 Con, we write ���n; c���R for the set of

packages in R with name n and whose version satis�es the constraint c.

We can now capture the important notions of installation and (co-)installability:

De�nition 3 (installation). Let R be a repository. An R-installation is a set of packages

I � R such that 8p;q 2 I:

abundance for each element d 2 p:D there exists �n; c� 2 d and a package q 2 I such
that q 2 ���n; c���R.

peace for each �n; c� 2 p:C : I \ ���n; c���R � ;

�atness if p � q then p:n � q:n
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Package: a Package: b Package: d

Version: 1 Version: 2 Version: 3

Depends: b (� 2) j d Conflicts: d

Package: a Package: c Package: d

Version: 2 Version: 3 Version: 5

Depends: c (> 1) Depends: d (> 3)

Conflicts: d (= 5)

Figure 2.4: Sample Debian-like package repository

Flatness implies that only one version of a given package can be installed at a given
time. Note, however, that this is a speci�c concrete package model, inspired by Debian
packages. Therefore not all installation requirements listed here have equivalents in all

component technologies. Most notably the �atness requirement varies signi�cantly from
technology to technology and, for instance, is absent from RPM packages. As discussed
in [6, 9] this heterogeneity does not a�ect subsequent results.

De�nition 4 (installability). p 2 R is R-installable if there exists an R-installation I with
p 2 I.

De�nition 5 (co-installability). S � R is R-co-installable if there exists an R-installation I
with S � I.

Example 1 (package installations). Consider the repository R shown in Figure 2.4. The
following sets are not R-installations:

� R as a whole, since it is not �at;

� f�a;1�; �c;3�g, since both a's and b's dependencies are not satis�ed;

� f�a;2�; �c;3�; �d;5�g, since there is a con�ict between c and d.

The following sets on the other hand are R-installations: f�a;1�; �b;2�g, f�a;1�; �d;5�g.

We can therefore observe that the package �a;1� is R-installable, because it is con-
tained in an R-installation. The package �a;2� is not R-installable because any installa-
tion of it must also contain �c;3� and consequently �d;5�, which will necessarily break
peace.

2.1.2 Abstract package model

A more abstract package model [114] has been used as basis for several advancements
on issues faced by both distribution users and maintainers. The key idea is to model
repositories as non mutable entities, under a closed world assumption stating that we
know the set of all existing packages, i.e., that we will be working (at least temporarily)
with respect to a �xed repository R.

De�nition 6. An abstract repository consists of

� a set of packages P ,
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� an anti-re�exive and symmetric con�ict relation C � P � P ,

� a dependency function D : P -! }�}�P��.

The nice properties of peace, abundance, and (co-)installability can be easily recast in
such a model.

The concrete and abstract models can be related. In particular, we can translate in-
stances of the concrete model (that can easily be built from real-life package repositories)
into instances of the more abstract model, preserving the installability properties. To do
that, the main intuition is that (concrete) package constraints can be �expanded� to dis-
junctions of all (abstract) packages that satisfy them, which is a safe operation under
the closed world assumption. For example, if we have a package p in versions 1, 2, and
3, then a dependency on p � 2 will become ff�p;2�; �p;3�gg. For con�icts, we will add
a con�ict in the abstract model when either one of the two (concrete) packages declare
a con�ict on the other, or when we have two packages of the same name and di�erent
versions, to account for �atness. Formally:

Notation 3. Let R be a repository in the concrete model. We can extend the semantics of

pairs of names and constraints to sets as follows:

��f�n1; c1�; : : : ; �nm; cm�g��R � ���n1; c1���R [ : : :[ ���nm; cm���R

De�nition 7 (concrete to abstract model translation). Let R be a repository in the concrete

model. We de�ne an abstract model Ra � �Pa;Da; Ca�.

� Pa: the same packages as in R

� We de�ne the dependency in the abstract model:

Da�p� � f�����R j � 2 p:Dg

� We de�ne con�icts in the abstract model:

Ca � f�p1; p2� j p1 2 ��p2:C��R _ p2 2 ��p1:C��Rg

[ f�p1; p2� j p1:n � p2:n & p1:v � p2:vg

2.1.3 On the complexity of installability

Now that we have rigorously established the notion of package (co-)installability, it is le-
gitimate to wonder about the complexity of deciding these properties. Is it �easy enough�
to automatically identify non-installable packages in large repositories of hundreds of
thousands of packages? The main complexity result, originally established in [114] by
Mancinelli et al., is not encouraging:

Theorem 1. (Co-)installability is NP-hard (in the abstract model).

The gist of the proof is a bidirectional mapping between boolean satis�ability (SAT) [42]
and package installability. For the forward mapping, from packages to SAT, one can use
one boolean variable per package (the variable will be true if and only if the corresponding
package is installed), expand dependencies as implications p ! �r1 _ � � � _ rn� where ri



2.2. Upgrade optimization 15

Install libc6 version

2.3.2.ds1-22 in

Package: libc6

Version: 2.2.5-11.8

Package: libc6

Version: 2.3.5-3

Package: libc6

Version: 2.3.2.ds1-22

Depends: libdb1-compat

Package: libdb1-compat

Version: 2.1.3-8

Depends: libc6 (>= 2.3.5-1)

Package: libdb1-compat

Version: 2.1.3-7

Depends: libc6 (>= 2.2.5-13)

)

libc62:3:2:ds1�22
^

:�libc62:3:2:ds1�22 ^ libc62:2:5�11:8�

^

:�libc62:3:2:ds1�22 ^ libc62:3:5�3�

^

:�libc62:3:5�3 ^ libc62:2:5�11:8�

^

:�libdb1-compat2:1:3�7 ^ libdb1-compat2:1:3�8�

^

libc62:3:2:ds1�22 !

�libdb1-compat2:1:3�7 _ libdb1-compat2:1:3�8�

^

libdb1-compat2:1:3�7 !

�libc62:3:2:ds1�22 _ libc62:3:5�3�

^

libdb1-compat2:1:3�8 ! libc62:3:5�3

Figure 2.5: Example: package installability as SAT instance

are all the packages satisfying the version constraints, and encode con�icts as :�p & q�
clauses for every con�icting pair �p; q�. Thanks to this mapping, we can use SAT solvers
for checking the installability of packages (see Figure 2.5 and Section 2.3). The back-
ward mapping [65], from SAT to package installability, can be established using 3-SAT
instances.

Given that the proof is given for the abstract model, one might wonder to which kind
of concrete models it applies. The question is particularly relevant to know whether de-
pendency solving in the context of speci�c component technologies can result in corner
cases of unmanageable complexity or not. Several instances of this question have been
answered in [6], considering the common features of several component models such as
Debian and RPM packages, OSGi [123] bundles, and Eclipse plugins [44, 36]. Here are
some general results:

� Installability is NP-complete provided the component model features con�icts and
disjunctive dependencies.

� Installability is in PTIME if the component model does not allow for con�icts (nei-
ther explicitly, nor implicitly with clauses like Eclipse's �singleton�).

� Installability is in PTIME if the component model does not allow for disjunctive
dependencies or features, and the repository does not contain multiple versions of
packages.

2.2 Upgrade optimization

The discussed complexity results provide convincing evidence that dependency solving
is di�cult to get right, more than developers might imagine at �rst. Several authors
[22, 90, 107, 159, 153, 157, 54, 93] have pointed out two main de�ciencies of package
managers in the area of dependency solving�incompleteness and poor expressivity�
some of them have proposed various alternative solutions.
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A dependency solving problem, as usually faced by packages managers, can be de-
scribed as consisting of:

i) a repository of all available packages (also known as package universe);

ii) a subset of it denoting the set of currently installed packages (package status);

iii) a user request usually asking to install, upgrade, or remove some packages.

The expected output is a new package status that both is a proper installation (in the
sense of De�nition 3) and satis�es the user request.

Note that, due to the presence of both implicit and explicit disjunctions in the depen-
dency language, there are usually many valid solutions for a given upgrade problem. In
fact, as shown in [6], there are exponentially many solutions to upgrade problems in all
non-trivial repositories.

A dependency solver is said to be complete if it is able to �nd a solution to an upgrade
problem whenever one exists.

Given the huge amount of valid solutions to any given upgrade problem, we need
languages that allow the user to express her preferences such as �favor solutions that
minimize the amount of used disk space�, �favor solutions that minimize the changes
to the current package status�, �do not install packages that are a�ected by outstanding
security issues�, etc. Unfortunately, most state-of-the-art package managers are neither
complete nor o�er expressive user preference languages [155].

2.2.1 The Common Upgradeability Description Format

CUDF [154, 6] (Common Upgradeability Description Format)1 is a document format de-
vised to solve the issues of completeness and expressivity by inducing a synergy among
package managers developers and researchers active in the various sub-�elds of con-
straint solving.

At �rst glance, a CUDF document captures an instance of a dependency solving prob-
lem using a human readable syntax, as shown in Figure 2.6. CUDF is an extensible
language�i.e., it allows to represent ad-hoc package properties that can then be used
to express user preferences�and provides a formal semantics, based on the concrete
package model of Section 2.1.1, to unambiguously determine whether a given solution is
correct with respect to the original upgrade problem or not.

CUDF is agnostic with respect to speci�c packaging and solving technologies. Several
kinds of package manager-speci�c upgrade problems can be translated to CUDF and then
fed to solvers based on di�erent constraint solving techniques. Figure 2.7 enumerates
a number of packaging technologies and solving techniques that can be used together,
relying on CUDF for data exchange.

In practice, this is achieved by instrumenting existing package managers with the
ability to communicate via the CUDF format with external dependency solvers. Such
an arrangement, depicted in Figure 2.8 and studied in [5, 8], allows to actually share

dependency solvers across package managers.

1http://www.mancoosi.org/cudf/

http://www.mancoosi.org/cudf/
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preamble:

property: bugs: int = 0, suite: enum(stable,unstable) = "stable",

package: car

version: 1

depends: engine, wheel > 2, door, battery <= 13

installed: true

bugs: 183

package: bicycle

version: 7

suite: unstable

package: gasoline-engine

version: 1

depends: turbo

provides: engine

conflicts: engine, gasoline-engine

installed: true

[...]

request:

install: bicycle, gasoline-engine = 1

upgrade: door, wheel > 3

Figure 2.6: Sample CUDF document

Figure 2.7: Sharing upgrade problems and solvers among distribution and research com-
munities
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Figure 2.8: A modular package manager architecture

Adoption

We have authored a reference implementation of CUDF, which is available under the
name libCUDF.2 It is an OCaml [110] library that also comes with bindings for the C
programming language. libCUDF implements the full semantics of CUDF, allowing to
check that all dependencies and con�icts are respected in a given package status encoded
as a CUDF document. It also allows to check that a given user request, expressed in the
same format, is properly satis�ed by a new package status, ideally returned by a package
manager. libCUDF is released as FOSS and available as part of major FOSS distributions.

Since the release of CUDF 2.0 and libCUDF several package managers have adopted as
their internal architecture the modular approach depicted Figure 2.8 and are nowadays
solving dependencies using a 3rd party solver communicating with it via CUDF, using
libCUDF or in-house implementations of the format. Notable examples are:

� the APT package manager used by Debian and Ubuntu, which defaults to an internal
solver but can invoke external dependency solvers on demand via the apt-cudf

wrapper;3

� OPAM [160],4 the native package manager for the OCaml programming language,
that has been built since the very beginning with CUDF as the abstraction layer of
choice over dependency solving;

� the P2 provisioning platform for the popular Eclipse IDE and platform [36, 44], that
natively speaks CUDF [106].

2.2.2 User preferences

In itself, CUDF does not mandate a speci�c language for expressing user preferences,
but supports them in various ways. On the one hand, CUDF captures and exposes all
relevant characteristics of upgrade problems (e.g., package and user request properties)
that are needed to capture user preferences in common scenarios [155]; also, CUDF does
so in an extensible way, so that properties that are speci�c to a given package technology

2https://github.com/zacchiro/cudf
3https://manpages.debian.org/testing/apt-cudf/apt-cudf.1.en.html
4https://opam.ocaml.org/

https://github.com/zacchiro/cudf
https://manpages.debian.org/testing/apt-cudf/apt-cudf.1.en.html
https://opam.ocaml.org/
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can still be captured. On the other hand, the CUDF model is rigorous, providing a solid
base to give a clear and measurable semantics to user preferences, which would allow to
compare solutions and decide how well they score with respect to user preferences.

Several proposals of user preference languages have been advanced. The main chal-
lenge consists in �nding a middle ground between the expressivity that users desire and
the capabilities of modern constraint solvers.

For the �rst time in [6], a �exible preference language has been proposed, based on
a set of metrics that measure the distance between the original package status and the
solution found by the dependency solver. Distance can be measured on various axes: the
number of packages removed, newly installed, changed, that are not up to date (i.e., not
at the latest available version), and with unsatis�ed �weak� dependencies (i.e., packages
that are �recommended� to be installed together with others, but not strictly required for
an installation to be valid).

Those metrics can then be combined using a vocabulary of aggregation functions
that are commonly supported by solvers capable of multi-criteria optimization [147], in
particular lexicographic orderings and weighted sums. Using the resulting formalism it
is possible to capture common user preference use cases such as those of the �paranoid
user�:

paranoid � lex��removed;�changed�

The solution scoring best under this criterion is the one with the smallest number of
removed packages, and then with the smallest number of changes overall (e.g., upgrade/-
downgrade/install actions). A �trendy user� user case, i.e., the desire of having the most
recent versions of packages, is also easy to express as:

trendy � lex��removed;�notuptodate;�unsatrec;�new�

The set of preference combinators is bound to grow to encompass new user needs.
For example, it is often the case that a single source package can produce many binary
packages and that using a mix of binary packages coming from di�erent versions of the
same source package is problematic. It has been shown (in work by Di Cosmo et al.) how
to implement an optimization criterion that allows to specify that some packages need
to be aligned, for di�erent notions of alignment [47].

2.2.3 The MISC competition

The existence of a language like CUDF allows to assemble a corpus of challenging (for
existing dependency solvers) upgrade problems coming from actual users of di�erent
package managers. Using such a corpus we have established the MISC (for Mancoosi
International Solver Competition),5 which has been run yearly for three editions. The
goal of the competition was to advance the state of the art of real dependency solvers,
similarly to what has happened in others �elds with, e.g., the SAT competition [22].

A dozen solvers have participated in the various editions, attacking CUDF-encoded
upgrade problems using a wide range of constraint solving techniques. Table 2.1 shows
a sample of MISC participants from the 2010 and 2011 editions.

5http://www.mancoosi.org/misc/

http://www.mancoosi.org/misc/


20 Modeling FOSS packages and their relationships

Table 2.1: Sample of MISC competition entrants, ed. 2010 and 2011

solver author/a�liation technique/solver

apt-pbo [157] Trezentos / Caixa Magica Pseudo Boolean Optimization
aspcud [72] Matheis / University of Potsdam Answer Set Programming
inesc [17] Lynce et. al / INESC-ID Max-SAT
p2cudf [107] Le Berre and Rapicault / Univ. Artois Pseudo Boolean Optimization

/ Sat4j [106]
ucl Gutierrez et al. / Univ. Luvain Graph constraints
unsa [117] Michel et. al / Univ. Sophia-Antipolis Mixed Integer Linear

Programming / CPLEX [40]

Analysis of the competition results has allowed us to experimentally establish the
limits of state-of-the-art solvers. In particular, they have been shown to signi�cantly de-
grade their ability to (quickly) �nd solutions as the number of used package repositories
grows, which is a fairly common use case. Each competition edition has established one
or more winners, sometimes in multiple �tracks�, e.g., trendy v. paranoid criteria.

Real modular package managers that follow the architecture of Figure 2.8 can then
simply integrate winning solvers, or other entrants, as their dependency solver of choice.
This is, in fact, what has happened in Debian, where the aspcud solver has been packaged
shortly after the competition and can now be used as solver for APT.

Solvers able to handle these optimization combinators can also be used for a variety
of other purposes. It is worth mentioning one of the most unusual, which is building
minimum footprint virtual images for the cloud: as noticed in [129], virtual machine
images often contain largely redundant package selections, wasting disk space in cloud
infrastructures. Using the toolchain available in the dose library,6 which is build on top
of libCUDF and sits at the core of the MISC competition infrastructure, one can compute
the smallest distribution containing a given set of packages. This problem has actually
been used as one of the track of the 2012 edition of the MISC competition.

More details on CUDF and the MISC competition can be found in [6] and [8].

2.3 Quality assurance of component repositories

A particularly fruitful research line has attacked the problems faced by the maintainers
of curated component repositories, and in particular of FOSS distributions.

A distribution maintainer controls the evolution of a distribution by regulating the
�ow of new packages into and the removal of packages from it. With the package count
in the tens of thousands (over 50000 in the latest Debian development branch as of this
writing), there is a serious need for tools that help answering e�ciently several di�er-
ent questions. Some are related to the current state of a distribution, like: �What are
the packages that cannot be installed (i.e., that are broken) using the distribution I am
releasing?�, �what are the packages that block the installation of many other packages?�,
�what are the packages most depended upon?�. Other questions concern the evolution

6http://www.mancoosi.org/software/

http://www.mancoosi.org/software/
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of a distribution over time, like: �what are the broken packages that can only be �xed by
changing them (as opposed to packages they depend on)?�, �what are the future version

changes that will break the most packages in the distribution?�, �are there sets of pack-
ages that were installable together in the previous release, and can no longer be installed
together in the next one?�.

We highlight below the most signi�cant results obtained over the past years that allow
to answer some of these questions, and led to the development of tools which have been
adopted by distribution maintainers.

2.3.1 Identifying broken packages

As we have seen in Section 2.1.3, the problem of determining whether a single package
is installable using packages from a given repository is NP-hard. Despite this limiting
result, modern SAT solvers are able to handle easily the instances coming from real world
repositories. This can be explained by observing that explicit con�icts between packages
are not very frequent, even if they are crucial when they exist, and that when checking
installability in a single repository one usually �nds only one version per package, hence
no implicit con�icts.

As a result, there is now a series of tools, all based on the original edos-debcheck tool
developed by Jérôme Vouillon in 2006 [114], now part of the libCUDF/dose toolchain,
that can check installability of Debian or RPM packages, as well as Eclipse plugins, very
e�ciently: a few seconds on commodity desktop hardware are enough to handle the
50000 packages from the latest Debian distribution.7

2.3.2 Analyzing the dependency structure of a repository

Identifying non-installable packages in a repository is only the �rst basic analysis which
is of interest for a distribution maintainer: among the large majority of packages that are
installable, not all have the same importance, and not all can be installed together.

It is quite tempting, to use the number of incoming dependencies on a package as a
measure of its importance. It is also tempting to analyze the dependency graph trying to
identify �weak points� in it, following the tradition of studies of disease propagation in
small-world networks [13]. Several studies in the literature do use explicit dependencies,
or their transitive closure, to similar ends (e.g., [102, 112]).

The explicit, syntactic dependency relation p ! q is however too imprecise and can
be misleading in many circumstances. Intuitively, this is so because paths in the explicit
dependency graph might connect packages that are incompatible, in the sense that they
cannot be installed together. To avoid this issue we need to distinguish between the
syntactic dependency graph and a more meaningful version of it that takes into account
the actual semantics of dependencies and con�icts. This was the main motivation for
introducing the notion of strong dependency [1] to identify the packages that are at the
core of a distribution.

7A daily updated showcase of uninstallable Debian packages, used by the distribution for quality as-

surance purposes, is currently available at https://qa.debian.org/dose/debcheck.html. The service

is currently maintained by Ralf Treinen.

https://qa.debian.org/dose/debcheck.html
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De�nition 8 (strong dependency). A package p strongly depends on q (written p ) q)
with respect to a repository R if it is not possible to install p without also installing q.

This property is easily seen equivalent to the implication p ! q in the logical theory
obtained by encoding (using the abstract model of Section 2.1.2) the repository R, so in
the general case this problem is co-NP-complete, as it is the dual of an installation prob-
lem, and the strong dependency graph can be huge, because it is transitive. Nevertheless,
it is possible on practical instances to compute the strong dependency graph of a re-
cent Debian distribution in a few hours on a modern multicore machine. The optimized
algorithms able to do so have been discussed in [1] and are implemented in the dose

toolchain.8

Once the strong dependencies graph is known, it is possible to de�ne the impact set

of a package, as the set of packages that strongly depend on it. Formally:

De�nition 9 (impact set). Given a repository R and a package p in R, the impact set of p
in R is the set Is�p;R� � fq 2 R j q ) pg.

This is a notion of robustness, as removing p from the distribution renders unin-
stallable all packages in its impact set, which is not the case with direct or transitive
dependencies. The size of the impact set can then be used to de�ne a notion of sensitiv-
ity, i.e., how delicate �touching� a package is in a given repository, in terms of risks to
(the installability of) other packages in the same repository. Formally:

De�nition 10 (Sensitivity). The strong sensitivity, or simply sensitivity, of a package p 2 R
is jIs�p;R�j � 1, i.e., the cardinality of the impact set minus 1.9

Table 2.2 shows the top packages from the Debian 5.0 �Lenny� distribution with the
highest sensitivity. It is easy to see that the number of direct incoming dependencies (as
opposed to strong dependencies) is not a good predictor of sensitivity, while the number
of transitive incoming dependencies is generally an over-approximation.

Figure 2.9 gives further evidence of this, by plotting sensitivity and an equivalent
measure (direct sensitivity) computed using direct dependencies instead of strong ones.
In most cases, strong sensitivity is higher than direct sensitivity, yet close: 82.9% of the
packages fall in a standard deviation interval from the mean of the di�erence between
strong and direct sensitivity; the next percentile ranks are 97.4% for two standard devia-
tions, and 99.8% for three. The remaining cases allow for important exceptions of pack-
ages with very high strong sensitivity and very low direct sensitivity. Such exceptions
are extremely relevant: metrics built on direct sensitivity only would totally overlook
packages with a huge potential impact.

In the list of Table 2.2, an experiecned maintainer will recognize a cluster of interre-
lated packages: gcc-4.3-base, libgcc1 and libc6 are all essential components of the
C library, and they have similar sized impact sets. In the general case, though, as shown

8http://www.mancoosi.org/software/
9The �1 accounts for the fact that the impact set of a package always contains itself. This way we

ensure that sensitivity 0 preserves the intuitive meaning of �no package potentially a�ected�.

http://www.mancoosi.org/software/
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Table 2.2: Top sensitive packages in Debian 5.0 �Lenny�

# package deps strong deps closure
1 gcc-4.3-base 43 20128 20132
2 libgcc1 3011 20126 20130
3 libc6 10442 20126 20130
4 libstdc++6 2786 14964 15259
5 libselinux1 50 14121 14634
6 lzma 4 13534 13990
7 libattr1 110 13489 14024
8 libacl1 113 13467 14003
9 coreutils 17 13454 13991

10 dpkg 55 13450 13987
11 perl-base 299 13310 13959
12 debconf 1512 11387 12083
13 libncurses5 572 11017 13466
14 zlib1g 1640 10945 13734
15 libdb4.6 103 9640 13991

. . .

Figure 2.9: Correlation between strong and direct sensitivity in Debian 5.0 �Lenny�
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Figure 2.10: Signi�cant con�gurations in the strong dependency graph

by the sample con�gurations drawn in Figure 2.10, two packages having similar sensitiv-
ity need not be correlated. To identify the packages that are correlated, and identify the
most relevant ones among them, one can de�ne, on top of the strong dependency graph,
a dominance relation similar to the one used in traditional �ow graphs [108], as follows:

De�nition 11 (strong dominance). We say that q strongly dominates r if:

� q strongly depends on r , and

� every package that strongly depends on r also strongly depends on q.

Intuitively, in a strong dominance con�guration, that looks like Figure 2.10(c), the
strong dependency on r of packages in its impact set is �explained by� their strong
dependency on q.

Strong dominance can be computed e�ciently [25] and properly identi�es many rel-
evant clusters of packages related by strong dependencies like the libc6 one. Similarly,
it is possible to capture and e�ciently compute partial dominance situations like that
shown in Figure 2.10(b). For more details see [1].

2.3.3 Predicting repository evolutions

Some aspects of the quality assessment in FOSS distributions are best modeled by using
the notion of futures [2, 7] of a package repository. This allows to investigate under which
conditions a potential future problem may occur, or what changes to a repository are
necessary to make a currently occurring problem go away. This analysis can give package
maintainers important hints about how problems may be solved, or how future problems
may be avoided. The precise de�nition of these properties relies on the de�nition of the
possible future of a repository:
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Package: bar

Version: 2.3

Package: baz

Version: 2.5

Conflicts: bar (> 2.4)

Package: foo

Version: 1

Depends: (baz (=2.5) | bar (=2.3)),

(baz (<2.3) | bar (>2.6))

Figure 2.11: Package foo in version 1 is outdated

De�nition 12 (future). A repository F is a future of a repository R if the following two

properties hold:

uniqueness R [ F is a repository; this ensures that if F contains a package p with same

version and name as a package q already present in R, then p � q;

monotonicity For all p 2 R and q 2 F : if p:n � q:n then p:v � q:v .

In other words, when going from the current repository to some future of it one may
upgrade current versions of packages to newer versions, but not downgrade them to
older versions (monotonicity). One is not allowed to change the meta-data of a package
without increasing its version number (uniqueness), but besides this the upgrade may
modify the meta-data of a package in any possible way, and may even remove a package
completely from the repository, or introduce new packages.

This notion models all the changes that are possible in the maintenance process usu-
ally used by distribution editors, even if the extreme case of a complete change of meta-
data allowed in this model is quite rare in practice. Note that the notion of future is
not transitive as one might remove a package and then reintroduce it later with a lower
version number.

The �rst property related to futures that we are interested in is the following one:

De�nition 13 (outdated). Let R be a repository. A package p 2 R is outdated in R if p is

not installable in any future F of R.

That is, p is outdated in R if it is not installable (since R is itself one of its futures)
and if it has to be upgraded to make it ever installable again. In other words, the only way
to make p installable is to upload a �xed version of the package, since no modi�cation
to other packages than p can make p installable. This information is useful for quality
assurance purposes, as it pinpoints packages where action is required. An example of an
outdated package is given in Figure 2.11.

De�nition 14 (challenges). Let R be a repository, p;q 2 R, and q installable in R. The

pair �p:n;v�, where v > p:v , challenges q if q is not installable in any future F which is

obtained by upgrading p to version v .

Intuitively �p:n;v� challenges q, when upgrading p to a new version v without touch-
ing any other package makes q not installable. This permits to pinpoint critical future
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Package: foo

Version: 1.0

Depends: bar (<= 3.0) | bar (>= 5.0)

Package: bar

Version: 1.0

Package: baz

Version: 1.0

Depends: foo (>= 1.0)

Figure 2.12: Package bar challenges package foo for versions in the interval �3:0;5:0�.

upgrades that challenge many packages and that might therefore need special attention
before being pushed to the repository. An example is given in Figure 2.12.

The problem in deciding these properties is that any repository has an in�nite num-
ber of possible futures. The two properties we are interested in belong to the class of
so-called straight properties. For this class of properties it is in fact su�cient to look
at a �nite set of futures only which cover all of the problems that may occur in any
future. One can show [7] that it is su�cient to look at futures where no package has
been removed and new packages have been introduced only when their name was al-
ready mentioned in R, and where all new versions of packages have no con�icts and no
dependencies. For any package there is an in�nite space of all future version numbers,
however, there is only a �nite number of equivalence classes of these with respect to ob-
servational equivalence where the observations are the constraints on versions numbers
used in R.

In reality, the de�nition of a future is more involved than the one given in De�ni-
tion 12. In almost all distributions, packages are in fact not uploaded independently
from each other but are updated together with all other packages stemming from the
same source package. The complete de�nition of a future hence also takes into account a
notion of clusters of packages, which are in our case formed by all binary packages stem-
ming from the same source. De�nition 14 has to be adapted accordingly, by allowing for
all packages in the same cluster as p to be upgraded. The full version of the algorithms
in presence of package clusters, together with their proof of soundness, can be found
in [7].

The top challenging upgrades in Debian 5.0 �Lenny� are shown in Table 2.3. The tools
used to e�ciently compute outdated and challenging upgrades have been integrated into
the dose suite and can be found in the dose-extra package on Debian-based distribu-
tions. Regularly updated reports on outdated Debian packages are available as part of
the distribution quality assurance infrastructure.10

2.4 Looking back and looking forward

Mancoosi has been an ambitious research project that targeted and practically solved real
issues faced by distribution users and editors, producing tools that have been adopted in

10https://qa.debian.org/dose/outdated.html. The service is currently maintained by Ralf

Treinen.

https://qa.debian.org/dose/outdated.html
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Table 2.3: Top 13 challenging upgrades in Debian 5.0 �Lenny�

Source Version Target Version Breaks

python-defaults 2.5.2-3 � 3 1079
python-defaults 2.5.2-3 2.6 � . < 3 1075
e2fsprogs 1.41.3-1 any 139
ghc6 6.8.2dfsg1-1 � 6.8.2+ 136
libio-compress-base-perl 2.012-1 � 2.012. 80
libcompress-raw-zlib-perl 2.012-1 � 2.012. 80
libio-compress-zlib-perl 2.012-1 � 2.012. 79
icedove 2.0.0.19-1 > 2.1-0 78
iceweasel 3.0.6-1 > 3.1 70
haskell-mtl 1.1.0.0-2 � 1.1.0.0+ 48
sip4-qt3 4.7.6-1 > 4.8 47
ghc6 6.8.2dfsg1-1 6.8.2dfsg1+ � . < 6.8.2+ 36
haskell-parsec 2.1.0.0-2 � 2.1.0.0+ 29

production by major FOSS vendors. What made this possible is the thorough application
of the virtuous cycle between FOSS and research communities discussed in Chapter 1.
In the context of Mancoosi, speci�c instances of using that cycle can be observed in
the analysis of broken and outdated/challenging packages, in the CUDF format, and in
the MISC competition that resulted in new solver technologies adopted by a variety of
package managers.

In addition to the research topics presented in this chapter, Mancoosi also attacked
the issue of runtime failures that might happen when deploying package upgrades on
user machines�a phase of package upgrades that follows dependency solving [54]. The
approach used to attack this problem has been similar to what we have seen: tens of thou-
sands maintainer scripts (the shell scripts executed during package upgrades to �nalize
package con�guration during and after deployments) have been analyzed, modeled us-
ing metamodeling techniques, in order to devise an upgrade simulator that can predict a
speci�c class of runtime upgrade failures. The gory details of this part of our research
work has been described in [45].

This latter part of the Mancoosi journey has not seen wide adoption yet, due to the
fact that shell script as a language is very resistant to static analysis (in turn due to their
inherent dynamic properties). As a result the class of detectable issues with the previous
approach was deemed too small to be of interest for distribution maintainers. As of this
writing, a novel approach is being tried as part of the ANR-funded Colis project11 who
has picked up again this challenge, and delivered promising results already [91, 92] as
well as a concrete possibility of devising more general static analysis tools for shell script
and dynamic languages. On this front, time will tell.

Other scienti�c challenges in the �eld of FOSS components deployment and analysis
were identi�ed at the end of Mancoosi. First and foremost we can observe that upgrade
deployment in common FOSS deployments isn't any longer a�ected only by in-host con-

11http://colis.irif.univ-paris-diderot.fr/

http://colis.irif.univ-paris-diderot.fr/
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straints as captured by inter-package relationships. It is also a�ected, and more and
more so, by extra-host constraints as expressed by, often implicit, dependencies and con-
�icts among services running on di�erent machines that are meant to work together over
the network. Examples of this are web applications running behind a web accelerators or
proxies and backed by database systems; all these systems need to be con�gured to work
well together and upgrades should be planned and timed carefully to avoid temporary
(or worse) downtimes.

The Aeolus project, discussed in the next chapter, picked up this very challenge by
introducing a component model, and tooling for it, suitable to model FOSS packages,
services, and upgrades in current networked and �cloud� contexts.



Chapter 3

Component modeling beyond

host boundaries

This chapter is based on [52, 50].

As we have seen, FOSS practices rely on distributions to convey and deploy software
components from software vendors to �nal users of individual machines. In-production
services are rarely con�ned within the boundaries of a single machine though. To be mod-
ular, resilient, and scalable any �serious�, say, Internet-based service will need a plethora
of di�erent software components�e.g., load balancers, proxies, �rewalls, databases, ap-
plication servers, etc.�and will generally run them on multiple machines that are in-
terconnected via public and private networks. Furthermore, with the advent of �cloud
computing� [83] both machines and software services running on them will be dynami-
cally provisioned and disposed of, to withstand load peaks or simply to deploy multiple
instances of the entire infrastructure on demand. Reaping the bene�ts of such com-
plex application architecture is not an easy task: even when the infrastructure costs fall
dramatically, the complexity of designing and maintaining distributed scalable software
systems remains a serious challenge, when it does not outright increase.

Attempts are being made both in industry and in the research world to model and
tame such complexity. On the industry side, a wealth of initiatives o�er di�erent kinds
of solutions for isolated aspects of the problem. Con�guration management tools like
Puppet [98] or Chef [122] allow to automate the con�guration of software components,
relying on a set of descriptions stored in a central server. CloudFoundry [37] allows
to select, connect, and push to a cloud some prede�ned services (databases, message
buses, proxies, etc.), that can be used as building blocks for writing applications using
one of the supported frameworks. Juju [95] tries to extend the basic concepts of package
managers (in the distribution sense we discussed in the previous chapter) to automate
service upgrades (as opposed to only distribution packages).

On the academic side, several teams have worked on the problems posed by the
complexity of designing network- and cloud-based applications. The Fractal component
model [29] focuses on expressivity and �exibility: it provides a general notion of compo-
nent assembly that can be used to describe concisely, and independently of the program-
ming language, complex software systems. Building on Fractal, FraSCAti [143] provides
a middleware that can be used to deploy applications in the cloud. ConfSolve [84] on

29
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the other hand aims at helping the application designer with some of the decisions to be
made, and more speci�cally to optimally allocate virtual machines to concrete servers.

In all the these approaches the goal is to allow the user (i.e., the application designer)
to assemble a working system out of components that have been speci�cally designed
or adapted to work together. The actual component selection (which web server should
I use? which SQL database? which load balancer?) and interconnection (which front-end
should I connect to which back-end, in order to avoid bottlenecks?) are the responsibil-
ity of the user. And if some recon�guration needs to happen, it is either obtained by
reassembling the system manually, or by writing speci�c code that is left for the user to
write. We argue that to make further progress in taming the complexity of sophisticated
cloud applications, two major concerns must be taken into account: expressivity and
automation.

Expressivity We need component models that are expressive enough to capture all the
characteristics of software components that are relevant for designing distributed, scal-
able applications which are now commonplace in the cloud. Some of those characteristics
(discussed in more details in Section 3.1 later on) are:

dependencies and con�icts similar to what we have seen for distribution packages, but
with the possibility of reaching across machine boundaries. A service running on a
given host should be able to depend on (or con�ict with) services running elsewhere.

non-functional requirements e.g., if a component depends on others, howmany of those
would be needed to guarantee the desired level of fault-tolerance and/or load-
balancing? Similarly, if a component o�ers functionalities to other, how many of
them it can reasonably satisfy before needing to be replicated?

statefulness distributed-/cloud-components have complex activation protocols, making
their contextual requirements (dependencies, con�icts, etc.) vary over time, e.g., it
might be enough to install a given component to be able to install another one, but
the requirements to bring it in production might be di�erent

Automation While expressivity is important, solving the challenge of designing and
maintaining a networked or cloud-based application also requires automation. When the
number of components grows, or the need to recon�gure entire systems occurs more
frequently, it is essential to be able to specify at a certain level of abstraction a particular
target con�guration of the distributed software system we want to realize, and to develop
tools that provide a set of possible evolution paths leading from the current system
con�guration to one that corresponds to such a user request.

In Sections 3.1 through 3.3 we lay the theoretical foundations of such an automated
approach�in the form of a formal component model called Aeolus�for the complex
situation that arises when one needs to: (re-)con�gure not a single machine, but a variety
of possibly �elastic� clusters of heterogeneous machines, living in di�erent domains and
o�ering interconnected services that need to be stopped, modi�ed, and restarted in a
speci�c order for the recon�guration to be successful. Later, in Sections 3.4 through 3.6
we present some of the tooling that have been built, as part of the Aeolus project, on top
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Package: wordpress

Version: 3.0.5+dfsg-0+squeeze1

Depends: httpd, mysql-client, php5, php5-mysql,

libphp-phpmailer (>= 1.73-4), [...]

Package: mysql-server-5.5

Source: mysql-5.5

Version: 5.5.17-4

Provides: mysql-server, virtual-mysql-server

Depends: libc6 (>= 2.12), zlib1g (>= 1:1.1.4), debconf, [...]

Package: apache2

Version: 2.4.1-2

Maintainer: Debian Apache Maintainers <debian-apache@...>

Depends: lsb-base, procps, perl, mime-support,

apache2-bin (= 2.4.1-2), apache2-data (= 2.4.1-2)

Conflicts: apache2.2-common

Provides: httpd

Description: Apache HTTP Server

Figure 3.1: Debian package metadata for Wordpress, MySQL and the Apache web server
(excerpt)

of the homonymous component model to automate deployment of complex distributed
applications in the cloud and discuss its adoption.

3.1 A gentle introduction to Aeolus

We introduce the key features of the Aeolus component model by eliciting them, step-by-
step, from the analysis of realistic scenarii. As a running example, we consider several
deployment use cases for Wordpress, a popular blogging platform that requires several
software services to operate, the main ones being a Web server and a SQL database.
We present the use cases in order of increasing complexity ranging from the simplest
one, where everything run on a single machine, to more complex ones where the whole
appliance runs on a platform-as-a-service (IaaS) cloud.

A formal de�nition of the Aeolus component model will be given in Section 3.2.

Use case 1 � package installation

Before considering the services that a machine is o�ering to others (locally or over the
network), we need to model the software installation on the machine itself, so we will
see how to model the three main components needed by Wordpress, as far as their in-
stallation is concerned. We will build on the assumption that the machine runs a FOSS
distribution. For instance, Debian has packages for Wordpress, Apache2 and MySQL
equipped with the metadata shown in Figure 3.1.

To model a software package, at this level of abstraction�but at the same time gener-
alize over the boolean model of the previous chapter�we will use a simple state machine
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(a) Available components, not installed.

(b) Installed components, bound together on the httpd port.

Figure 3.2: Graphical notation for packages and dependencies

to capture the package life cycle, with requirements and provides associated to each
state.

The ingredients of this model are very simple: a set of states Q, an initial state q0, a
transition function T from states to states, a set R of requirements, a set P of provides,
and a function D that maps states to the requirements and provides that are active at
that state. We call component type any such tuple hQ;q0; T ; hP;Ri;Di. We are essentially
recasting in a state machine setting the boolean model of Chapter 2; the reason we are
doing that is to be able to obtain a uniform model that, using a single formalism (state
machines) can capture both package installation and service activation protocols.

A system con�guration is then built out of a collection of components that are in-
stances of component types, with its current state, and a set of connections between
requirements and provides of the di�erent components. Connections indicate which
provide is ful�lling the need of which requirement. A con�guration is correct if all the
requires which are active are satis�ed by active provides.

Graphical notation A straightforward graphical notation can capture all these pieces
of information together: Figure 3.2 shows systems built using the components from
Figure 3.1 (only modelling the dependency on httpd underlined in the metadata, for the
sake of conciseness). In Figure 3.2(a) the packages are available but not installed yet. In
Figure 3.2(b) the Wordpress package is in the installed state and activates the requirement
on httpd; Apache2 is also in the installed state, so the httpd provide is active and is used



3.1. A gentle introduction to Aeolus 33

Figure 3.3: A graphical description of the basic model of services and packages.

to satisfy the requirement, fact which is visualized by the binding connecting together
the two ports named httpd.

Packages may of course also con�ict with other packages which are incompatible with
them: we will show later how to model con�icts.

Use case 2 � services and packages

As we have seen, installing software on a single machine is a process that can already
be automated using package managers: on Debian for instance, you only need to have
an installed Apache server to be able to install Wordpress. But bringing it in production

requires to tune and activate the associated service, which is more tricky and less auto-
mated: the system administrator will need to edit con�guration �les so that Wordpress
knows the network addresses of an accessible MySQL instance.

The ingredients we have seen up to now in our model are su�cient to capture the de-
pendencies among services, as shown in Figure 3.3. There we have added to each package
an extra state (running) corresponding to the activation of the associated service, and
the requirement on mysql_up of the running state of Wordpress captures the fact that
Wordpress cannot be started before MySQL is running. In this case, the bindings really
correspond to a piece of con�guration information, i.e., where to �nd a suitable MySQL
instance.

Notice how this model does not impose any particular way of modelling the relations
between packages and services. Instead of using a single component with an installed
and a running state, we can simply model services and packages as di�erent components,
and relate them via dependencies.

Use case 3 � redundancy, capacity planning, and con�icts

Services often need to be deployed on di�erent machines to reduce the risk of failure
or to increase the load they can withstand by the means of load-balancing. To properly
design such scalable architectures system administrators might want, for instance, to in-
dicate that a MySQL instance can only support a certain number of connected Wordpress
instances. Symmetrically, a Wordpress hosting service may want to expose a reverse web
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Figure 3.4: A graphical description of the model with redundancy and capacity con-
straints (internal sate machines are omitted for simplicity).

proxy/load balancer to the public and require to have a minimum number of distinct
instances of Wordpress available as its back-ends.

To model this kind of situations, we allow capacity information to be added on pro-
vides and require ports of each component in Aeolus: a number n on a provide port
indicates that it can ful�l no more than n requirements, while a number n on a require
port means that it needs to be connected to at least n provides from n di�erent compo-
nents.

As an example, Figure 3.4 shows the modelling of a Wordpress hosting scenario where
we want to o�er high availability by putting the Varnish reverse proxy/load balancer in
front of several Wordpress instances, all connected to a cluster of MySQL databases.1 For
a con�guration to be correct, the model requires that Varnish is connected to at least 3
(active and distinct) Wordpress back-ends, and that each MySQL instance does not serve
more than 2 clients.

As a particular case, a 0 constraint on a require means that no provide with the same
name can be active at the same time; this can be e�ectively used to model global con�icts
between components. For instance, we can use this feature to model the con�ict between
the apache2 and apache2.2-common packages that had been omitted in Figure 3.2.

Use case 4 � creating and destroying components

Use cases like Wordpress hosting are commonplace in the cloud, to the point that they
are often used to showcase the capabilities of state-of-the-art cloud deployment technolo-
gies. The features of the model presented up to here are already expressive enough to
encode these static deployment scenarii, where the system architecture does not evolve
over time in reaction to load changes.

1All Wordpress instances run within distinct Apache instances, which have been omitted for simplicity.
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To model faithfully deployment runs on the cloud, where an arbitrary number of
instances of virtual machine images can be allocated and deallocated on the �y, we also
allow in our model creation and destruction of all kinds of components, provided they be-
long to some existing component type. For instance, in the con�guration of Figure 3.4, to
respond to an increase in tra�c load one will need to spawn 2 new Wordpress instances,
which in turn will require to create new MySQL instances (and bind them appropriately),
as the available MySQL-s are no longer enough to handle the load increase.

3.2 The Aeolus model

We now formalize the Aeolus component model, implementing all the features elicited
from the use cases discussed in the previous section.

3.2.1 Resources

Notation We assume given the following disjoint sets: I for interfaces and Z for com-
ponents. We use N to denote strictly positive natural numbers, N1 for N[ f1g, and N0

for N[ f0g.

We model components as �nite state automata indicating all possible component
states and state transitions. When a component changes state, the sets of ports it re-
quires from/provide to other components will also change: intuitively, the component
interface with the external world varies with its state. A provide port represents the pos-
sibility of furnishing a functionality having a given interface. Similarly, a require port
represent the need of a functionality with a given interface.

De�nition 15 (Component type). The set Ð of component types of the Aeolus model,

ranged over by T1;T2; : : : contains 5-ple hQ;q0; T ; P;Di where:

� Q is a �nite set of states;

� q0 2 Q is the initial state and T � Q�Q is the set of transitions;

� P � hP;Ri, with P;R � I , is a pair composed of the set of provide and the set of

require ports, respectively;

� D is a function from Q to 2-ple in �P 7! N1�� �R 7! N0�.

Given a state q 2 Q, D�q� returns two partial functions �P 7! N1� and �R 7! N0� that indi-
cate respectively the provide and require ports that q activates. The functions associate
to the activate ports a numerical constraint indicating:

� for provide ports, the maximum number of bindings the port can satisfy,

� for require ports, the minimum number of required bindings to distinct compo-
nents,

� as a special case: if the number is 0 this indicates a con�ict, meaning that
there should be no other active port, in any other component, with the same
name. That is, con�icts have a global nature that do not require being bound
to anything to inhibit the presence of a given (active) provide.



36 Component modeling beyond host boundaries

When the numerical constraint is not explicitly indicated, we assume as default value 1
for provide ports (i.e., they can satisfy an unlimited amount of requires) and 1 for require
(i.e., one provide is enough to satisfy the requirement). We also assume that the initial
state q0 has no demands (i.e., the second function of D�q0� has an empty domain).

Example 2. Figure 3.2(a) depicts two component types: wordpress and apache2. In par-
ticular wordpress is formally de�ned as the 5-ple hQ;q0; T ; P;Di with:

� Q � funinstalled; installedg,

� q0 � uninstalled,

� T � f�uninstalled, installed�; �installed, uninstalled�g,

� P � hfwordpressg;
fhttpd;mysql-client;php5;php5-mysql; libphp-phpmailergi,

� D � f�uninstalled, h;;;i�;
�installed, hf�wordpress,1�g; f i�g

where f is a function that associates 1 to all require ports.

3.2.2 Con�gurations

We now de�ne con�gurations that describe systems composed by component instances
and bindings that interconnect them. A con�guration, ranged over by C1;C2; : : :, is given
by a set of component types, a set of deployed components with a type and an actual
state, and a set of bindings. Formally:

De�nition 16 (Con�guration). A con�guration C is a 4-ple hU;Z; S; Bi where:

� U � Ð is the �nite universe of all available component types;

� Z � Z is the set of the currently deployed components;

� S is the component state description, i.e., a function that associates to components in

Z a pair hT ; qi where T 2 U is a component type hQ;q0; T ; P;Di, and q 2 Q is the

current component state;

� B � I�Z�Z is the set of bindings, namely 3-ples composed by an interface, the com-

ponent that requires that interface, and the component that provides it; we assume

that the two components are distinct.

Example 3. Figure 3.2(b) depicts a con�guration with two components and one binding.
Formally, it corresponds to the 4-ple hU;Z; S; Bi where:

� U is a set of component types including wordpress and apache2,

� Z � fz1; z2g,

� S � f�z1 , hwordpress; installedi�; �z2 , hapache2; installedi�g,

� B � hhttpd; z1; z2i.
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In the following we will use a notion of con�guration equivalence that relate con�gu-
rations having the same instances up to renaming. This is used to abstract away from
component identi�ers and bindings.

De�nition 17 (Con�guration equivalence). Two con�gurations hU;Z; S; Bi and hU;Z0; S0; B0i
are equivalent, noted hU;Z; S; Bi � hU;Z0; S0; B0i, if and only if there exists a bijective func-

tion � from Z to Z0 s.t.:

1. S�z� � S0���z�� for every z 2 Z ; and

2. hr ; z1; z2i 2 B if and only if hr ; ��z1�; ��z2�i 2 B0.

Notation We write C�z� as a lookup operation that retrieves the pair hT ; qi � S�z�,
where C � hU;Z; S; Bi. On such a pair we then use the post�x projection operators
:type and :state to retrieve T and q, respectively. Similarly, given a component type
hQ;q0; T ; hP;Ri;Di, we use projections to (recursively) decompose it: :states, :init, and
:trans return the �rst three elements; :prov, :req return P and R; :P(q) and :R(q) return the
two elements of the D�q� tuple. When there is no ambiguity we take the liberty to apply
the component type projections to hT ; qi pairs.

For example, C�z�:R�q� stands for the partial function indicating the active require
ports (and their arities) of component z in con�guration C when it is in state q.

We are now ready to formalize the notion of con�guration correctness:

De�nition 18 (Con�guration correctness). Let us consider the con�guration C � hU;Z; S; Bi.

We write C îreq �z; r ;n� to indicate that the require port of component z, with inter-

face r , and associated number n is satis�ed. Formally, if n � 0 all components other than

z cannot have an active provide port with interface r , namely for each z0 2 Z n fzg such
that C�z0� � hT 0; q0iwe have that r is not in the domain of T 0:P�q0�. If n > 0 then the port

is bound to at least n active ports, i.e., there exist n distinct components z1; : : : ; zn 2 Znfzg
such that for every 1 � i � n we have that hr ; z; zii 2 B, C�zi� � hT

i; qii and r is in the

domain of T i:P�qi�.

Similarly for provides, we write C îprov �z;p;n� to indicate that the provide port of

component z, with interface p, and associated number n is not bound to more than n
active ports. Formally, there exist no m distinct components z1; : : : ; zm 2 Z n fzg, with
m > n, such that for every 1 � i �m we have that hp; zi; zi 2 B, S�zi� � hT

i; qii and p
is in the domain of T i:R�qi�.

The con�guration C is correct if for each component z 2 Z , given S�z� � hT ; qi with
T � hQ;q0; T ; P;Di and D�q� � hP;Ri, we have that �p , np� 2 P implies C îprov

�z;p;np�, and �r , nr � 2 R implies C îreq �z; r ;nr �.

Example 4. Figure 3.3 and 3.4 report examples of correct con�gurations. In Figure 3.3
it is easy to see that all active require ports are bound to an active provide port: this
condition is enough when the numerical constraints has the default values.

In Figure 3.4 there are two kinds of non-default numerical constraints: the constraint
3 on the require port wp_back of the component of type varnishwhich is satis�ed because
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there are at least three bindings connecting it to three distinct components (we assume
that the wp_back provide ports of these three components are active) and the constraint
2 on the provide portmysql of the components of typemysql which are satis�ed because
those ports are connected to less than two bindings.

3.2.3 Deployment actions

We now formalize how con�gurations evolve from one state to another, by means of
atomic actions:

De�nition 19 (Actions). The setA contains the following actions:

� stateChange�z; q1; q2� where z 2 Z;

� bind�r ; z1; z2� where z1; z2 2 Z and r 2 I ;

� unbind�r ; z1; z2� where z1; z2 2 Z and r 2 I ;

� new�z : T � where z 2 Z and T is a component type;

� del�z� where z 2 Z.

The execution of actions can now be formalized using a labelled transition systems on
con�gurations, which uses actions as labels.

3.2.4 Component recon�guration

De�nition 20 (Recon�gurations). Recon�gurations are denoted by transitions C
�
-------------! C0

meaning that the execution of � 2A on the con�guration C produces a new con�guration

C0. The transitions from a con�guration C � hU;Z; S; Bi are de�ned as follows:

C
stateChange�z;q1;q2�
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------! hU;Z; S0; Bi
if C�z�:state � q1
and �q1; q2� 2 C�z�:trans

and S0�z0� �

(
hC�z�:type; q2i if z0 � z
C�z0� otherwise

C
bind�r ;z1;z2�
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------! hU;Z; S; B [ hr ; z1; z2ii
if hr ; z1; z2i 62 B
and r 2 C�z1�:req\C�z2�:prov

C
unbind�r ;z1;z2�
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------! hU;Z; S; B n hr ; z1; z2ii if hr ; z1; z2i 2 B

C
new�z:T �
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------! hU;Z [ fzg; S0; Bi
if z 62 Z , T 2 U

and S0�z0� �

(
hT ;T :initi if z0 � z
C�z0� otherwise
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Figure 3.5: On the need of a multiple state change: how to install a and b?

C
del�z�
------------------------------------------------------------------------------------------------------------! hU;Z n fzg; S0; B0i

if S0�z0� �

(
? if z0 � z
C�z0� otherwise

and B0 � fhr ; z1; z2i 2 B j z 62 fz1; z2gg

Notice that in the de�nition of the transitions there is no requirement on the reached
con�guration: the correctness of these con�gurations will be considered at the level of
deployment runs.

Also, we observe that there are con�gurations that cannot be reached through se-
quences of the actions we have introduced. In Figure 3.5, for instance, there is no way
for package a and b to reach the installed state, as each package requires the other to be
installed �rst. In practice, when confronted with such situations�that can be found for
example in FOSS distributions in the presence of loops of Pre-Depends that impose an
order in the installation of two depending packages�current tools either perform all the
state changes atomically, or abort deployment.

We want our planners to be able to propose deployment runs containing such atomic
transitions. To this end, we introduce the notion of multiple state change:

De�nition 21 (Multiple states change). A multiple states change (or multi-state change)

M � fstateChange�z1; q1
1
; q1

2
�; � � � ; stateChange�zl; ql

1
; ql

2
�g is a set of state change ac-

tions on di�erent components (i.e., zi � zj for every 1 � i < j � l). We use hU;Z; S; Bi
M
-------------------------------!

hU;Z; S0; Bi to denote the e�ect of the simultaneous execution of the state changes in M:

formally,

hU;Z; S; Bi
stateChange�z1;q1

1
;q1
2
�

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------! : : :
stateChange�zl;ql

1
;ql
2
�

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------! hU;Z; S0; Bi

Notice that the order of execution of the state change actions does not matter as all the
actions are executed on di�erent components.

3.2.5 Deployment runs

We can now de�ne a deployment run, which is a sequence of actions that transform an
initial con�guration into a �nal correct one without violating correctness along the way.
A deployment run is the output we expect from a planner, when it is asked how to reach
a desired target con�guration.
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De�nition 22 (Deployment run). A deployment run is a sequence �1 : : : �m of actions and

multiple state changes such that there exist Ci such that C � C0, Cj�1
�j
----------------------------------! Cj for every

j 2 f1; : : : ;mg, and the following conditions hold:

con�guration correctness for every i 2 f0; : : : ;mg, Ci is correct;

multi state change minimality if �j is a multiple state change then there exists no proper

subsetM� �j , or state change action � 2 �j , and correct con�guration C0 such that

Cj�1
M
-------------------------------! C0, or Cj�1

�
-------------! C0.

Example 5. Consider the con�guration reported in Figure 3.3. Starting from an empty
con�guration. Such con�guration can be reached upon execution of the following de-
ployment run:

1. new�z1 : wordpress�

2. new�z2 : apache2�

3. stateChange�z2;uninstalled; installed�

4. bind�httpd; z1; z2�

5. stateChange�z1;uninstalled; installed�

6. new�z3 :mysql�

7. stateChange�z3;uninstalled; installed�

8. stateChange�z3; installed; running�

9. bind�mysql_up; z1; z3�

10. stateChange�z2; installed; running�

This sequence of actions is a deployment run because it guarantees the correctness of all
the traversed con�gurations.

Notice that it would still be a deployment run even if step 5 were postponed. On
the contrary, it would no longer be a deployment run if such action were anticipated
because the requirement on the httpd port would no longer be ful�lled. It would no
longer be deployment run even if such action were joined with other state changes to
form a multiple state change action (like, e.g., fstateChange�z1;uninstalled; installed�;
stateChange�z2; installed; running�g) because that would violate minimality.

3.2.6 Achievability

We now have all the ingredients to de�ne the notion of achievability, that is our main
concern: given a universe of component types, we want to know whether it is possible to
deploy at least one component of a given component type T in a given state q.

De�nition 23 (Achievability problem). The achievability problem has as input a universe

U of component types, a component type T , and a target state q. It returns as output true

if there exists a deployment run �1 : : : �m such that hU;;;;;;i
�1
------------------------------------! C1

�2
------------------------------------! �� �

�m
----------------------------------------------------! Cm

and Cm�z� � hT ; qi, for some component z in Cm. Otherwise, it returns false.
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Table 3.2: Decidability and complexity of achievability in (variants of) the Aeolus compo-
nent model

model co-domain�:P��� co-domain�:R��� achievability

Aeolus N1 N0 undecidable
Aeolus core f1g f1;0g decidable, Ackermann-hard
Aeolus� f1g f1g decidable, PTIME

Example 6. Consider the achievability problem for the universe of component types
wordpress, apache2, and mysql in Figure 3.3, and the target expressed by wordpress

in its running state. In this case the problem returns true because there exists, for in-
stance, the deployment run obtained by adding stateChange�z1; installed; running� at the
end of the sequence of actions in Example 5.

Achievability is the formal property that underpins any tool whose goal is to automat-
ically compute a way to reach a desired target con�guration. It is, mutatis mutandis, the
equivalent of the upgrade problem for FOSS distributions discussed in Chapter 2, where
a package manager needed to �nd a way to satisfy a user request to install/remove/up-
grade a (set of) package(s). The user request (there) corresponds to the target component
and state (here). Note that the restriction in the achievability problem to a single compo-
nent in a given state is not limiting in terms of expressivity. One can easily encode any

given target con�guration by adding a dummy provide port enabled only by the required
�nal states of a set of components, and a dummy component with requirements on all
such provides.

Similarly to what has been for packages, it is then legitimate to ask how di�cult the
achievability problem is. The answer is not encouraging: achievability is impossible to
automatically solve in its full generality. To give a more formal and also nuanced answer,
several variants of the Aeolus model have been studied. Each variant has been obtained
by imposing a di�erent restriction on the numerical constraints that are allowed as co-
domains of the two D�q� partial functions, making the expressivity�and conversely the
di�culty of achievability�of the model vary. Table 3.2 shows the results for three vari-
ants of the Aeolus model:2

Aeolus (�rst row) is the same model of De�nition 15, i.e., the full-�edged Aeolus model
with its full expressivity.

Unfortunately, achievability has been proven to be undecidable for Aeolus, by re-
duction from the reachability problem in 2 Counter Machines (2CMs)�a well-known
Turing-complete model�to Aeolus. While this of course does not mean that auto-
matically checking achievability is impossible in all instances of the problem, it does
make the situation much worse than what was the case for distribution packages
on a single machine.

Aeolus core (second row), is a restriction of Aeolus in which provide ports always serve
an unlimited amount of bindings, and require ports cannot require a minimum
number of bindings strictly higher than 1. That is, in Aeolus core one can declare
inter-component con�icts, but not express capacity constraints.

2Proofs of all these achievability results have been given in [52].
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Achievability exhibits better decision properties in Aeolus core than before: it has
been proven to be decidable (using the theory of Well-Structured Transition Sys-
tems [10, 70]) although Ackermann-hard (via reduction from the coverability prob-
lem in reset Petri nets, a problem of equivalent complexity [140]).

While this is a more encouraging result and puts the problem in a complexity spot
similar to that of dependency solving for packages, it doesn't necessarily mean it
will be easy to �nd a practically e�cient solver, as it has been the case for packages
thanks to SAT solving.

Aeolus� (third row) is a further restriction of Aeolus core, where neither capacity con-
straints nor con�icts can be used: provide ports always serve an unlimited amount
of bindings, and require ports are limited to require exactly 1 binding.

Achievability remains decidable (trivially from Aeolus core) and complexity further
descends to PTIME, as it can be shown using an ad hoc forward exploration algo-
rithm of all reachable con�gurations.

3.3 Bad news, good news: a compromise

In a sense, we have only gathered bad news with the decidability and complexity of
achievability in Aeolus. When taking into account all expressivity requirements elicited
from real needs we end up with a model in which achievability is undecidable. We can
get back to a more amenable model by giving up capacity constraints, but the complexity
of the resulting problem is still daunting. To scale further down to a fully manageable
problem we have to also give up on the ability to express con�icts, which results in a
model with very poor expressivity.

These limiting results also o�er a key for reviewing the state of the art of industrial
tools meant to instrument automatic deployment of software components in cloud and
networked settings. Unsurprisingly, industrial tools tend to be close to the expressivity
of Aeolus�. They generally support scaling up and down the number of components but
o�er no way of enforcing capacity constraints; it is up to the user to notice, possibly
via companion monitoring tools, the need of increasing/decreasing capacity. Also they
tend to avoid inter-machine con�icts, generally by relegating them to host boundaries, as
supported by con�ict among plain old distribution packages.

Can we do any better in terms of tooling for automated deployment of components
in the cloud, with a better expressivity than Aeolus�? The good news, elaborated in the
next sections, is that indeed we can, but only at the price of giving up on completeness.
The main idea is to decouple the provisioning (i.e., creation and or destruction) of the
components that need to be deployed in the target con�guration to satisfy user request,
from the planning of the sequence of state changes that are needed to bring the current
con�guration to the target one. Completeness is no longer guaranteed in this approach
because it is theoretically possible that the provisioning step will propose a set of com-
ponents that cannot be brought to the desired state with a correct deployment run that is
only allowed to change component states, e.g., due to con�icts or capacity constraints. In
those cases, though, experienced system administrators and devops would in generally
be able to �x the problem �by hand�, and would have still bene�ted from automation in
the �rst, arguably more di�cult, step.
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This approach has been realized by tools that have been created as part of the Aeolus
ANR project, all available [12] and released under FOSS licenses.

Zephyrus tackles the problem of computing a valid system con�guration (according to
the semantics of the Aeolus model), starting from an existing con�guration, a uni-
verse of available component types, and a formal speci�cation that captures user
desiderata for the target system. Furthermore, Zephyrus also takes into account
limited machine resources, such as CPU, memory, bandwidth, etc. The computation
is done via translation to a set of integer constraints, plus a dedicated algorithm to
compute bindings, and the approach makes it is possible to add an objective func-
tion that can be minimized or maximized to optimize the resulting con�guration.

Zephyrus is brie�y discussed in the remainder of this chapter. Full details about
Zephyrus are available in [49, 50].

Metis takes care of the complementary problem of quickly computing a plan that mi-
grates a valid Aeolus con�guration into a di�erent one, possibly synthesized by
Zephyrus.

Metis has been designed and implemented by Lascu, Mauro, and Zavattaro and is
further described in [104, 105].

Armonic closes the gap between con�guration and deployment plans produced by the
above tools, and the technological reality of virtual machines and cloud platforms.
Armonic takes a full system con�guration, possibly produced by Zephyrus, and
deploys it by provisioning the required virtual machines on a cloud computing
platform, installing the needed packages, con�guring the various services at the
con�guration-�le level, and starting them in the right order.

Armonic is by Antoine Eiche and the Mandriva company an available for download
at https://github.com/armonic/armonic. Further details about Armonic are
available in [50].

3.4 Automated cloud deployment with Aeolus

Zephyrus uses a stateless version of the Aeolus model [49], extended to take into account
locations (i.e., real or virtual machines where packages will be installed), package repos-
itories (possibly from di�erent FOSS distributions), packages, and resources. Packages
and repositories are encoded following the approach of Chapter 2.

The speci�cations accepted by Zephyrus are given in a rigorous syntax whose seman-
tics de�nes when a con�guration satis�es a speci�cation. Based on this formalization,
Zephyrus has been proven correct and complete: it will always �nd a con�guration that
is optimal with respect to the chosen criterion if one exists. Furthermore, the generated
con�guration is guaranteed to provide the expected functionalities, and satis�es the con-
straints de�ned by the replication policies, as well as the dependencies and con�icts
between services.

Zephyrus takes several inputs:

1. a description of all the existing components and their constraints, which come in
various formats due to their di�erent origins (e.g. package database, architectural
choices, machine physical resources, etc.); this is called a universe.

https://github.com/armonic/armonic
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2. a description of the current system con�guration (existing machines, which services
are currently deployed where, etc.)

3. a high level speci�cation of the desired target system. As part of the speci�cation,
architects can include objective functions that they would like to optimize for, such
as the desire of minimizing the number of virtual machines that will be used for
the deployment (and hence the system cost).

Let's see all this in action in a realistic cloud deployment use case.

The task we want to perform is deploying Wordpress on a private OpenStack [127]
cloud. Wordpress is written in PHP and as such is executed within Web server software
like Apache or nginx. Additionally, Wordpress needs a connection to a MySQL instance,
in order to store user data. Simple Wordpress deployments can therefore be obtained on
a single machine where both Wordpress and MySQL get installed.

�Serious� Wordpress deployments, however�that sustain high load and are fault
tolerant�are more complex and rely on some form of load balancing. One possibility
is to balance load at the DNS level using servers like Bind: multiple DNS requests to re-
solve the website name will result in di�erent IPs from a given pool of machines, on each
of which a separate Wordpress instance is running. Alternatively one can use as website
entry point an HTTP reverse proxy capable of load balancing (and caching, for added
bene�t) such as Varnish. Either way, Wordpress instances will need to be con�gured to
contact the same MySQL database, to avoid delivering inconsistent results to users. Also,
having redundancy and balancing at the front-end level, one usually expects to have them
also at the DBMS level. One way to achieve that is to use a MySQL cluster, and con�gure
the Wordpress instances with multiple entry points to it.

Several design constraints should be taken into account when designing such a sys-
tem. Some constraints come from package providers and cannot be easily changed. For
instance, Wordpress, Varnish, etc. usually come from software distribution packages and
have their own dependencies and con�icts which must be respected on each machine
when installing the software. On the other hand, �house� requirements are de�ned by
system architects to capture some ad-hoc policy. For this use case, we assume given the
following requirements:

� at least 3 replicas of Wordpress behind Varnish or, alternatively, at least 7 replicas
with DNS-based load balancing (since DNS-based load balancing is not capable of
caching, the expected load on individual Wordpress instances is higher);

� at least 2 di�erent entry points to the MySQL cluster;

� each MySQL instance shouldn't serve the needs of more than 3 Wordpress instances;

� no more than 1 DNS server deployed in the administrative domain;

� di�erent Wordpress (and MySQL) instances are deployed at di�erent locations.3

Similar constraints might exist on machine resources, e.g., we expect Varnish to consume
2GB of RAM and we don't want to deploy it to a smaller machine, especially if in com-
bination with other RAM-consuming services. Note that �house� requirements are not

3It is technically possible to co-locate multiple, say, MySQL instances on the same machine, but it

would be pointless to do so when we are seeking fault tolerance and load balancing.
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Figure 3.6: Zephyrus used to design a scalable, fault-tolerant Wordpress deployment

intrinsically related to the software components we are using, but are rather an encoding
of explicit architectural choices.

3.4.1 Architecture synthesis

Figure 3.6 shows the application of the Aeolus toolchain to the design of the discussed
Wordpress deployment.

On the left of the black arrow is a schematic representation of Zephyrus input, on the
right its output. Available services are depicted in the �gure using a graphical syntax of
the Aeolus model, each one with its own requirements, con�icts, and (house) replication
policy. In the �gure, the HTTP load balancer requires 3 Wordpress replicas and the DNS
load balancer is incompatible with any other DNS service. Note that our ports result in
a very �exible notion of dependency, with choice: any requirement can be satis�ed by
any component providing the right port. For instance, if we require the port wordpress
frontend, we allow Zephyrus to choose which of DNS load balancer or HTTP load

balancer is the best to use. To our knowledge, Zephyrus is the only tool to manage such
�exibility in dependencies.

Services and implementations

Zephyrus takes as input a description of the available service types, and an implementa-

tion relation that maps each service to the set of packages implementing it.4 These two
parts of the universe are given as input to Zephyrus as a JSON �le that for our example
looks like this:

{ "component_types": [

{ "name" : "DNS-load-balancer",

"provide" : [["@wordpress-frontend"], ["@dns"]],

"require" : [["@wordpress-backend", 7]],

4In the example we have kept things simple, but Zephyrus is capable of handling complex situations

where the same service can be implemented by di�erent packages on di�erent machines, according to the

locally installed OS.
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"conflict": ["@dns"],

"consume" : [["ram", 128]] },

{ "name" : "HTTP-load-balancer",

"provide" : [["@wordpress-frontend"]],

"require" : [["@wordpress-backend", 3]],

"consume" : [["ram", 2048]] },

{ "name" : "Wordpress",

"provide" : [["@wordpress-backend"]],

"require" : [["@sql", 2]],

"consume" : [["ram", 512]] },

{ "name" : "MySQL",

"provide" : [["@sql", 3]],

"consume" : [["ram", 512]] } ],

"implementation": [

[ "DNS-load-balancer", ["bind9"] ],

[ "HTTP-load-balancer", ["varnish"] ],

[ "Wordpress", ["wordpress"] ],

[ "MySQL", ["mysql-server"] ] ] }

The component_types section describes the available component types with their ports,
as well as their non functional requirements like memory or bandwidth. Port names
are distinguished from components or packages by a simple syntactic convention: ports
start with @. The implementation section maps services to the software packages that
should be installed to realize them on actual machines.

Package repositories

Zephyrus is fully aware of available package repositories, with their dependencies and
con�icts, and uses such information to ensure that package-level con�icts and depen-
dencies are respected on all machines. It is possible to associate di�erent package repos-
itories to di�erent locations, allowing to handle deployment of heterogeneous systems.
As the size of a repository might be huge, Zephyrus uses coinst [55] to abstract packages
into a set of much smaller equivalence classes but yet su�cient to capture all package
incompatibilities.

Available (virtual) machines

Another essential part of Zephyrus input is the description of the initial con�guration,
i.e., the set of available machines with information on their resources: memory, package
repository, existing services and packages. In our example, we start with an initial con-
�guration consisting of 6 bare locations with 2GB of RAM. Such con�guration is fed to
Zephyrus in JSON format, e.g.:

{ "locations" : [

{ "name" : "loc1",

"repository" : "debian-squeeze",

"provide_resources" : [["ram", 2048]] },

{ "name" : "loc2",

"repository" : "debian-squeeze",

"provide_resources" : [["ram", 2048]] },

[...] }
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Table 3.3: Zephyrus speci�cation abstract syntax

S ::� true j e op e Speci�cation

j S and S j S or S
j S => S j not S

e ::� n j #` j n� e Expression

j e� e j e� e
` ::� k j t j p Elements

j �J��fJr : Slg
Sl ::� true j el op el Local Speci�cation

j Sl and Sl j Sl or Sl
j Sl => Sl j not Sl

el ::� n j #`l j n� el Local Expression

j el � el j el � el
`l ::� k j t j p Local Elements

J� ::� _ j o op n; J� Resource Constraint

Jr ::� _ j r j r _ Jr Repository Constraint

op ::� � j � j � Operators

Target system speci�cation

Zephyrus accepts a speci�cation of the desired target system. Speci�cations are de�ned
according the abstract syntax presented in Table 3.3.

A speci�cation S is a set of basic constraints e op e, combined using the usual logical
connectors. These basic constraints specify how many elements (packages, component
types, etc) should be in the generated con�guration, using terms of the form #` that cor-
respond to the number of instances of element ` in the system. For instance, one might
state that we want at least 3 instances of the component type apache: �#apache � 3�,
where #apache represents the number of apache instances in the con�guration.

Moreover, it is possible to express constraints on locations. Locations can be speci�ed
in our syntax with the term �J��fJr : Slg where J� is the constraint on the resource
available on that machine; Jr is the set of repositories that can be installed on that
machine (`_' standing for any repository); and Sl is a constraint specifying the contents
of the machine (basically, Sl is S without locations). For instance, we can specify that no
location with less than 2GB of RAM and redhat installed should have a MySQL running:
�#(mem < 2G){redhat: #MySQL � 1} = 0�.

For our running example we need exactly one Wordpress frontend (i.e., exactly one
service o�ering a wordpress-frontend port), and that no machine is deployed with
more than one instance of either MySQL/Wordpress services on it.

(#@wordpress-frontend = 1)

and #(_){_ : #MySQL > 1} = 0

and #(_){_ : #Wordpress > 1} = 0

Note that no constraint is imposed on the co-location of di�erent services on the same
machine.
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Optimization criteria

In Zephyrus, one may request a solution that is optimal with respect to a speci�c ob-
jective function. Currently, Zephyrus supports two built-in optimization criteria, namely
compact and conservative, which respectively minimize the number of components
and locations used (a cost e�cient criterion), or their di�erence with respect to the initial
con�guration (similar to the paranoid use case discussed for packages in Chapter 2).

Running Zephyrus

We are now ready to ask Zephyrus to compute the �nal con�guration:

$ zephyrus -u univ.json -opt compact \

-ic conf.json -spec sp.spec \

-repo debian-squeeze ds.coinst

In addition to the obvious parameters (universe, optimization function, con�guration,
speci�cation), we pass an extra one: the -repo option tells Zephyrus that all the informa-
tion about the packages contained in the repository named debian-squeeze is available
in the �le ds.coinst.

The actual output of Zephyrus contains a complete description of the system to be
deployed; it is too long to be listed here in full, so we only highlight some excerpts of
it. The format is the same as for con�gurations, and starts with the description of the
locations:

{ "locations": [

{ "name": "loc1",

"provide_resources": [ [ "ram", 2048 ] ],

"repository": "debian-squeeze",

"packages_installed": [ "wordpress" ] },

{ "name": "loc2",

"provide_resources": [ [ "ram", 2048 ] ],

"repository": "debian-squeeze",

"packages_installed": ["mysql-server",

"wordpress" ] } [...]

We see that each location is associated to a list of packages that should be installed
there. Only the root packages are listed, and Zephyrus has already checked that they can
be co-installed, satisfying dependencies and con�icts.

The second part of the output is the list of service instances present in the system,
mapped to their locations:

"components": [

{ "name": "Wordpress-1",

"type": "Wordpress",

"location": "loc1" },

{ "name": "Wordpress-2",

"type": "Wordpress",

"location": "loc2" },

{ "name": "MySQL-1", "type": "MySQL",

"location": "loc2" }, [...]
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Figure 3.7: Internal architecture of Zephyrus

Finally, the third part of the output lists the bindings that connect (ports of) service
instances together:

"bindings": [

{ "port": "@wordpress-backend",

"requirer": "HTTP-load-balancer-1",

"provider": "Wordpress-1" },

{ "port": "@wordpress-backend",

"requirer": "HTTP-load-balancer-1",

"provider": "Wordpress-2" },

{ "port": "@sql",

"requirer": "Wordpress-1",

"provider": "MySQL-1" } [...]

The con�guration corresponding to Zephyrus output is depicted on the right of Fig-
ure 3.6, where shaded boxes denote locations; we omit installed packages for the sake of
readability. All choices there�load balancer, mapping between services and machines,
bindings, etc.�have been made by Zephyrus. Note how services have been co-located
where possible, minimizing the number of used machines: only 4 out of the 6 available
machines have been used: the proposed solution is optimal with respect to the desired
metric.

The obtained con�guration could then be deployed automatically, including virtual
machine provisioning and package installation, using Armonic.

3.5 Aeolus toolchain internals

3.5.1 Minimizing input

Figure 3.7 presents a simple schema of the architecture of Zephyrus, which is basically
structured into �ve blocks. The input phase of Zephyrus collects all the data provided by
the user.
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For each location, we take into account not only the available services, but also all
the possible ways to deploy them (i.e., packages that must be installed to realize them,
together with their dependencies): this can amount to handle tens of thousands of pack-
ages for each location, and a naive approach would simply be unfeasible. This is likely
one of the fundamental reasons why competing tools do not represent package relation-
ships explicitly or completely, with the consequence of potentially producing con�gura-
tions which are not deployable due to package incompatibilities unknown to the tool.

To render the problem tractable, Zephyrus performs several simpli�cation passes
on the input data that greatly reduce its size: the universe is trimmed by removing all
services that are not in the transitive closure of the services present in the initial con�g-
uration or the request; package repositories are pruned by keeping only packages that
implement services which were not removed by the previous simpli�cation phase; lower
and upper bounds on the needed resources and components are computed, and only the
minimum estimated number of available locations is kept. All these operations are safe,
as we can prove that they do not exclude any correct solution.

A second important simpli�cation is achieved by using a slightly modi�ed version
of the coinst tool [55], which reduces by several orders of magnitude the data present
in software package repositories, like those o�ered by the Debian or RedHat distribu-
tions, while retaining all the coinstallability information needed to determine if a set of
packages can or cannot installed together.

3.5.2 Constraint generation

The second phase of Zephyrus translates the (trimmed) input into a set of constraints
over non-negative integers. These constraints use di�erent variables for the number of
instances to create on each of the locations for each of the types in the universe, and
also variables representing the packages that must be installed on each location. The
constraints impose that the instances respect the de�nition of their type in the universe,
the way how instances are implemented by packages, the (compacted) dependencies and
con�icts between packages, and the problem speci�cation.

The most interesting of these constraints ensure that it is possible to create the bind-
ings between all instances according to the capacity constraints. These constraints, miss-
ing from competing approaches [68, 67, 71], are necessary due to the �exible dependen-
cies that Aeolus allows on ports. Constraints are constructed using auxiliary variables
B�p; tr ; tp� for the number of bindings on port p between requesting instances of type
tr and providing instances of type tp.

On our Wordpress example, these particular constraints for the bindings on port sql
look like this:

B�sql;wp;mysql� � #mysql� 3 (3.1)

B�sql;wp;mysql� � #wp� 2 (3.2)

B�sql;wp;mysql� � #wp� #mysql (3.3)

Here, (3.1) expresses that the number of bindings on port sql between instances of the
two types is at most the number of instances of the providing type mysql times 3 (since
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any component of that type can bind to at most 3 instances), (3.2) that the number of
bindings on port sql is at least the number of instances of the requesting type wp times
2 (the number of binding each component of type wp requires), and �nally (3.3) states
that the number of bindings is at most the number of pairs of instances of type wp with
instances of type sql. This last restriction expresses that no two bindings may exist
between the same pair of instances.

The ability to capture as simple integer constraints the existence of a complete ar-
chitecture corresponding to a speci�cation is the cornerstone of Zephyrus approach. It
allows to deal with the many facets of system design as a whole, and thus ensures the
completeness of architecture synthesis (in the stateless model) as well as the optimality
of the generated con�guration. In particular, if the output of Zephyrus indicates that sev-
eral services are to be installed on the same machine, we know that no con�ict between
the packages that realize them will arise on actual machines.

3.5.3 External solvers

The generated constraints, as well as the optimization function, are expressed using the
MiniZinc constraint modelling language [118, 115]. This allows to employ any of the
many existing constraint solvers that support MiniZinc.

Zephyrus can currently use GeCode [141] (an e�cient FOSS solver) or several of the
solvers provided by the G12 suite [150]. The tool exploits this �exibility by implementing
a solver portfolio approach [14, 15] that reduces execution time by running several solvers
in parallel and stops as soon as one of the solvers �nds a (optimal) solution.

3.5.4 Con�guration generation

When the external solver �nds a solution for the generated constraints, the next part
of Zephyrus transforms that solution, consisting in a simple mapping from variables
to integers, to an actual Aeolus con�guration. The two main challenges for this step
are: i) reuse as many existing parts of the initial con�guration as possible in order to
minimize the impact on the existing system; and ii) correctly generate bindings between
the instances taking into account that any two instances can be bound on a given port at
most once. The two challenges are addressed by an ad hoc algorithm presented in detail
in [49].

Once the con�guration has been generated, it can be written to a �le in two di�erent
formats: either (a) the same JSON format used for the input con�guration, which pre-
cisely describes all the con�guration features and is used by Armonic as input; or (b) the
Graphviz format that encodes the con�guration into a graph that can be viewed using
the dot program to visualize the synthesized architecture.

If no con�guration can satisfy the input constraints, Zephyrus will exit with an error
message and produce no output �les.

3.5.5 Synthesis soundness and completeness

An important property of Zephyrus is that all its parts have been formalized. In partic-
ular, the translation into constraints and the generation of the con�guration have been
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precisely described and proven correct in [49], where the following results have been
shown for Zephyrus:

Theorem 2 (Soundness). The con�guration generated by Zephyrus is correct with respect

to the input universe and speci�cation.

Theorem 3 (Completeness). If there exists a con�guration that validates the input universe

and speci�cation, then Zephyrus will successfully generate a correct con�guration.

Note that completeness here is with respect to the stateless variant of the Aeolus model
that is used by Zephyrus.)

Theorem 4 (Optimality). The con�guration generated by Zephyrus is optimal with respect

to the input optimization function.

3.6 Validation

Zephyrus have been experimented with in both arti�cial benchmarks and real industrial
settings.

3.6.1 Synthesis e�ciency

Several architecture synthesis benchmarks have been conducted�as part of the Ph.D. the-
sis of Jakub Zwolakowski [171] that we have supervised�on both realistic and extreme
use cases.

To that end the Wordpress use case has been parameterized to scale it up and demon-
strate how Zephyrus handles problems which require more and more components and
locations: (i) the �rst parameter is the minimum replication constraint on the wordpress
backend port (required by the load balancer); (ii) the second parameter is the minimum
replication constraint on the sql port (required by Wordpress). Both parameters have
been made to vary from 1 to 16.

The resources associated to available locations have been inspired by Amazon's EC2
VM instance types: m1.small, m1.medium, m1.large and m1.xlarge. Zephyrus was
provided with a �nite, but large enough number of available machines (250 for each
instance type). A single package repository was associated to each machine, and a single
package implementing all the available component types.

A portfolio of solvers has been used, consisting of 3 solvers: GeCode [141], the stan-
dard �nite domain constraint solver from the G12 suite [150], and the G12/CPX (Con-
straint Programming with eXplanations) solver from the G12 suite. As these solvers are
optimized for di�erent goals, each of them works better in some situations and worse in
others.

Execution times for architecture synthesis, shown in Figure 3.8, have been obtained
as the average of 5 Zephyrus runs on a commodity desktop machine at the time. Results
show that the vast majority of cases are solved very quickly in less than one minute.
Only the larger ones can take more than 20 minutes, e.g., the (14,16) case, which is the
highest peak in the chart. To put this worst-case into perspective, note that the largest
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Figure 3.8: Wordpress synthesis benchmarks, for increasing values of the replication
constraints on Wordpress backends and MySQL

use case ((16,16)) consists of 103 components, interconnected by 272 bindings, and
distributed over 86 machines. This surpasses by a signi�cant margin the size of most
professional Wordpress deployments.

3.6.2 Industry adoption

In addition to use in production as part of cloud provisioning products by the Mandriva
company (the authors of Armonic), Zephyrus has also been deployed in a large industrial
use case at Kyriba Corporation,5 a large software editor providing Software-as-a-Service
treasury management solutions.

Kyriba solution is a complex software platform composed of more than 150 compo-
nents deployed on multi-tier architectures, with many di�erent versions running at the
same time. Maintaining the consistency of the system as a whole is a major undertak-
ing. To address this challenge, Kyriba has invested in completely automating the build,
integration, and deployment processes.

Successful completion of a local quali�cation process (on developers machines), is re-
quired in order to be able to commit code changes to the source version control system.
After commit, a remote quali�cation process is used by �rst rerunning on a Continu-
ous Integration (CI) [62] pipeline the local quali�cation process, and then by performing
automatic deployment and deep functional testing on a private cloud of all the latest
component versions. The testing process is very time consuming: while local tests take
less than 4 minutes to complete, global ones might take 4�8 hours.

Test deployment was historically done using custom tools involving a manual setup,
and component/protocol incompatibilities were only detected at runtime. Short feedback

5http://www.kyriba.com/

http://www.kyriba.com/
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loops discipline helps developers with error diagnostic related to small code changes [88],
so Kyriba has been looking for a tool that could anticipate error detection. Zephyrus
turned out to be a perfect �t for this need, as a deployment validation tool for both the
local and remote quali�cation processes. Zephyrus is now used in distributed component
consistency validation and deployment con�guration scenarios. Zephyrus helps to get
feedback before launching local deployments tests and has led to a signi�cant reduction
of the number of failures occurring during automated deployment in comparison to the
previous, more manual, test setup.

Here is how Kyriba tech lead summed up their experience with Zephyrus:

�Instead of managing deployment scenarios manually using spreadsheets

and �at documents, with ad hoc semantics leading to complex, time-consuming

and error-prone deployments, Zephyrus brings precise semantics and simpli�es

the automation of software quali�cation processes. Zephyrus provides static

validation before actually performing expensive and very long dynamic valida-

tion at runtime. As most �compiler-like� tools, Zephyrus improves engineering

quality and reduces building cost with less failures at deployment, integration

test stage and platform upgrade.� [50]



Chapter 4

Delving into the source code of

large FOSS collections

This chapter is based on [31, 30].

The kinds of modeling and analysis of FOSS components discussed in Chapters 2
and 3 stop at the abstraction level of packages and rely on the fact that their declared
contextual requirements (dependencies, con�icts, etc.) match the reality of the actual
software they stand for. At such an abstraction level it is possible to spot �global� in-
consistencies and plan deployments, but not actually detect �local� mismatches between
declared package relationships and the underlying software. To attack such a problem
we need to delve into the content of FOSS packages, i.e., their source code.

Several other problems that relate to topics brie�y touched by the Mancoosi and Ae-
olus projects can also be solved only at the source code level. A notable example is early
detection of upgrade runtime failures [54], as might be induced by buggy maintainer

scripts [45, 92].

The next natural question is then how to best analyze�or �mine�, in the jargon of
the Mining Software Engineering (MSR) community [82, 96]�the source code of large,
curated software collections like FOSS distributions. Ideally, we would like to have a
solution that does not only serve the immediate need of a speci�c study, but rather �nd
a generic solution that can then be leveraged by scholars around the world to attack
di�erent problems over time.

Aside from this generality requirement, we observe that the study of software collec-
tions poses speci�c challenges for scholars, due to their tendency at growing ad hoc soft-
ware ecosystems, made of homegrown tools, technical conventions, and social norms,
that might be hard to take into account when conducting empirical studies.

In this chapter we present our work on Debsources, that has been a �rst contribu-
tion to solve these problems. Debsources aims at easing the realization of FOSS studies
through the lenses of the Debian distribution, which is already recognized as a popular
subject of empirical software engineering studies [43]. Speci�c attention has been de-
voted to support software evolution studies [151, 26], both long-term studies�looking
back as far as possible�and studies of present, day-by-day evolution patterns of soft-
ware currently shipped by Debian. But the resulting platform, called Debsources, is more

55
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general than software evolution and eases all kind of large-scale analyses on the entire
source code shipped by Debian�presently and in the past�minimizing the e�orts re-
quired by researchers.

From the point of view of researchers, Debsources is in fact two things at once.
First and foremost, it is an extensible software platform (described in Section 4.1) that
allows to gather, search, and publish on the Web the source code of Debian as well
as measures about it. The most notable instance of Debsources is available at http:
//sources.debian.net (or sources.d.n for short). It contains the source code, and
metadata about it, of all historical Debian releases. sources.d.n is also integrated with
the o�cial Debian infrastructure and, as such, receives live updates of new packages as
they hit the Debian archive. Debsources is FOSS1 released under the AGPL3 license; it
can be deployed elsewhere, possibly targeting other Debian-based distributions, to serve
similar needs.

Second, Debsources is a curated, open dataset (discussed in Section 4.2), obtained
as a byproduct of maintaining sources.d.n, that contains source code and related
metadata spanning two decades of FOSS history. The Debsources Dataset spans more
than 3 billion lines of source code as well as metadata about them such as: size met-
rics (lines of code, disk usage), developer-de�ned symbols (ctags), �le-level checksums
(SHA1, SHA256, TLSH), �le media types (MIME), release information (which version of
which package containing which source code �les has been released when), and license
information (GPL, BSD, etc).

A large-scale evolution case study is presented in Section 4.3 to showcase how the
Debsources Dataset can be used to easily and e�ciently instrument large-scale analyses
of Debian from various angles (size, granularity, licensing, etc.), getting a grasp of major
FOSS trends of the past two decades.

4.1 The Debsources platform

4.1.1 Architecture

The life-cycles of Debian packages and releases are depicted in Figure 4.1. Abstracting
over those life-cycles, so that researchers using the platform don't have to worry too
much about those details, was one of the key design goal of Debsources.

Aside from the software integration steps that distribution notably performs with
respect to upstream software authors (leftmost part of Figure 4.1) and �nal users (right-
most part), the most relevant parts of Debian life-cycles are release management and
archival (inner part of the �gure).

When a new package version is ready, the corresponding package maintainer uploads
both source and binary packages to the development release (or �suite�) called unsta-

ble (a.k.a. sid). Note that Debsources is only concerned with source packages; there-
fore, throughout this chapter and unless otherwise speci�ed, we use �package� to mean
�source package�. Since Debian supports many hardware architectures, a network of

1http://anonscm.debian.org/gitweb/?p=qa/debsources.git

http://sources.debian.net
http://sources.debian.net
http://anonscm.debian.org/gitweb/?p=qa/debsources.git
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Figure 4.1: Life-cycle of Debian packages and releases

build daemons (buildd) fetch incoming source packages from unstable, build them for all
supported architectures, and upload the resulting binary packages back to unstable.

After a semi-automatic software quali�cation process called migration [164], which
might take several days or weeks, packages �ow to the testing suite. At the end of each
development cycle migrations are stopped, testing is polished, and eventually released as
the new Debian stable release.

Packages are distributed to users via an ad-hoc content delivery network made of
hundreds of mirrors around the world. Each mirror contains all �live� suites, i.e., the
suites discussed thus far plus the former stable release (oldstable). When a new stable is
released, oldstable gets stashed away to a di�erent archive�http://archive.debian.

org, or archived.d.o for short�which is separately mirrored and contains all historical
releases.

For reference, Table 4.1 summarizes information about Debian suites to date, their
codenames, and which suites are currently archived. We note in passing that the average
development cycle of Debian stable releases is now 590 days (respectively 768 over the
past 15 years, since woody) with a standard deviation of 269 days (respectively 124 days).

The architecture of Debsources and its data �ow are depicted in Figure 4.2. On the
back end, Debsources inputs are the mirror network (for live suites) and archived.d.o

(for archived ones). Live suites can be mirrored running periodically (e.g., via cron) the
dedicated debmirror tool,2 which understands the Debian archive structure. Note that
the archive format supported by debmirror is shared across all Debian-based distribu-
tions (or derivatives), e.g. Ubuntu, allowing to use Debsources on them. Archived suites
require a more low-level mirroring approach (e.g., using rsync) due to the fact that the
Debian archive structure has changed in incompatible ways over the long time period we
have to take into account.

For Debian live suites it is possible to receive �push� noti�cations of mirror updates�
which usually happen 4 times a day�and use them to trigger debmirror runs, minimiz-
ing the update lag.3

After each mirror update, the Debsources updater is run. Its update logic is a simple
sequence of 3 phases:

2http://packages.debian.org/sid/debmirror
3push noti�cations are enabled on the sources.d.n Debsources instance

http://archive.debian.org
http://archive.debian.org
http://packages.debian.org/sid/debmirror
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Table 4.1: Debian release information; * denotes, here and in the remainder, unreleased
suites.

version release current release cycle duration

number name alias date (days) archived

1.1 buzz 17/06/1996 n/a yes
1.2 rex 12/12/1996 178 yes
1.3 bo 05/06/1997 175 yes
2.0 hamm 24/07/1998 414 yes
2.1 slink 09/03/1999 228 yes
2.2 potato 15/08/2000 525 yes
3.0 woody 19/07/2002 703 yes
3.1 sarge 06/06/2005 1053 yes
4.0 etch 08/04/2007 671 yes
5.0 lenny 15/02/2009 679 yes
6.0 squeeze 06/02/2011 721 yes
7 wheezy oldoldstable 04/05/2013 818 no
8 jessie oldstable 26/05/2015 752 no
9 stretch stable 17/06/2017 753 no
10 buster* testing tbd tbd no
n/a sid* unstable n/a n/a no

1. extraction and indexing of new packages;

2. garbage collection of disappeared packages, provided that a customizable grace
period has also elapsed;

3. update of overall statistics about known packages.

Debsources storage is composed of 3 parts: the local mirror, the source packages�
extracted to individual directories using the standard Debian tool dpkg-source�and a
PostgreSQL [149] database, which contains information about package metadata, suites,
and individual source �les.

A plugin system is available and accounts for Debsources �exibility. Each time the
updater touches a package in the data storage (e.g., by adding or removing it), it sends
a noti�cation to all enabled plugins. Plugins can further process packages, including
their metadata and all of their source code, and update the DB accordingly. Plugins can
declare and use their own tables or use general purpose plugin tables, such as metrics
(see Figure 4.3 later in this chapter for the database schema).

In essence Debsources does the heavy lifting of maintaining a general purpose storage
for Debian source code, enabling plugin authors to focus on data extraction. Plugins are
available to compute popular source code metrics: disk usage, physical source lines of
code (SLOC) using sloccount [167], user-de�ned �symbols� (functions, classes, types,
etc.) using Exuberant Ctags,4 di�erent types of checksums of all source �les, etc. Note
that simpler metrics like the number of source �les do not need speci�c plugins, because
Debsources natively tracks individual �les.

4http://ctags.sourceforge.net/

http://ctags.sourceforge.net/
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Figure 4.2: Debsources architecture

Plugins are quick and easy to write: if we exclude boilerplate code, the most complex
plugin (ctags) is �100 lines of Python code, most of which needed to parse ctags �les. All
the plugins mentioned above are already part of the standard Debsources distribution.

On the front end, Debsources o�ers several interfaces. For �nal users, the Debsources
web app implements a HTML + JavaScript interface with features like browsing, syntax
highlighting, code annotations, metadata searches, and regular expression searches on
the code via Debian Code Search [146]. The same features are exposed to developers via
a JSON-based Web API. Additionally, scholars interested in aggregate queries can directly
access the low-level Debsources DB using SQL.

4.1.2 Adoption

The Debsources instance running at sources.d.n has quickly been adopted by the De-
bian community as the reference Web platform where to search and browse Debian
source code, in particular to support developers in their day-by-day activities.

Web hit ratio for sources.d.n has been steadily growing and currently averages at
around 500000 pages requests per month. sources.d.n is also regularly used on de-
veloper communication channels (mailing lists, IRC, etc.) to point other developers to
speci�c lines of code, as examples of how to achieve something (code reuse), or as a way
to pinpoint where bugs that need to be �xed can be found.

The success of these use patterns was, in retrospect, to be expected. Before
sources.d.n the only alternative to point other developers to speci�c lines of code in
Debian was to communicate package name, version, �le name, and line number; expect-
ing then the receiving end of the communication to go fetch the package, extract it (which
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might result in GB of disk occupation for large packages), and manually resolve the given
identi�ers.

Another qualitative measure of the success of sources.d.n is Debian is the extent
to which it has been integrated, by developers other than the Debsources authors, with
other services in the project infrastructure. A few examples are the already mentioned in-
tegration with Debian Code Search [146], that searches the code of the development suite
of Debian and relies on sources.d.n to show search results in context; and the integra-
tion with the Debian package tracker that added a �browse source code� functionality
using sources.d.n as backend.5

As a FOSS project, Debsources is also quite healthy. Since its public announcement
the project has collected 13 contributors and has been the subject of 5 internships, one
of which academic (supported by Inria) and 4 of which supported by FOSS outreach/men-
toring programs such as Google Summer of Code and Outreachy.

Thanks to those internships Debsources has also gained new interesting features that
are starting to be exploited by industry consortiums active in the FOSS space. Most
notably, Debsources can now detect and extract from packages software licensing in-
formation (see Section 4.3.4 later on in this chapter for details), associate them to in-
dividual source code �les, and export the results in standardized formats. Industry
members of the SPDX (Software Package Data Exchange [148]) consortium are starting
to use sources.d.n-originated licensing information as part of their software quali�ca-
tion tooling and processes.

4.2 The Debsources Dataset

The Debsources Dataset is a polished version of the data underpinning sources.d.n,
suitable for a wide range of large-scale analyses on FOSS components released as part
of Debian. The dataset is composed of two parts that can be used either together or
independently:

Source code The dataset includes the source code of 10 Debian stable releases published
over the past 2 decades, corresponding to 82 thousand packages for more than
30 million source code �les. To reduce storage size, source code �les have been
deduplicated and organized in a manner that facilitates and speeds up empirical
studies. The result of deduplication is 15 million unique �les, requiring � 320GB of
disk space. After compression with xz the source code part of the dataset shrinks
down to � 90GB.

Metadata Rich metadata regarding all shipped source code are also part of the dataset.
Release metadata link together the 10 Debian releases, the packages that compose
each of them, and the source code �les that form each package. In addition to
release information, the dataset also contains the following content-oriented meta-
data:

5https://tracker.debian.org

https://tracker.debian.org
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� per-�le size metrics including �le size in bytes, number of lines (using wc),
source lines of code (SLOC) divided by language, computed using both
sloccount,6 and cloc;7

� checksums: cryptographic hashes SHA1 [41] and SHA256, as well as locality-
sensitive TLSH [120] hashes of all �les;

� MIME media type of each �le, as detected by file;8

� location, name, and type of developer-de�ned symbols (functions, data types,
classes, methods, etc.) obtained indexing all source code with Exuberant Ctags;9

� applicable FOSS license for individual �les, as detected by both ninka [73] and
fossology [79].

Source code is shipped as a set of tarballs, metadata as a PostgreSQL [149] database
dump.

4.2.1 Exploitation ideas

The Debsources Dataset is a valuable resource for scholars interested in studying either
the composition or the long-term evolution of FOSS. Here are a few ideas�some already
realized, some still up for grabs�on how to exploit the dataset:

� Conduct or replicate long-term, macro-level evolution studies of FOSS. We show an
example of this in the case study of Section 4.3.

Several followup research questions to that study remain unanswered, e.g.: does
the use of di�erent programming languages evolve in similar ways along the his-
tory of development? 20 years are enough to observe the raise and fall of program-
ming languages and try to spot interesting adoption patterns. Using the Debsources
Dataset those studies can be done both in aggregate ways (e.g., how many software
projects are written in a given language over time?) and at per-project level (e.g., do
all software projects written in a given language follow similar evolution patterns?).

� Study the structure and evolution of license use in FOSS, at di�erent granularities:
�le, package, distribution. We address some of these in Section 4.3.4, but a lot
remains to be done, most notably in the area of licensing of software components
as aggregate wholes.

� Investigate code reuse and cloning along the whole history of all software packages
contained in the dataset. Reuse without modi�cation is trivial to track thanks to
SHA1 and SHA256 checksums. Reuse with modi�cation can be supported using
ctags and/or TLSH hashes as �ngerprinting techniques to track (modi�ed) code
copies, or by directly parsing the actual source code available in the dataset.

� The availability of source code can be further leveraged to support several kinds
of static analysis studies. By focusing on source code �les written in a speci�c
programming language (e.g., C, C++), researchers can study the evolution over time

6http://www.dwheeler.com/sloccount/
7https://github.com/AlDanial/cloc
8http://www.darwinsys.com/file/
9http://ctags.sourceforge.net/

http://www.dwheeler.com/sloccount/
https://github.com/AlDanial/cloc
http://www.darwinsys.com/file/
http://ctags.sourceforge.net/
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of bugs that are detectable with a given static analysis tool (e.g., Coccinelle [125],
Coverity [23]).

On the more practical side, the source code in the dataset also forms an interesting
benchmark for code search at a scale. Multi-language, license-aware, automatic code
completion backed by the Debsources Dataset would make for a very fun and useful
toy for many developers.

� In comparison with other sub-�elds, release engineering [11] is still relatively unex-
plored in empirical software engineering. The Debsources Dataset allows to follow
the evolution of package-level structures along 20 years of Debian, and to mix-and-
match with release metadata, metrics, and actual source code. Some open research
questions in this area are: when and how software projects get split into multiple
packages? does package organization change over time? does that a�ect release
schedules? how do packages migrate from one development release to another?
etc.

4.2.2 Availability and reproducibility

The Debsources Dataset is Open Data. The metadata part of the dataset is available
under the terms of the Creative Commons Attribution-ShareAlike (CC BY-SA) license,
version 4.0. The source code part of the dataset is available under the terms of the
applicable FOSS licenses. The dataset is available for download from Zenodo10 at https:
//zenodo.org/record/61089, with DOI reference 10.5281/zenodo.61089.

The Debsources Dataset has been assembled by mirroring and extracting Debian
source releases, organizing extracted source code to remove duplicates, running anal-
ysis tools over the obtained �les, and injecting their results in a PostgreSQL database.

Given that both all Debian releases and the analysis tools we have used are freely
available as FOSS, the dataset can be recreated from scratch by anyone; a detailed, repro-
ducible blueprint to do so is given in [30]. Be warned though that (re-)creating the dataset
takes a signi�cant amount of resources, both in terms of processing time and required
disk space. The dataset (re-)creation process is I/O-bound and might require up to 1.5TB
of working disk space during processing. In total, a realistic estimate for recreating from
scratch the dataset on a consumer machine equipped with fast SSD drives is in between
4 and 5 weeks; a couple of weeks more with spinning disks. Note that to simply use the
Debsources Dataset there is not need to recreate the dataset. The blueprint for doing so
has been documented only for information and reproducibility purposes.

4.2.3 Source code

The �rst part of the Debsources Dataset is a set of 16 tarballs, each one weighting 5�
6GB, containing the deduplicated source code �les. Files contained in these tarballs are
�sharded� into sub-directories; for example, a �le whose SHA1 is deadbeef[...] will
have path de/ad/deadbeef[...]. The additional tarball debsources-ext.tar.xz con-
tains �le extension information as a set of symlinks to the actual source code �le.

10https://zenodo.org/

https://zenodo.org/record/61089
https://zenodo.org/record/61089
http://dx.doi.org/10.5281/zenodo.61089
https://zenodo.org/
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Table 4.2: Various versions of the xournal package in Debian, all containing a �le named
src/xo-interface.h with the same SHA1 checksum.

Release Package Version SHA1 of src/xo-interface.h

lenny xournal 0.4.2.1-0.1 e09a07941a3c92140c994fcdda7f74bce1af4ca3

squeeze xournal 0.4.5-2 e09a07941a3c92140c994fcdda7f74bce1af4ca3

wheezy xournal 0.4.6~pre20110721-1 e09a07941a3c92140c994fcdda7f74bce1af4ca3

jessie xournal 1:0.4.8-1 e09a07941a3c92140c994fcdda7f74bce1af4ca3

Consider �le src/xo-interface.h, which can be found in four di�erent versions of
the xournal package in Debian, as shown in Table 4.2. After extraction source code can
be found in two top-level directories: debsources and debsources.ext. The �rst one
contains the actual source code, the second extensionful symlinks to them. In our exam-
ple we will have the following on-disk layout (names ending in `/' represent directories,
and `->' a symlink and its destination):

debsources/

...

debsources/e0/

debsources/e0/9a/

debsources/e0/9a/e09a07941a3c92140c994fcdda7f74bce1af4ca3

...

debsources.ext/

...

debsources.ext/e0/

debsources.ext/e0/9a/

debsources.ext/e0/9a/e09a07941a3c92140c994fcdda7f74bce1af4ca3.h ->

../../../sources/e0/9a/e09a07941a3c92140c994fcdda7f74bce1af4ca3

...

Even though �les are renamed to match their SHA1 checksums, the directory struc-
ture of individual packages is not lost. Full original paths are available as part of the
metadata database described next. As a preview, the following SQL query can be used to
reconstruct the paths at which a �le with the SHA1 of our example can be found in the
dataset, together with the corresponding package names and versions:

SELECT release_id as release,

package_name as package, package_version as version,

encode(path, 'escape') as path

FROM releases

NATURAL JOIN package_info

NATURAL JOIN paths

NATURAL JOIN path_info

NATURAL JOIN files

WHERE sha1='e09a07941a3c92140c994fcdda7f74bce1af4ca3'

When run the query will return the following tuples:
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Table 4.3: Tools used to extract �le-level metadata.

Tool Version Command

�le 5.14 file -mime-type

cloc 1.66 cloc -by-file -follow-links -skip-uniqueness \

-sql-append

sloccount 2.26 sloccount -duplicates -follow -details

wc (coreutils) 8.13 wc -l

release package version path

lenny xournal 0.4.2.1-0.1 src/xo-interface.h
squeeze xournal 0.4.5-2 src/xo-interface.h
wheezy xournal 0.4.6~pre20110721-1 src/xo-interface.h
jessie xournal 1:0.4.8-1 src/xo-interface.h

4.2.4 Metadata

The second part of the dataset is a Postgres database, containing all source code meta-
data. The database schema is shown in Figure 4.3. A brief description of each table is
given below.

Intrinsic information

The following tables describe releases, packages, �les and the relationships among them:

package_info information about Debian source packages contained in the dataset, such
as package names, versions, and associated attributes (e.g., project homepage).
Package names are generally lowercase variants of the original (or �upstream�) FOSS
project names, e.g., bash, linux (the kernel), libreo�ce, etc. Package versions include
both the upstream project version and the Debian package revision separated by a
dash, e.g.: �1.2.3-4�.

release_info information about the 10 Debian releases in the dataset; name, version, and
release date of each one are included.

releases mappings between source packages and Debian releases.

path_info the full path name of every �le in the dataset. The table also contains, as a
separate �eld, the �le extension.

�les deduplicated �les together with their checksums (SHA1, SHA256, and TLSH) and
size (in bytes). This table lists all unique �les present in the dataset.

paths ternary mappings between packages, path_info, and �les. This table indicates, for
a given package and path, the corresponding unique �le. For symbolic links, the
�le_id column will be NULL.

Derived information

The following tables describe information that have been extracted from Debian source
code using a variety of indexing and measurement tools:
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 ctags 

 ctags_id  serial  PK 
 file_id  integer  FK 
 tag  character varying 
 line  integer 
 kind  character varying 

 files 

 file_id  serial  PK 
 sha256  character(64) 
 sha1  character(40) 
 tlsh  character(70) 
 filesize  bigint 

ctags_file_id_fkey

 licenses 

 license_id  serial  PK 
 file_id  integer  FK 
 oracle  license_oracles 
 license  character varying 

licenses_file_id_fkey

 metric_info 

 metric_info_id  metric_types  PK 
 metric_name  character varying 
 tool  character varying 
 command  character varying 
 comment  character varying 

 metrics 

 metric_id  serial  PK 
 file_id  integer  FK 
 metric_info_id  metric_types  FK 
 int_value  integer 
 st_value  character varying 

metrics_file_id_fkey

metrics_metric_info_id_fkey

 package_info 

 package_id  serial  PK 
 package_version  character varying 
 package_name  character varying 
 area  character(8) 
 vcs_type  vcs_types 
 vcs_url  character varying 
 vcs_browser  character varying 
 sticky  boolean 

 path_info 

 path_info_id  serial  PK 
 path  bytea 
 ext  character varying 

 paths 

 path_id  serial  PK 
 package_id  integer  FK 
 path_info_id  integer  FK 
 file_id  integer  FK 

paths_file_id_fkey

paths_package_id_fkey

paths_path_info_id_fkey

 release_info 

 release_id  character varying  PK 
 release_date  date 
 version  character varying 

 releases 

 package_id  serial  PK  FK 
 release_id  character varying  PK  FK 

releases_fk_pkg_info

releases_fk_rel_info

Figure 4.3: Database schema. Primary key �elds are denoted with �PK�, foreign keys �FK�;
arrows indicate referential integrity constraints.
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Table 4.4: Size of Debsources Dataset metadata as a Postgres database. The entire
database requires � 40GB of disk space (including indexes, which are not listed below).

Table Disk size Tuples

ctags 23 GB 186.5M
�les 5944 MB 15.5M
metrics 3549 MB 46.7M
paths 3259 MB 30.5M
licenses 2976 MB 31.0M
path_info 1895 MB 11.7M
package_info 14 MB 82113
releases 7248 KB 97471
metric_info 32 KB 4
release_info 32 KB 10

licenses license information. This table maps unique �les to the corresponding FOSS li-
censes as identi�ed by the license detection tools (or �oracles�) ninka and fossology.

metric_info information about the tools used to compute �le-level information. For re-
producibility reasons, this table includes tool name, version, command line used to
run it, and a comment �eld with additional human-readable information. Due to
how representative of the available �le-level information this table is, its content is
also shown in Table 4.3.

metrics links �les to the information extracted from them. Some derived information
are integer-valued (e.g., the output of wc -l), some string-valued (e.g., file out-
put), some both (cloc and sloccount output both detected language and number
of SLOCs). For this reason this table allows to store an integer (�eld int_value)
and/or a string (st_value). The attribute comment in table metrics_info documents
which �eld is relevant for which metric.

ctags ctags results for each �le. The table contains one entry for each developer-de�ned
symbols in a given source �le, together with the precise �le location at which the
symbol was found and the symbol type (function, data type, method, etc).

4.2.5 Dataset size

To give an idea of the size of the dataset, Table 4.4 lists the sizes of all tables in the
database, as both number of tuples and required disk space. If space is at a premium,
some large tables (e.g., ctags) can be skipped without compromising the referential in-

Table 4.5: Size of the source code part of the Debsources Dataset.

Tarball

Disk usage

(compressed)

Disk usage

(expanded)

debsources.*.tar.xz 89GB (total) 317GB
debsources-ext.tar.xz 422MB 61GB
debsources.dump.xz 3.1GB see Table 4.4
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tegrity of the database. Similarly, Table 4.5 details the required disk space to locally host
the source code part of the Debsources Dataset.

4.3 Case study: long-term macro-level evolution

In the remainder of this chapter we show how the Debsources Dataset can be used to con-
duct a long-term, macro-level evolution analysis of FOSS projects, as they can be observed
through the lens of the Debian distribution. We focus on aspects such as source code
size (under various metrics), programming language popularity, package size, package
maintenance, and software licensing.

The analyses we conduct are both qualitative and quantitative, and in part replicate
and extend previous �ndings [80, 31]. The research questions we will address are:

RQ i. How does the size of Debian evolve over time? Looking at various metrics we will
study how and at which rate Debian grows across releases.

RQ ii. How much Debian changes between releases? By studying package versions and
their content, we can measure the amount of packages that are updated across
Debian releases and to what extent they are.

RQ iii. How has the popularity of programming languages changed over the last 20

years? By looking at the evolution of SLOCs per language, we identify which
languages are gaining (or losing) traction among FOSS projects represented in
Debian.

RQ iv. Which licenses apply to Debian source code �les? We identify which software
licenses are used in Debian at a �le-by-�le granularity, irrespectively of the con-
taining package.

RQ v. Which licenses can be found in Debian source packages? By aggregating �le li-
censes by package we can study the expected license variability when reusing
entire software packages.

RQ vi. How has license use evolved in Debian over time? We explore the evolution of
license use over time by comparing the licensing of �les and packages that belong
to di�erent Debian releases.

4.3.1 Growth over time

The evolution of Debian size over time (RQ i) can be studied under various metrics. We
take into account the following ones: number of packages, number of source code �les,
disk usage of (uncompressed) source code, lines of code (SLOCs), and developer-de�ned
symbols (or �ctags�).

In the Debsources Dataset packages can be found in the package_info table, that has
one row per package. Source code �les can be found in table paths, which in turn points
to unique �les listed in table �les. All �le-level metrics, except ctags, are in table metrics,
column int_value, distinguished by metric type (column metric_info_id).11 File-level met-
rics can then be grouped by package following themetrics! �les$ paths! package_info

11Note that two di�erent SLOC metrics are available in the dataset: as computed by sloccount and

cloc. Each tool has its strength and weaknesses. For this case study we use sloccount numbers.
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Table 4.6: Debian release sizes by various metrics�number of packages, �les (and �les
explicitly recognized as source code by sloccount), disk usage of uncompressed source
packages, lines of code, developer-de�ned symbols (ctags). See also Table 4.7 for addi-
tional statistics parameters about these measures.

Release Version Packages
Files
(k)

Source
�les
(k)

Disk
usage

(GB)

ctags

(M)
SLOCs
(M)

hamm 2.0 1373 348.4 152.5 4.1 4.1 34.9
slink 2.1 1880 484.6 224.4 6.0 6.2 51.9
potato 2.2 2962 686.0 292.6 8.6 7.4 68.8
woody 3.0 5583 1394.5 563.3 18.2 17.2 140.7
sarge 3.1 9050 2394.0 870.6 34.1 24.2 210.1
etch 4.0 10550 2879.7 1092.7 45.0 30.3 272.1
lenny 5.0 12517 3713.9 1437.2 61.8 38.3 332.7
squeeze 6.0 14951 4908.1 1952.2 89.1 52.3 444.4
wheezy 7 17564 7310.5 2751.4 131.7 69.5 636.8
jessie 8 21041 8375.0 3404.2 167.0 95.6 784.3
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Figure 4.4: Debian release size over time, under various metrics.

chain of relationships. Ctags are stored in the separate ctags table because, whereas they
can be used as a size/complexity metric for individual source code �les, they primarily
act as an index which doesn't �t the general model of the metrics table. Per-packages
metrics can be further aggregated by release using the releases table. Per-release metrics
can �nally be sorted by time using the release_date �eld of the release_info table.
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Table 4.7: Averages, median, and maximum of various size metrics, over packages and
per release. See Table 4.6 for totals.

Files
Disk usage

(KB) SLOCs

Release median max median max
median
(K)

avg.

(K)
max
(M)

hamm 65 17.8 780 0.2 4.63 25.4 1.2
slink 64 17.8 782 0.1 4.37 27.6 1.3
potato 58 27.3 732 0.2 3.46 23.2 2.0
woody 60 29.8 784 0.4 3.61 25.2 2.9
sarge 62 68.6 904 0.9 3.74 23.2 4.0
etch 65 27.2 1012 0.4 4.54 25.8 5.6
lenny 66 59.6 1000 0.9 4.41 26.5 5.9
squeeze 69 57.2 960 2.3 4.17 29.7 7.9
wheezy 69 182.4 924 2.8 3.97 36.2 13.9
jessie 67 182.4 808 2.8 3.40 37.3 14.9

Release size

The above query plan can easily be translated to SQL queries and run on the Debsources
Dataset. Query results are shown in Table 4.6, and plotted in Figure 4.4 over time.

In absolute terms, Debian has scaled to a point where the Jessie stable release (2015)
contains more than 21 thousand packages, and almost 800 million lines of code. If we
look at the metrics evolution over time we notice that the �ve considered metrics exhibit
similar growth rates. Four of them (ctags, disk usage, �les, and SLOCs) are very highly
correlated and grow super-linearly, with an apparent slow down in the most recent stable
release. The other metric (package count) is more regular and almost perfectly linear.

This discrepancy gives some insights about Debian technical management. Packages
are the units at which software is maintained in Debian: each package is under the re-
sponsibility of a (group of) maintainer(s). A super-linear growth in the number of pack-
ages would need a super-linear growth in the number of maintainers to be sustainable
in the long-term or, alternatively, an increase in the amount of packages maintained by
the same people. While there is some evidence of the latter [133] on shorter time-frames
(about a decade) than the one considered here (two decades), it also seems that Debian is
focusing on sustainable size increases rather than trying to package every available FOSS
product bearing the risk of stretching its forces too thin.

Package size

Thanks to the mapping between metrics and packages, we can also study the distribution
of package sizes in di�erent Debian releases: it is plotted in Figure 4.5 for selected
releases. Averages, medians, and maximums of selected metrics over packages are given
in Table 4.7.

Increasingly, more and more very large packages are present in Debian: in Jessie the
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Figure 4.5: Size of packages per distribution (measured in SLOC, y-axis). Each integer in
the x-axis represents one package. E.g., in Jessie � 7500 packages have sizes less or equal
to 1k SLOC, while � 20000 packages have sizes less or equal to 100k SLOC.

chromium-browser and linux packages have, respectively, more than 15M and 12M SLOC.
When Hamm was released its biggest package was xfree86, with �only� 1.2M SLOC. At the
same time the per-release averages of package size are going up, whereas medians are
going down. Overall it appears that: i) smaller and smaller packages are getting added
to Debian, ii) larger and larger packages are getting added too; with (ii) dominating more
and more the total size of releases.

A possible explanation for (i) comes from the packaging of relatively new software
ecosystems that are increasingly releasing very small packages, e.g., Python's PyPi, R's
CRAN, Node.js' NPM, etc. (ii) on the other hand seems due to behemoth software packages
such as Web browsers, that are becoming self-contained work environments that need to
(re)implement more, and more complex, functionalities that were historically available
from separate packages.

4.3.2 Package maintenance

RQ ii is about the amount of changes that Debian users can expect when upgrading from
one stable release to another. As the pairs hname, versioni uniquely identify packages
throughout Debian history, and as those pairs are available in the package_info table, we
can leverage the Debsources Dataset to compare the sets of packages shipped by di�erent
Debian releases. Furthermore we can dissect package versions into their upstream and
Debian-speci�c parts, separating the debian-speci�c part of package versions from the
upstream one, to relate changes in the Debian archive to upstream ones.

The top-half of Table 4.8 summarizes the amount of changes between pairs of Debian
releases. Common packages are those that appear in both releases, in the same or dif-
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ferent versions. Unchanged packages appear in both releases with the same �upstream�
version, ignoring Debian-speci�c version changes (hence: unchanged � common).

It is interesting to note that 73 packages have remained at the same upstream version
between Hamm and Jessie, for more than 17 years, whereas their Debian revisions have
evolved. Among these packages we can �nd for instance netcat, a network tool that
hasn't changed upstream for that long, but seems to be still working just �ne in Debian
(otherwise it would have been removed from recent releases). This hints at the fact that
long lasting unchanged packages might have been abandoned upstream, but are still
maintained in Debian via patches applied by distribution maintainers.

The bottom-half of Table 4.8 focuses on upgrades from any given release n to the
immediately subsequent release n � 1, which is the most common upgrade path in De-
bian. The table shows the number of modi�ed packages between consecutive releases
(packages which exist in both releases, but in di�erent upstream versions), as well as the
proportion of source code �les updated in these packages. The latter can be computed
using the already discussed mapping between �les and packages, together with either
SHA1 or SHA256 checksums, both available in the �les table.

The percentage of common and unchanged packages with respect to the previous
release oscillates around 87% (common) and 43% (unchanged) with low variance. This
suggests that Debian users experience high stability in terms of which packages are avail-
able across releases (almost 90%), as well as a steady �ow (around 60%) of new upstream
releases that are incorporated by Debian maintainers. The number of changed �les per
package on the other hand gives insights into how much new upstream releases touch
the actual source code that form packages. This measure is also pretty stable across all
Debian releases, ranging between 54% and 67%. Note however that this does not tell us
how much individual �les have been changed, only how many of them have: bumping
copyright year in a �le header or rewriting the �le from scratch will still account for one
source �le change. More precise evaluations of �how much� source code has changed
can be performed leveraging TLSH hashes, that are readily available in the Debsources
Dataset as well.

4.3.3 Programming language popularity

To address RQ iii (programming language popularity) we can simply aggregate per-package
�rst, and per-release then, the SLOC counts available in the metrics

The evolution of programming languages in Debian, as computed by sloccount, is
presented in Table 4.9 and plotted in Figure 4.6 and 4.7. In both cases we restrict pre-
sented results to the most popular languages, using the Jessie release as a reference. Fig-
ure 4.6 shows the evolution of language popularity in absolute SLOCs, while Figure 4.7
shows the proportion over release size measured in SLOC.

Results show that C has always been and still is the dominant language in Debian,
since a big part of the core operating system (the Linux kernel, the GNU suite, etc) is
written in C. However, while the absolute amount of C code has been steadily increasing,
its proportion over the total has been decreasing since Slink (1999). Other languages, and
most notably C++, are getting more and more relevant. The proportion of C code seems
to have been stable for the past 3 releases though, at about 41% of the total.
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Figure 4.6: Evolution of the most popular (top-6 plus other) programming languages in
Debian by total number of SLOC per release.
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Table 4.9: Most popular programming languages in Debian releases, in MSloc. Numbers
between parentheses represent percentage of total. (Quantities < 0:1 have been omitted
and replaced by � 0.)

Release total ada ansic asm cpp erlang

hamm 35 0.24 (0.68) 27 (77) 0.39 (1.1) 1.9 (5.5) NA (NA)

slink 52 0.26 (0.51) 4.5 (78) 0.64 (1.2) 3.0 (5.7) NA (NA)

potato 69 0.42 (0.61) 49 (7.6) 0.57 (0.83) 5.8 (8.5) 0.21 (0.30)

woody 15 0.58 (0.41) 94 (67) 2.6 (1.9) 15 (1.4) � 0 (� 0)

sarge 21 1.1 (0.53) 120 (56) 2.8 (1.3) 33 (16) � 0 (� 0)

etch 270 0.76 (0.28) 140 (53) 4.5 (1.6) 46 (17) 0.69 (0.25)

lenny 330 0.85 (0.26) 160 (49) 4.1 (1.2) 64 (19) 0.82 (0.25)

squeeze 440 1.3 (0.29) 210 (46) 4.8 (1.1) 96 (22) 1.3 (0.28)

wheezy 640 1.6 (0.25) 290 (46) 8.2 (1.3) 150 (23) 1.6 (0.25)

jessie 780 1.8 (0.23) 360 (46) 1.5 (1.3) 180 (23) 1.8 (0.23)

Release f90 fortran haskell java lisp

hamm � 0 (� 0) 0.70 (2.0) NA (NA) � 0 (0.17) 0.11 (0.32)

slink � 0 (� 0) 1.0 (2.0) � 0 (� 0) 0.13 (0.25) 2.5 (4.8)

potato � 0 (� 0) 1.4 (2.1) � 0 (� 0) 0.27 (0.40) 3.4 (4.9)

woody � 0 (� 0) 2.3 (1.6) 0.28 (0.20) 1.4 (1.0) 5.1 (3.7)

sarge � 0 (� 0) 2.9 (1.4) 0.98 (0.47) 4.0 (1.9) 6.9 (3.3)

etch � 0 (� 0) 2.1 (0.76) 0.58 (0.21) 6.1 (2.2) 7.2 (2.6)

lenny 0.29 (� 0) 2.3 (0.68) 0.67 (0.20) 18 (5.4) 8.1 (2.4)

squeeze 0.76 (0.17) 2.5 (0.56) 0.93 (0.21) 27 (6.1) 9.7 (2.2)

wheezy 1.1 (0.17) 8.2 (1.3) 1.6 (0.25) 44 (7.0) 8.8 (1.4)

jessie 7.5 (0.95) 9.7 (1.2) 2.0 (0.25) 50 (6.3) 11 (1.4)

Release make�le ml objc pascal perl python

hamm 2.3 (6.7) � 0 (0.26) � 0 (0.16) 0.17 (0.49) � 0 (� 0) 0.49 (1.4)

slink 0.15 (0.28) � 0 (0.11) 0.22 (0.43) � 0 (0.10) 0.79 (1.5) 0.20 (0.39)

potato 0.21 (0.31) 0.15 (0.22) 0.41 (0.60) 0.31 (0.45) 1.4 (2.0) 0.36 (0.52)

woody 0.37 (0.26) 0.38 (0.27) 0.55 (0.39) 0.43 (0.31) 3.0 (2.1) 1.5 (1.1)

sarge 0.55 (0.26) 0.76 (0.36) 0.76 (0.36) 1.4 (0.65) 6.3 (3.0) 4.4 (2.1)

etch 0.68 (0.25) 1.3 (0.47) 1.0 (0.37) 1.1 (0.41) 8.1 (3.0) 6.5 (2.4)

lenny 0.75 (0.23) 1.8 (0.55) 1.1 (0.32) 0.87 (0.26) 9.4 (2.8) 1.1 (3.0)

squeeze 0.69 (0.16) 2.6 (0.59) 1.2 (0.27) 3.8 (0.84) 13 (2.9) 16 (3.5)

wheezy 0.66 (0.10) 3.8 (0.59) 1.7 (0.26) 4.4 (0.69) 18 (2.8) 25 (3.9)

jessie 0.72 (� 0) 4.1 (0.52) 1.9 (0.25) 5.5 (0.70) 20 (2.5) 35 (4.5)

Release php ruby sh sql tcl yacc

hamm � 0 (� 0) � 0 (� 0) 0.92 (2.6) � 0 (� 0) 0.35 (1.0) 0.19 (0.54)

slink � 0 (� 0) � 0 (� 0) 1.5 (2.9) � 0 (� 0) 0.50 (0.97) 0.25 (0.48)

potato � 0 (� 0) � 0 (� 0) 3.3 (4.8) � 0 (� 0) 0.67 (0.97) 0.32 (0.47)

woody 0.58 (0.41) � 0 (� 0) 9.5 (6.8) � 0 (� 0) 1.2 (0.86) 0.45 (0.32)

sarge 1.8 (0.87) 0.46 (0.22) 21 (1.2) � 0 (� 0) 2.1 (1.0) 0.56 (0.26)

etch 3.0 (1.1) 1.2 (0.45) 31 (12) 0.51 (0.19) 1.7 (0.64) 0.65 (0.24)

lenny 4.0 (1.2) 2.0 (0.61) 33 (9.9) 0.66 (0.20) 1.9 (0.58) 0.67 (0.20)

squeeze 4.7 (1.1) 4.3 (0.96) 38 (8.6) 1.5 (0.34) 2.5 (0.55) 0.81 (0.18)

wheezy 5.8 (0.92) 4.2 (0.66) 42 (6.6) 2.4 (0.38) 2.6 (0.41) 1.0 (0.16)

jessie 8.1 (1.0) 5.2 (0.66) 49 (6.2) 3.9 (0.49) 3.1 (0.40) 1.2 (0.15)
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Table 4.10: Median �le size (in SLOC) per language for the most popular languages.

Release ada ansic asm cpp erlang f90 fortran haskell java lex lisp

hamm 40 69 26 62 - 47 67 - 44 180 130

slink 38 68 43 60 - 11 61 12 36 190 120

potato 40 71 34 57 170 11 73 44 34 170 120

woody 47 86 75 64 42 16 81 36 37 210 140

sarge 47 79 40 66 43 38 89 37 43 180 120

etch 43 80 32 64 210 61 79 57 46 170 120

lenny 42 79 25 61 200 89 78 44 44 180 130

squeeze 45 76 20 62 160 96 76 58 45 190 120

wheezy 47 80 23 66 130 98 110 32 47 190 110

jessie 38 75 21 65 110 79 96 39 47 210 110

Release make ml objc pascal perl php python ruby sh sql tcl yacc

hamm 43 26 150 140 62 � 0 59 � 0 20 19 87 520

slink 42 22 120 12 66 � 0 61 � 0 23 16 92 510

potato 42 32 140 63 63 19 68 31 23 17 97 600

woody 46 35 170 72 61 45 65 31 27 16 80 320

sarge 47 44 160 92 63 39 60 38 35 11 94 320

etch 47 50 150 300 70 46 59 45 38 11 92 320

lenny 44 49 150 230 64 46 58 42 39 11 84 320

squeeze 32 50 140 84 56 44 59 38 37 26 69 320

wheezy 15 48 130 79 58 39 60 36 33 20 72 340

jessie 11 43 110 88 53 37 62 32 34 20 65 350

Without a comprehensive reference base for FOSS source code as a whole12 it is im-
possible to determine how representative these numbers are of out-of-Debian trends. But
the comparison with programming languages trends on other platforms (e.g., GitHub [101])
is striking. Whereas GitHub developers seem to be �ocking to JavaScript, Java, Ruby,
and PHP, a foundational operating system like Debian is still prominently composed of
system-level languages like C and C++.

File size

We can drill down to investigate median �le sizes (in SLOC) per language and their evolu-
tion over time. Detecting the programming language of each source �le can be done in a
number of ways; in the following we have relied on language detection as performed by
sloccount.

Table 4.10 presents per release and per language median �le sizes for the most pop-
ular languages. For the top-6 of them, their evolution over time is plotted in Figure 4.8.

Most of the studied languages are shown to be relatively stable in their median �le
size over time. This is the case for mainstream languages such as C, C++, and Java, as
well as several others such as Perl and Lisp (not plotted). Median �le size also appears to
be a rather intrinsic characteristic of a programming language, that is not really a�ected
by how popular the language is in a large FOSS ecosystem.

12we will get back to this problem in Chapter 5, as it is something that Software Heritage can help

addressing
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Figure 4.8: Evolution over time of the median �le size (in SLOC) per language, based on
�le extension.

4.3.4 Debian licensing over time

One of the most important characteristics that de�ne a FOSS component is its license.
It is very important to know the license of a package, as it determines the rights and
obligations of anybody wanting to reuse and further distribute the software (either as
a component or as a stand-alone product). Since the conception of Debian in 1993 the
FOSS license landscape has evolved signi�cantly. Many licenses released new versions,
others have been created, and some ceased to be used. The long history of Debian cre-
ates a perfect subject to evaluate how FOSS licenses use has evolved over time, and the
popularity of licenses currently in use.

Creating a census of licenses used in a large software distribution is not an easy task
though [99]. The �rst challenge is how to identify the licenses of individual �les. Then,
one needs to consider the overall licenses of aggregate/composite software bundles, such
as packages in the case of FOSS distributions, which is not necessarily the same of the
�les that compose it. In the following we focus on the license of individual �les. We do,
however, aggregate �le licenses by package in order to study license variability within
packages, answering RQ v. Finally, in order to answer RQ vi (how has license use evolved

in Debian over time?), we analyze the evolution of our answers to RQ iv (�le licensing)
and RQ v (source package licensing) across all Debian stable releases.

As automatic license identi�cation of a �le is still di�cult and error prone, we avoid
developing in house heuristics and rather resort to two state-of-the-art tools in license
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Table 4.11: Number of di�erent licenses identi�ed in each release.

Release Licenses

hamm 281
slink 326
potato 437
woody 620
sarge 949
etch 1125
lenny 1352
wheezy 1879
jessie 2039

identi�cation�ninka [73] and fossology [79]�whose results when applied to the entire
Debian corpus are readily available from the Debsources Dataset, in the licenses table. For
the sake of brevity in the following we only discuss fossology results; also, we ignore
the licenses of all �les not recognized as being source code, such as binary �les.

Individual �le licensing

Table 4.11 shows the total amount of di�erent licenses identi�ed for each release in the
dataset. As it can be observed, the number of identi�ed licenses is very large and has
grown an order of magnitude across Debian history. Part of the reason is that, when a
�le is licensed under two or more licenses, such combination of licenses is considered
to be a di�erent license by license identi�cation tools. For example, in several Debian
releases Firefox is licensed under a combination of the MPL, GPL-2.0, and LGPL-2.1. In
most releases, few licenses account for most of the identi�ed licenses: the top 50 most
frequently identi�ed licenses (including �No_license_found�) correspond to 94�97% of
release source �les.

Table 4.12 shows the top identi�ed licenses in the oldest and newest Debian releases
available in the dataset. As it can be observed, most frequently �les do not have a license
that fossology can directly identify. Figure 4.9 shows the evolution over time of the
most common identi�ed licenses. As it can be seen, the most used licenses have been
the GPL family, with recent increases for Apache-2.0 and the Mozilla Public License (MPL).

Package licensing and variability

In order to address RQ v (source package licensing), it is not practical to simply report
each and every license found in every package. Instead, we develop several metrics, each
one highlighting di�erent aspects of the licensing of source code �les belonging to a
given package:

� How detectable are the licenses of the package source �les? For this purpose we
compute the proportion of �les for which a license was identi�ed over the total
number of �les. fossology reports No_license_found when it does not �nd the
license of a given �le, and Unclassi�edLicense when it �nds one it does not know.
Hence we consider a �le to have an identi�able license if fossology reports a license
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Table 4.12: Top identi�ed licenses in two selected releases.

Release License Files Prop.(%) Accum. (%)

Hamm No_license_found 72,533 47.5 47.5
GPL-2.0+ 22,983 15.1 62.6
LGPL-2.0+ 14,608 9.6 72.2
BSD-style 3,667 2.4 74.6
See-doc(OTHER) 2,490 1.6 76.2
MIT-style 2,457 1.6 77.8
Unclassi�edLicense 2,359 1.5 79.4
GPL 2,329 1.5 80.9
BSD-4-Clause-UC 2,112 1.4 82.3
See-�le 1,938 1.3 83.5
X11 1,887 1.2 84.8

Jessie No_license_found 1,011,088 29.7 29.7
GPL-2.0+ 432,482 12.7 42.4
Apache-2.0 168,655 5.0 47.4
GPL-3.0+ 160,233 4.7 52.1
GPL-2.0 148,364 4.4 56.4
LGPL-2.1+ 141,747 4.2 60.6
BSD 115,135 3.4 64.0
LGPL-2.0+ 87,153 2.6 66.5
BSD-3-Clause 72,634 2.1 68.7
MIT 71,022 2.1 70.8
EPL-1.0 66,755 2.0 72.7

other than No_license_found and Unclassi�edLicense. The proportion of �les without

a license is the number of source �les without an identi�able license divided by the
total number of source �les.

� How many di�erent licenses can be found in a given package? In this case we ignore
�les without an identi�able license.

� What is the dominant license identi�ed in each package? We de�ne such a license
as the most commonly identi�able license, counted as the number of �les it applies
to. If two or more licenses are equally frequent, all of them are considered to be
equally dominant.

� How much diversity is there in the licenses of the �les of a package? The more
licenses a package contains, the larger it will be the problem space of determining
its license as an aggregate�due to how license compatibility works the problem
will not necessarily be more di�cult, but more options will have to be considered.

To establish license diversity within a package we use Wilcox's Analog of the Mean
Di�erence (MNDif). It represents the average of the absolute di�erences of all the
possible pairs of license frequencies. Intuitively, it is the equivalent of a GINI coef-
�cient, but applicable to categorical data. A value of 0 implies that all �les have the
same license, while a value of 1 that all licenses are equally represented, i.e., each
license is used by the same number of �les.
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Figure 4.9: Evolution of the number of �les with a given license, as detected by
fossology.

When aggregating by package, di�erent licensing patterns appear. Figure 4.10 shows
box plots with the proportion of �les that do not have a detectable license. The median
number of source �les without an identi�able license has �uctuated between 50% and
60%, showing the same pattern over time. It is important to mention that sloccount is
relatively aggressive on what it considers source code. For example, sloccount considers
Make�les and con�guration and installation scripts to be source code; these �les do not
normally include a license header. For this reason we also include the box plots for
C (Figure 4.11) and Java �les (Figure 4.12). As it can be seen, their current median is
below 5% in both cases and, over time, the proportion of �les without a license keeps
dropping. It seems that, at least from the point of view of fossology and for mainstream
programming languages, FOSS development practices (and in particular writing down
license annotations) are evolving in a way that makes automatic license detection easier.
There is still plenty of room for improvement though.

The number of licenses used per package is generally very small, as shown in Fig-
ure 4.13. The median is 2; the third quartile has decreased from 3 to 2 licenses in recent
releases (taking into account identi�able licenses only).

With regard to the chosen licenses, we present in Figure 4.14 the evolution of licenses
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Figure 4.10: Box plots of the proportion of �les with no identi�able license.
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Figure 4.11: Box plots of the proportion of C �les with no identi�able license.
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Figure 4.12: Box plots of the proportion of Java �les with no identi�able license.
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Figure 4.13: Box plots with the number of di�erent identi�ed licenses per package.
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Figure 4.14: Evolution of the number packages that use a license at least once.

that occur at least once in a package. As it can be seen variants of the GPL licenses
are still, by far, the most commonly used, and in particular versions 2.0 and 2.0+ (i.e.,
�version 2 or any later version�).

Figure 4.15 shows the evolution of dominant licenses in Debian packages, according
to our de�nition. The top license is, once again, GPL-2.0+, followed by: Artistic-1.0/GPL
dual-licensing (the licensing choice of Perl and most Perl libraries), GPL-3.0+, and Apache-
2.0.

With regard to the variability of licenses in packages, we present in Figure 4.17 the
box plot of the MNDif of the licenses per package in each release. As it can be seen, most
packages have very small license variability, and license diversity seems to be decreasing
over time. This might be due to new, popular programming language ecosystems that
manage to impose, either with legal agreements or simply via �bandwagon� e�ects, a spe-
ci�c license to all the new modules and libraries that will be developed in the language.

Figure 4.16 shows a scatter plot showing MNDif vs the number of source �les in a
package, for the most recent Debian release (Jessie). A pattern stands out: the more
source �les in a package, the less license diversity. This might seem counter intuitive
at �rst, because more �les should give more opportunities for reusing code from other
FOSS projects and hence adopt a new license, increasing diversity. Our intuition is that
such aspect is countered by the fact that large, well-established FOSS projects tend to
be governance-heavy, cautious when importing external code in their own repositories
(e.g., due to long-term maintainability concerns), if not simply used to impose a speci�c
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Figure 4.15: Evolution of the number of packages that have a given dominant license.
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Figure 4.16: Each point represents a package in Jessie (version 8): its MNDif vs number
of source �les. As it can be seen, smaller packages tend to have more variability in their
licensing.
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Figure 4.17: Box plots showing the MNDif of packages per release. A MNDif of zero means
no variability, while 1 means that every license in the package is equally represented.

license as a requirement for accepting external code contributions.

To the best of our knowledge this study, originally presented in [30], is the �rst on
FOSS license popularity at this scale, and in particular over such a long time frame. While
there exist reports on the Web about FOSS license popularity, and most notably from
Black Duck,13 such reports do not disclose the adopted methodology nor are clear on the
underlying sample of observed FOSS projects, making them non-reproducible. Further-
more they do not properly document how licenses are counted, which is an important
and tricky aspect of surveying FOSS license use [99].

4.3.5 Validation

Looking back at this case study we can attempt a self-assessment of the advantages
induced by using the Debsources Dataset as a starting point. Using Debsources Dataset
metadata (the database) we have been able to study Debian growth over time as well
as the correlation and distribution of the chosen metrics. We have also been able to
get insights on software engineering practices such as package maintenance and study
over time the popularity of programming languages and software licenses, aggregating
at di�erent granularities (�le, package, release).

Without the Debsources Dataset the starting point of the case study would have nec-
essarily been retrieving and unpacking all Debian releases, followed by running all mea-
surement/mining tools on the obtained source code�incurring the costs of the needed
storage and computation resources of course (documented in Section 4.2.2). None of this

13https://www.blackducksoftware.com/top-open-source-licenses

https://www.blackducksoftware.com/top-open-source-licenses


4.3. Case study: long-term macro-level evolution 85

has been necessary to run our case study. More importantly than savings in computa-
tional resources, though, the Debsources Dataset relieves scholars from the responsibil-
ity of �guring out which-tools-to-use-when in order to mine Debian-speci�c data sources;
the starting point becomes a relatively straightforward ER data model.

A counter argument here is that the metrics and information we were interested in
were all already available in the dataset; unsurprisingly, given we initially included them
in the dataset for our own needs. The �rst response to this is that a signi�cant part of
the metadata included in the dataset is intrinsic to either how Debian works (e.g., Debian
release information) or the nature of the referenced objects (e.g., �le size, checksums).

Second, when it comes to mining new facts that are not included in the Debsources
Dataset, the source code part of the dataset and how it is organized o�ers many bene�ts.
Most notably it saves space; thanks to deduplication the required disk space is cut by ap-
proximately 50%. As many kind batch source code analyses are I/O bound, an equivalent
saving in processing time should generally be expected as well.

It is also reasonable to expect that newly mined facts from Debian source code will
need to be correlated, one way or another, with metadata that are available in this dataset.
The Debsources Dataset alleviates the need of having to mine them over and over again. It
is at the border of source code mining and related metadata that the Debsources Dataset
o�ers the most time- and space-saving opportunities for scholars of empirical software
engineering, and FOSS in particular.



Chapter 5

Scaling to the entire software

commons

This chapter is based on [57].

The Debsources experiment showcased some of the bene�ts of curating collections of
FOSS artifacts and related metadata, so that researchers can work on them without having
to go through the potentially error-prone heavy-lifting of assemblying them over and over
again. According to several code metrics the Debsources Dataset can be considered �big�,
especially for FOSS software engineering standards. But if we put it in perspective of the
entire corpus of FOSS the dataset is not that big; it �only� contains the entire history of
Debian, no matter how large relevant the distribution is for distribution standards. As
such, researchers can rely on the Debsources Dataset to draw general conclusions about
FOSS only under the hypothesis that Debian is a representative sample of it. Such an
hypothesis needs to be assessed on an experiment-by-experiment basis�sometimes it
will be valid, others not.

Furthermore, Debsources is suitable for analyses of FOSS that stops at the macro-
level [80], where the observable evolution points of software components are releases
of individual components as shipped by curated collections like Debian. Sub-release
evolution, e.g., changes performed during software development as captured by version
control systems, are not observable at the Debsources level. In a sense, Debsources
covers the spatial dimension of FOSS, stopping short of the entire space, and includes
only a fairly coarse-grained view of its temporal dimension.

One can then wonder whether we can do any better in terms of coverage, while re-
taining the same good characteristics of Debsources�uniform organization, traceability,
live updates with minimum lag, etc. Put it di�erently, how far can we go in terms of FOSS
coverage while still preserving the good characteristics that would enable researchers to
use such hypothetical source code archive as the basis for any empirical study targeting
FOSS? Furthermore, can we at the same time increase signi�cantly the granularity of the
�snapshots� that are taken of the FOSS corpus?

Based on the work we have conducted over the past few years on the Software Her-
itage project [57],1 we believe that we can go as comprehensive as it gets, that is, archiving

1https://www.softwareheritage.org
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the entire body of FOSS, in source code form, while still retaining the good properties of
Debsources and also capture every time-indexed, publicly available snapshot of its source
code. More precisely we can archive the entire software commons�i.e., the whole body of
software that is publicly available in source code form and that can be reused and mod-
i�ed with minimal restrictions. The software commons is a growing part of the broader
information commons [100] which, of course, the raise of Free/Open Source Software
(FOSS) has contributed enormously to nurture over the past decades [142].

In spite of its growing relevance for the industry, little action seem to have been put
into large-scale archival and long-term preservation of FOSS source code. Comprehensive
archives are available for a variety of digital objects, pictures, videos, music, texts, web
pages, even binary executables [89]; but source code in its own merits has not yet been
given the status of �rst class citizen in the digital archiving landscape.

In this �nal chapter we present the design and implementation of Software Heritage,
an ambitious research initiative to collect, organize, preserve, and share the entire cor-
pus of publicly accessible software source code. The project�co-founded by this thesis
author and Roberto Di Cosmo�has been announced publicly for the �rst time in June
2016. Software Heritage is meant to cater for several use cases, one of which is large-
scale empirical software engineering research on FOSS in the spirit of our research work
as described in previous chapters. Other use cases�preservation of our cultural her-
itage as embedded in FOSS source code, industrial traceability of FOSS components, and
curation of artifacts for computational education�are equally important and have been
taken into accounts as design requirements.

5.1 Requirements

5.1.1 On the need of archiving FOSS source code

Despite the importance of FOSS in the development of science, industry, and society at
large, it is easy to see that we are collectively not taking care of it properly. We brie�y
outline below some of the reasons why this is the case.

The FOSS development diaspora

With the meteoric rise of FOSS, millions of projects are now developed on publicly acces-
sible code hosting platforms [144], such as GitHub, GitLab, SourceForge, Bitbucket, etc.
Software projects also tend to move among those platforms over their lifetime, following
current trends or the changing needs and habits of their developer community.

FOSS distribution channels are no less scattered. Some developers use code hosting
platforms also for distribution. Other communities have their own archives organized
by software ecosystems (e.g., CPAN, CRAN, . . . ). Then there are all FOSS distributions
(Debian, Fedora, . . . ) and independent package management systems (npm, pip, OPAM,
. . . ) which also retain copies of source code released elsewhere.

It is hence very di�cult to appreciate the extent of the software commons as a whole:
we direly need a single entry point�a modern �great library� of source code�where



88 Scaling to the entire software commons

one can �nd and study, for research purposes or otherwise, the evolution of all publicly
available source code, independently of its development and distribution platforms.

The fragility of source code

We have known for a long time that digital information is fragile: human error, material
failure, �re, hacking, can easily destroy valuable digital data, including source code. This
is why carrying out regular backups is important. For users of code hosting platforms
this problem may seem a distant one: the burden of �backups� is not theirs, but the
platforms' one. As previously observed [162], though, most of these platforms are tools
to enable collaboration and record changes, but do not o�er any long term preservation
guarantees: digital contents stored there can be altered or deleted over time.

Worse, the entire platform can go away, as we learned the hard way in 2015, when
two very popular FOSS development platforms, Gitorious [76] and Google Code [87] an-
nounced shutdown. Over 1.5 million projects had to �nd a new accommodation since, in
an extremely short time frame as regards Gitorious. Others have followed suit in subse-
quent months, including Microsoft's own forge CodePlex in 2017 [27]. This shows that
the task of long term preservation cannot be assumed by entities that do not make it a
stated priority: for a while, preservation may be a side e�ect of their missions, but in the
long term it won't be.

We lack a comprehensive archive which undertakes this task, ensuring that if source
code disappears from a given code hosting platform, or if the platform itself disappears
altogether, the code will not be lost forever.

The very large telescope of source code, or lack thereof

With the growing importance of software, it is increasingly more important to provide the
means to improve its quality, safety, and security properties. Sadly we lack a research
instrument to analyze the whole body of publicly available source code.

To build such a �very large telescope� of source code�in the spirit of mutualized
research infrastructures for physicists such as the Very Large Telescope [158] in the
Atacama Desert or the Large Hadron Collider [85] in Geneva�we need a place where all
information about software projects, their public source code, and their development
history is made available in a uniform data model. This will allow to apply a large variety
of �big code� techniques to analyze the entire corpus, independently of the origin of each
source code artifact, and of the many di�erent technologies currently used for hosting
and distributing source code.

5.1.2 Goals

In order to address these three challenges, in June 2016 we unveiled the Software Her-
itage project, with initial support by Inria, with the stated goal to collect, organize, pre-

serve, and make easily accessible all publicly available source code (a strict superset of all
FOSS), independently of where and how it is being developed or distributed. The aim is to
build a common archival infrastructure, supporting multiple use cases and applications
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(see Section 5.1.4), but all exhibiting synergies with long-term safeguard against the risk
of permanent loss of source code.

To give an idea of the complexity of the task, let's just review some of the challenges
faced by the initial source code harvesting phase, ignoring for the moment the many
others that arise in subsequent stages. First, we need to identify the code hosting places
where source code can be found, ranging from a variety of well known development
platforms to raw archives linked from obscure web pages. There is no universal catalog:
we need to build one!

Then we need to discover and support the many di�erent protocols used by code
hosting platforms to list their contents, and maintain the archive up to date with the
modi�cations made to projects hosted there. There is no standard, and while we hope to
promote a set of best practices for preservation �hygiene�, we must now cope with the
current lack of uniformity.

We must then be able to crawl development histories as captured by a wide variety
of version control systems [124]: Git, Mercurial, Subversion, Darcs, Bazaar, CVS, are just
some examples of the tools that need to be supported. Also, there is no grand unifying
data model for version control systems: one needs to be built.

To face such challenges, it is important that we computer scientist get directly in-
volved: source code is the DNA of our discipline and we must be at the forefront when it
comes to designing the infrastructure to preserve it in the very long term.

5.1.3 Core principles

Building the Software Heritage archive is a complex task, which requires long term com-
mitment. To maximize the chances of success, we based this work on solid foundations,
presented below as a set of core tenets for the project.

Transparency and FOSS

As stated by Rosenthal [134], in order to ensure long term preservation of any kind of
information it is necessary to know the inner workings of all tools used to implement
and run the archive. That is why Software Heritage develops and releases exclusively
FOSS components to build its archive�from user-facing services down to the recipes of
software con�guration management tools used for the operations of project machines.

According to FOSS development best practices, the development of Software Heritage
is conducted collaboratively on the project forge2 and development communications hap-
pen on publicly accessible media (IRC channels, mailing lists, etc).3

Replication all the way down

There is a plethora of threats, ranging from technical failures to mere legal or even eco-
nomic decisions, that might endanger long-term source code preservation. We know that

2https://forge.softwareheritage.org/
3https://www.softwareheritage.org/community/developers

https://forge.softwareheritage.org/
https://www.softwareheritage.org/community/developers
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they cannot be entirely avoided. Therefore, instead of attempting to create a system
without errors, we design a system which tolerates them.

To this end, we will build replication and diversi�cation in the system at all levels:
a geographic network of mirrors, implemented using a variety of storage technologies,
in various administrative domains, controlled by di�erent institutions, and located in
di�erent jurisdictions. Releasing our own code as FOSS is synergistic with this goal, as it
expected to further ease the deployment of mirrors by a variety of actors.

Multi-stakeholder and non-pro�t

Experience shows that a single for-pro�t entity, however powerful, does not provide suf-
�cient durability guarantees in the long term. We believe that for Software Heritage it is
essential to build a non-pro�t foundation that has as its explicit objective the collection,
preservation, and sharing of the entire software commons.

In order to minimise the risk of having a single points of failure at the institutional
level, this foundation needs to be supported by various partners from civil society, in-
dustry, and governments, and must provide value to all areas which may take advantage
of the existence of the archive, ranging from the preservation of cultural heritage to
research, from industry to education.

The foundation should be run transparently according to a well-documented gover-
nance and should be accountable to the public by reporting periodicly about its activities.

No a priori selection

A natural question that arises when building a long term archive is what should be
archived in it among the many candidates available. In building Software Heritage we
have decided to avoid any a priori selection of software projects, and rather archive
them all. There are two main reasons underlying this design principle, one technical and
one philosophical.

The �rst reason behind this choice is pragmatic: we have the technical ability to
archive every software project available. Source code is usually small in comparison to
other digital objects, information dense, and expensive to produce, unlike the millions of
(cat) pictures and videos exchanged on social media. Additionally, source code is heavily
redundant/duplicated, allowing for e�cient storage approaches (see Section 5.2).

Second, thanks to FOSS software is nowadays massively developed in the open, so
we get access to the history of software projects since their very early phase. This is a
precious information for understanding how software is born and evolves and we want
to preserve it for any �important� project. Unfortunately, when a project is in its infancy
it is extremely hard to know whether it will grow into a king or a peasant. Consider PHP:
when it was released in 1995 by Rasmus Lerdorf as PHP/FI (Personal Home Page tools,
Forms Interpreter), who would have thought that it would have grown into the most
popular Web programming language 20 years later?

Hence our approach to archive everything available: important projects will be pointed
at by external authorities, emerging from the mass, less relevant ones will drift into obliv-
ion.
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Source code �rst

Ideally, one might want to archive software source code �in context�, with as much in-
formation about its broader ecosystem: project websites, issues �led in bug tracking
systems, mailing lists, wikis, design notes, as well as executable software binaries built
for various platforms and the physical machines and network environment on which the
software was run, allowing virtualization in the future. In practice, the resources needed
for doing all this would be enormous, especially considering the no a priori selection

principle, and we need to draw the scope line somewhere.

Software Heritage will archive the entire source code of software projects, together
with their full development history as it is captured by state-of-the-art version control

systems (or �VCS�). On one side, this choice allows to capture relevant context for future
generations of developers�e.g., VCS history includes commit messages, precious infor-
mation that detail why speci�c changes have been made to a given software at a given
moment�and is precisely what currently nobody else comprehensively archives. Archiv-
ing VCS, as opposed to component releases only, is what accounts for the much �ner
grained granularity on the temporal dimension of Software Heritage in comparison to
experiments like Debsources (Chapter 4).

On the other side, a number of other digital preservation initiatives are already ad-
dressing some of the other contextual aspects we have mentioned: the Internet Archive [89]
is archiving project websites, wikis, and web-accessible issue trackers; Gmane [77] is
archiving mailing lists; several initiatives aim at preserving software executables, like
Olive [111], the Internet Archive, KEEP [66], E-ARK [64], and the PERSIST project [161],
just to mention a few.

In a sense, Software Heritage embraces the Unix philosophy [132, 139] of doing one
thing and doing it well, focusing on source code archival only, where its contribution is
most relevant, and will go to great lengths to make sure that the source code artifacts
it archives are easy to reference from other digital archives, using state-of-the-art linked
data [24] technologies, paving the way to a future �semantic wikipedia� of software.

Intrinsic identi�ers

The quest for the �right� identi�er for digital objects has been raging for quite a while [18,
126, 162], and it has mainly focused on designing digital identi�ers for objects that are
not necessarily natively digital, like books or articles. Recent software development prac-
tices has brought to the limelight the need for intrinsic identi�ers of natively digital ob-
jects, computed only on the basis of their content as a sequence of raw bytes.

Modern version control systems like Git [34] for example no longer rely on arti�cial
opaque identi�ers that need third party information to be related to the software arti-
facts they designate. They use identi�ers that can be computed from, and veri�ed on,
the object itself and are tightly connected to it; we call these identi�ers intrinsic. The
SHA1 cryptographic hash [41] is the most used approach for computing them today. The
clear advantage of crypto-hard intrinsic identi�ers is that they allow to check that an ob-
tained object is exactly the one that was requested without having to involve third party
authorities.
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Intrinsic identi�ers also natively support integrity checks�e.g., you can detect alter-
ation of a digital object for which an intrinsic identi�ers was previously computed as a
mismatch between its (current) content and its (previous) identi�er�which is a very good
property for any archival system.

Software Heritage will use intrinsic identi�er for all archived source code. Pieces of
information that are not natively digital, such as author or project names, metadata, or
ontologies, non-intrinsic identi�er will also be used. But for the long term preservation of
the interconnected network of knowledge that is built natively by source code, intrinsic
identi�ers will be preferred.

Facts and provenance

Following best archival practices, Software Heritage will store full provenance informa-
tion, in order to be able to always state what was found where and when.

In addition, in order to become a shared and trusted knowledge base, we push this
principle further, and we will store only quali�ed facts about software. For example, we
will not store bare metadata stating that the programming language of a given �le is,
say, C++, or that its license is GPL3. Instead we will store quali�ed statements saying
that version 3.1 of the program pygments invoked with a given command line on this
particular �le reported it as written in C++; or that version 2.6 of the FOSSology license
detection tool, ran with a given con�guration (also stored), reported the �le as being
released under the terms of version 3 of the GPL license.

Minimalism

We recognize that the task that Software Heritage is undertaking is daunting and has
wide rami�cations. Hence we focus on building a core infrastructure whose objective
is only collecting, organizing, preserving, and sharing source code, while establishing
collaborations with any initiative that may add value on top or on the side of this infras-
tructure.

5.1.4 Use cases

A universal archive of software source code enables a wealth of applications in a variety
of areas, broader than preservation for its own sake. Such applications are relevant to the
success of the archive itself though, because long term preservation carries signi�cant
costs. Chances to meet them will be much higher if there are more use cases than just
preservation, as the cost may then be shared among a broader public of potential archive
users.

Cultural heritage

Software is everywhere: it powers industry and fuels innovation, it lies at the heart of the
technology we use to communicate, entertain, trade, and exchange, and is becoming a key
player in the formation of opinions and political powers. Software is also an essential
mediator to access all digital information [33] and is a fundamental pillar of modern
scienti�c research, across all �elds and disciplines [163]. In a nutshell, software either
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embodies a rapidly growing part of our cultural, scienti�c, and technical knowledge, or
is a strict requirement to access it.

Looking more closely, though, it is easy to see that the actual knowledge embedded in
software is not contained into executable binaries, which are designed to run on speci�c
hardware and software platforms and that often become, once optimized, incomprehen-
sible for human beings. Rather, knowledge is contained in software source code which is,
as eloquently stated in the very well crafted de�nition found in the GPL license [78], �the
preferred form [of a program] for making modi�cations to it [as a developer]�.

As such, source code is starting to be recognized as a �rst class citizen in the area
of cultural heritage, as a noble form of human production that needs to be preserved,
studied, curated, and shared. Source code preservation is also an essential component of
a strategy to defend against digital dark age scenarii [16] in which one might lose track
of how to make sense of digital data created by software currently in production.

Software Heritage will be at the forefront of the preservation of the part of our cultural
heritage that is embedded in software, as testi�ed by the agreement4 established between
Inria and UNESCO on source code preservation, whose concrete actions will be carried on
by Software Heritage.

Science

Big code research We have already discussed how the availability of a central reposi-
tory where all the history of public software development is made available in a uniform
data model will be a real asset for empirical software engineering and FOSS studies. It will
enable unprecedented big data analysis both on the code itself and the software develop-
ment process, unleashing a new potential for Mining Software Repository research [82].

Given its roots in the Debsources experience, even if its ambition was much more
modest, serving this use case will be a key focus of Software Heritage.

Reproducibility in computer science In the long quest for making modern scienti�c
results reproducible, and pass the scienti�c knowledge over to future generations of re-
searchers, the three main pillars are: scienti�c articles, that describe the results, the data
sets used or produced, and the software that embodies the logic of the data transforma-
tion, as shown in Figure 5.1.

Many initiatives have been taking care of two of these pillars, like OpenAire [121]
for articles and Zenodo [169] for data, but for software source code, researchers keep
pointing from their articles to disparate locations, if any, where their source code can
be found: web pages, development forges, publication annexes, etc. And it shows, given
the sad state of reproducibility in computer science when it comes to software artifacts,
whose causes seem to lie for a large part in poor software traceability and availability
practices [38, 74].

4http://fr.unesco.org/events/ceremonie-signature-du-partenariat-unescoinria-preservation-partage-

du-patrimoine-logiciel

http://fr.unesco.org/events/ceremonie-signature-du-partenariat-unescoinria-preservation-partage-du-patrimoine-logiciel
http://fr.unesco.org/events/ceremonie-signature-du-partenariat-unescoinria-preservation-partage-du-patrimoine-logiciel
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Figure 5.1: The scienti�c knowledge preservation trifecta

By providing a central archive for all publicly available source code, as well as a �de-
posit source code� service for scholars, Software Heritage will contribute a signi�cant
building block to the edi�ce of reproducibility in all �elds of science.

Industry

Industry is growing more and more dependant of FOSS components, which are nowadays
integrated in all kinds of products, for both technical and economic reasons. This tidal
wave of change in IT brought new needs and challenges: ensuring technical compatibility
among software components is no longer enough, one also needs to ensure compliance
with several software licenses, as well as closely track software supply chain, and bills
of materials to identify which speci�c variants of FOSS components were used in a given
product.

Software Heritage makes two key contributions to the IT industry that can be lever-
aged in software processes. First, Software Heritage intrinsic identi�ers can precisely
pinpoint speci�c software versions, independently of the original vendor or intermediate
distributor. This de facto provides the equivalent of �part numbers� for FOSS components
that can be referenced in quality processes and veri�ed for correctness independently
from Software Heritage (precisely because they are intrinsic).

Second, Software Heritage will provide an open provenance knowledge base, keep-
ing track of which software component�at various granularities: from project releases
down to individual source �les�has been found where on the Internet and when. Such a
knowledge base can be referenced and augmented with other software-related facts, such
as license and quali�cation information, and used by software build tools and processes
to cope with current development challenges. Also, the previously discussed �deposit
source code� service can also be leveraged by industries as a mechanism to publish com-
plete and corresponding source code (CCSC) [78] bundles for the FOSS components they
ship as part of their products, mutualizing the cost of maintaining such a service with
other IT players.

The growing support and sponsoring for Software Heritage coming from industry
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players like Microsoft, Huawei, Nokia, and Intel provides preliminary evidence that this
potential is being understood.

Education

In library science a �sourcebook� is a collection of writings on a given topic that is often
used in education as teaching support material for classes on that topic. In computer
science education and, more generally, programming classes for the large public, the
use of sourcebooks covering real source code is still very scarce in comparison to other
disciplines.

Software Heritage can provide the solid basis on top of which organize curation of
programming sourcebooks. Such an e�ort will allow to relate algorithms, data structure,
and other programming techniques, often presented only in pseudo code for the sake of
abstraction, to their real world implementations in a variety of languages. Doing so will
allow students to see both faces�theory and practice�of what they are being taught.

Furthermore, it will be possible to track and follow the evolution of those implemen-
tations through time, going back several decades to when the studied techniques were
�rst introduced, thanks to the native support of Software Heritage for software devel-
opment history. While doing so, students will be able to appreciate metadata that add
values to learning, such as developer comments as captured by VCS.

This of course won't happen by itself. It will need collective work by motivated edu-
cators who can curate this work in the same style and spirit of the semantic wikipedia
mentioned in Section 5.1.3. Still, once done, the results of this work will be permanent,
as all corresponding software artifacts are, by construction, preserved in the Software
Heritage archive.

5.2 Data model

In any archival project the choice of the underlying data model�at the logical level,
independently from how data is actually stored on physical media�is paramount. The
data model adopted by Software Heritage to represent the information that it collects
is centered around the notion of software artifact, i.e., any piece of source code-related
information that is extracted from software development and distribution platforms, is
meaningful on its own right, and is addressable.

It is important to notice that, according to our principles, we must store with every
software artifact full information about where it has been found. Therefore we start the
description of our data model below by detailing the nature of provenance information
as captured by Software Heritage.

5.2.1 Source code hosting places

Software Heritage relies on a curated list of source code hosting places to crawl as starting
point to �nd software artifacts to archive.

The most common entries we expect to place in such a list are popular collabora-
tive development forges (e.g., GitHub, Bitbucket), package manager repositories that host
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source packages (e.g., CPAN, npm), and FOSS distributions (e.g., Fedora, FreeBSD). But we
may of course allow also more niche entries, such as URLs of personal or institutional
project collections not hosted on major forges.

While currently entirely manual, the curation of such a list might easily be semi-
automatic, with entries suggested by fellow archivists and/or concerned users that want
to notify Software Heritage of the need of archiving speci�c pieces of endangered source
code. This approach is entirely compatible with Web-wide crawling approaches: Web
crawlers capable of detecting the presence of source code might enrich the list. In both
cases the list will remain curated, with (semi-automated) review processes that will need
to pass before a hosting place starts to be used.

5.2.2 Software artifacts

Once the hosting places are known, they will need to be periodically looked at in order
to add to the archive missing software artifacts. Which software artifacts will be found
there?

In general, any software distribution mechanism will host multiple releases of a given
software at any given time. For VCS this is the natural behaviour; for software packages,
while a single version of a package is just a snapshot of the corresponding software
product, one can often retrieve both current and past versions of the package from its
distribution site.

By reviewing and generalizing existing VCS and source package formats, we have
identi�ed the following recurrent artifacts as commonly found at source code hosting
places. They form the basic ingredients of the Software Heritage archive:5

�le contents (AKA �blobs�) the raw content of (source code) �les as a sequence of bytes,
without �le names or any other metadata. File contents are often recurrent, e.g.,
across di�erent versions of the same software, di�erent directories of the same
project, or di�erent projects all together.

directories a list of named directory entries, each of which pointing to other artifacts,
usually �le contents or sub-directories. Directory entries are also associated to
arbitrary metadata, which vary with technologies, but usually includes permission
bits, modi�cation timestamps, etc.

revisions (AKA �commits�) software development within a speci�c project is essentially
a time-indexed series of copies of a single �root� directory that contains the entire
project source code. Software evolves when a developer modi�es the content of one
or more �les in that directory and record their changes.

Each recorded copy of the root directory is known as a �revision�. It points to a fully-
determined directory and is equipped with arbitrary metadata. Some of those are
added manually by the developer (e.g., commit message), others are automatically
synthesized (timestamps, preceding commit(s), etc).

releases (AKA �tags�) some revisions are more equals than others and get selected by
developers as denoting important project milestones known as �releases�. Each

5as the terminology varies quite a bit from technology to technology, we provide both the canonical

name used in Software Heritage and popular synonyms
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release points to the last commit in project history corresponding to the release and
might carry arbitrary metadata�e.g., release name and version, release message,
cryptographic signatures, etc.

Additionally, the following crawling-related information are stored as provenance infor-
mation in the Software Heritage archive:

origins code �hosting places� as previously described are usually large platforms that
host several unrelated software projects. For software provenance purposes it is
important to be more speci�c than that. Software origins are �ne grained references
to where source code artifacts archived by Software Heritage have been retrieved
from. They take the form of htype;urli pairs, where url is a canonical URL (e.g., the
address at which one can git clone a repository or wget a source tarball) and type

the kind of software origin (e.g., git, svn, or dsc for Debian source packages).

projects as commonly intended are more abstract entities that precise software origins.
Projects relate together several development resources, including websites, issue
trackers, mailing lists, as well as software origins as intended by Software Heritage.

The debate around the most apt ontologies to capture project-related information
for software hasn't settled yet, but the place projects will take in the Software Her-
itage archive is fairly clear. Projects are abstract entities, which will be arbitrarily
nestable in a versioned project/sub-project hierarchy, and that can be associated to
arbitrary metadata as well as origins where their source code can be found.

snapshots any kind of software origin o�ers multiple pointers to the �current� state
of a development project. In the case of VCS this is re�ected by branches (e.g.,
master, development, but also so called feature branches dedicated to extending
the software in a speci�c direction); in the case of package distributions by notions
such as suites that correspond to di�erent maturity levels of individual packages
(e.g., stable, development, etc.).

A �snapshot� of a given software origin records all entry points found there and
where each of them was pointing at the time. For example, a snapshot object might
track the commit where the master branch was pointing to at any given time, as
well as the most recent release of a given package in the stable suite of a FOSS
distribution.

visits links together software origins with snapshots. Every time an origin is consulted
a new visit object is created, recording when (according to Software Heritage clock)
the visit happened and the full snapshot of the state of the software origin at the
time.

5.2.3 Data structure

With all the bits of what we want to archive in place, the next question is how to organize
them, i.e., which logical data structure to adopt for their storage. A key observation for
this decision is that source code artifacts are massively duplicated. That is so for several
reasons:

� code hosting diaspora discussed in Section 5.1.1;
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� copy/paste (AKA �vendoring�) of parts or entire external FOSS software components
into other software products;

� large overlap between revisions of the same project: usually only a very small
amount of �les/directories are modi�ed by a single commit;

� emergence of DVCS (distributed version control systems), which natively work by
replicating entire repository copies around. GitHub-style pull requests are the pin-
nacle of this, as they result in creating an additional repository copy at each change
done by a new developer;

� migration from one VCS to another�e.g., migrations from Subversion to Git, which
are really popular these days�resulting in additional copies, but in a di�erent dis-
tribution format, of the very same development histories.

These trends seem to be neither stopping nor slowing down, and it is reasonable to
expect that they will be even more prominent in the future, due to the decreasing costs
of storage and bandwidth.

For this reason we argue that any sustainable storage layout for archiving source code
in the very long term should support deduplication at the granularity of individual soft-
ware artifacts, allowing to pay for the cost of storing artifacts that are encountered more
than once. . . only once. For storage e�ciency, deduplication should be supported for all
the software artifacts we have discussed, namely: �le contents, directories, revisions,
releases, snapshots.

Deduplication at an even �ner granularity, e.g., sub-�le for blobs, is possible and
would increase storage e�ciency even further. However it would also incur higher fragility
risks due to the inherent additional complexity of reassembling software artifacts out of
their fragments when needed.

Realizing the deduplication principle, the Software Heritage archive is conceptually
a single (big) Merkle Direct Acyclic Graph [116] (DAG), as depicted in Figure 5.2. In
such a graph each of the artifacts we have described�from �le contents up to entire
snapshots�corresponds to a node. Edges between nodes emerge naturally: directory
entries point to other directories or �le contents; revisions point to directories and pre-
vious revisions, releases point to revisions, snapshots point to revisions and releases.
Additionally, each node contains all metadata that are speci�c to the node itself rather
than to pointed nodes; e.g., commit messages, timestamps, or �le names. Note that the
structure is really a DAG, and not a tree, due to the fact that the line of revisions nodes
might be forked and merged back.

In a Merkle structure each node is identi�ed by an intrinsic identi�er (as per our prin-
ciples detailed in Section 5.1.3) computed as a cryptographic hash of the node content.
In the case of Software Heritage identi�ers are computed taking into the account both
node-speci�c metadata and the identi�ers of child nodes.

Consider the revision node shown in Figure 5.3. The node points to a directory,
whose identi�er starts with fff3cc22..., which has also been archived. That directory
contains a full copy, at a speci�c point in time, of a software component�in the example
a component that we have developed ourselves for the needs of Software Heritage. The
revision node also points to the preceding revision node (e4feb051...) in the project
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Figure 5.2: Software Heritage direct acyclic graph (DAG) data model

directory: fff3cc22cb40f71d26f736c082326e77de0b7692

parent: e4feb05112588741b4764739d6da756c357e1f37

author: Stefano Zacchiroli <zack@upsilon.cc>

date: 1443617461 +0200

committer: Stefano Zacchiroli <zack@upsilon.cc>

commiter_date: 1443617461 +0200

message:

objstorage: fix tempfile race when adding objects

Before this change, two workers adding the same

object will end up racing to write <SHA1>.tmp.

[...]

revision_id: 64a783216c1ec69dcb267449c0bbf5e54f7c4d6d

Figure 5.3: A revision node in the Software Heritage DAG
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development history. Finally, the node contains revision-speci�c metadata, such as the
author and committer of the given change, its timestamps, and the message entered by
the author at commit time.

The identi�er of the revision node itself (64a78321...) is computed as a crypto-
graphic hash of a (canonical representation of) all the information shown in Figure 5.3.
A change in any of them�metadata and/or pointed nodes�would result in an entirely
di�erent node identi�er. All other types of nodes in the Software Heritage archive behave
similarly.

The Software Heritage archive inherits useful properties from the underlying Merkle
structure. In particular, deduplication is built-in. Any software artifacts encountered in
the wild gets added to the archive only if a corresponding node with a matching intrinsic
identi�er is not already available in the graph��le content, commits, entire directories
or project snapshots are all deduplicated incurring storage costs only once.

Furthermore, as a side e�ect of this data model choice, the entire development his-
tory of all the source code archived in Software Heritage�which ambitions to match
all published source code in the world�is available as a uni�ed whole, making emer-
gent structures such as code reuse across di�erent projects or software origins, readily
available. Further reinforcing the use cases described in Section 5.1.4, this object could
become a veritable �map of the stars� of our entire software commons.

5.3 Architecture

Both the data model described in the previous section and a software architecture suit-
able for ingesting source code artifacts into it have been implemented as part of Software
Heritage.

5.3.1 Listing

The ingestion data �ow of Software Heritage is shown in Figure 5.4. Ingestion acts like
most search engines, periodically crawling a set of �leads� (in our case the curated list
of code hosting places discussed in Section 5.2) for content to archive and further leads.
To facilitate software extensibility and collaboration, ingestion is split in two conceptual
phases though: listing and loading.

Listing takes as input a single hosting place (e.g., GitHub, PyPi, or Debian) and is
in charge of enumerating all software origins (individual Git or Subversion repositories,
individual package names, etc.) found there at listing time.

The details of how to implement listing vary across hosting platforms, and dedi-
cated lister software components need to be implemented for each di�erent type of plat-
form. This means that dedicated listers exist for GitHub or Bitbucket, but that the GitLab
lister�GitLab being a platform that can be installed on premises by multiple code hosting
providers�can be reused to list the content of any GitLab instance out there.

Listing can be done fully, i.e., collecting the entire list of origins available at a given
hosting place at once, or incrementally, listing only the new origins since the last listing.
Both listing disciplines are necessary: full listing is needed to be sure that no origin is
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Figure 5.4: Ingestion data �ow in Software Heritage

being overlooked, but it might be unwieldy if done too frequently on large platforms (e.g.,
GitHub, with more than 55 million Git repositories as of early 2017), hence the need of
incremental listing to quickly update the list of origins available at those places.

Also, listing can be performed in either pull or push style. In the former case the
archive periodically checks the hosting places to list origins. In the latter code hosting
sites, when properly con�gured to work with Software Heritage, contact back the archive
at each change in the list of origins. Push looks appealing at �rst and might minimize
the lag between the appearance of a new software origin and its ingestion in Software
Heritage. On the other hand push-only listing is prone to the risk of losing noti�cations
that will result in software origins not being considered for archival. For this reason we
consider push an optimization to be added on top of pull in order to reduce lag where
applicable, rather than an on par alternative to pull.

5.3.2 Loading

Loading is the process responsible of actually ingesting into the archive the source code
found at known software origins.

Loaders are the software components in charge of extracting source code artifacts
from software origins and adding them to the archive. Loaders are speci�c to the tech-
nology used to distribute source code: there will be one loader for each type of version
control system (Git, Subversion, Mercurial, etc.) as well as one for each source package
format (Debian source packages, source RPMs, tarballs, etc).

Loaders natively deduplicate with respect to the entire archive, meaning that any
artifact (�le content, revision, etc.) encountered at any origin will be added to the archive
only if a corresponding node cannot be found in the archive as a whole.
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Consider the Git repository used for the development of the Linux kernel, which is
fairly big, totaling 2 GB on disks for more than 600000 revisions and also widely pop-
ular with thousands of (slightly di�erent) copies available only on GitHub. At its �rst
encounter ever, the Git loader will load essentially all its �le contents, revisions, etc., into
the Software Heritage archive. At the next encounter of an identical repository, noth-
ing will be added at all. At the encounter of a slightly di�erent copy, e.g., a repository
containing a dozen additional commits not yet integrated in mainline Linux, only the
corresponding revision nodes, as well as the new �le contents and directories pointed by
them, will be loaded into the archive.

5.3.3 Scheduling

Both listing and loading happen periodically on a schedule.6 The scheduler component of
Software Heritage is in charge of keeping track of when the next listing/loading actions
need to happen, for each code hosting place (for listers) or software origins (for loaders).

While the amount of hosting places to list is not enormous, the amount of individual
software origins can easily reach the hundreds of millions given the current size of major
code hosting places. Listing/loading from that many Internet sites too frequently would
be unwise in terms of resource consumption, and also very likely unwelcome by the
maintainers of those sites. This is why we have adopted an adaptive scheduling discipline
that strikes a good balance between update lag and resource consumption.

Each run of periodic action, such as listing or loading, can be �fruitful� or not. It is
fruitful if and only if it resulted in new information, with respect to the last visit, being
added to the archive. For instance, listing is fruitful when it results in the discovery of
new software origins; loading is if the overall state of the consulted origin di�ers from
the last observed one.

If a scheduled action has been fruitful, it means that the consulted site has seen at
least some activity since the last visit, and we will increase the frequency at which that
site will be visited in the future. In the converse case (no activity), visit frequency will be
decreased.

Speci�cally, Software Heritage adopts an exponential backo� strategy, in which the
visit period is halved when activity is noticed, and doubled when no activity has been
observed. Currently, the fastest a given site will be consulted is twice day (i.e., every 12
hours) and the slowest is every 64 days. Early experiences with large code hosting sites
such as GitHub seem to tell that �90% of the repositories hosted there quickly fall to the
slowest update frequency (i.e., they don't see any activity in 2-month time windows), with
only the remaining �10% seeing more activity than that.

5.3.4 Archive

At a logical level, the Software Heritage archive corresponds to the Merkle DAG data
structure described in Section 5.2. On disk, the archive is stored using di�erent tech-

6as discussed, even when listing is performed in push style, we still want to periodically list pull-style

to stay on the safe side, so scheduling is always needed for listing as well
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nologies due to the di�erences in the size requirements for storing di�erent parts of the
graph.

File content nodes require the most storage space as they contain the full content
of all archived source code �les. They are hence stored in a key-value object storage
that uses as keys the intrinsic node identi�ers of the Merkle DAG. This allows trivial
distribution of the object storage over multiple machines (horizontal scaling) for both
performance and redundancy purposes. Also, the key-value access paradigm is very
popular among current storage technologies, allowing to easily host additional copies of
the archive either on premise or on public cloud o�erings.

The rest of the graph is stored in a relational database (RDBMS), with roughly one ta-
ble per type of node. Each table uses as primary key the intrinsic node identi�er and can
easily be sharded (again, with horizontal scaling) across multiple servers. Master/slave
replication and point-in-time recovery can be used for increased performance and recov-
ery guarantees. There is no profound reason for storing this part of the archive in a
RDBMS, but for what is worth our early experiments seem to show that graph database
technologies are not yet up to par with the size and kind of graph that Software Heritage
already is with its current coverage (see Section 5.4).

A weakness of deduplication is that it is prone to hash collisions: if two di�erent ob-
jects hash to the same identi�er there is a risk of storing only one of them while believing
to have stored them both. For this reason, where checksums algorithms are no longer
considered strong enough for cryptographic purposes,7 we use multiple checksums, with
unicity constraints on each of them, to detect collisions before adding a new artifact to
the Software Heritage archive. For instance, we do not trust SHA1 checksums alone when
adding new �le contents to the archive, but also compute SHA256, and �salted� SHA1
checksums (in the style of what Git does). Also, we are in the process of adding BLAKE2
checksums to the mix.

Regarding mirroring, each type of node is associated to a change feed that takes note
of all changes performed to the set of those objects in the archive. Conceptually, the
archive is append-only, so under normal circumstances each feed will only lists additions
of new objects as soon as they get ingested into the archive. Feeds are persistent and
the ideal branching point for mirror operators who, after an initial full mirror step, can
cheaply remain up to date with respect to the main archive.

On top of the object storage, an archiver software component is in charge of both
enforcing retention policies and automatically heal object corruption if it ever arises,
e.g., due to storage media decay. The archiver keeps track of how many copies of a
given �le content exist and where each of them is. The archiver is aware of the desired
retention policy, e.g., �each �le content must exist in at least 3 copies�, and periodically
swipe all known objects for adherence to the policy. When fewer copies than desired are
known to exist, the archiver asynchronously makes as many additional copies as needed
to satisfy the retention policy.

The archiver also periodically checks each copy of all known objects�randomly se-
lecting them at a suitable frequency�and veri�es it for integrity by recomputing its in-
trinsic identi�er and comparing it with the known one. In case of mismatch all known

7note that this is already a higher bar than being strong enough for archival purposes
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copies of the object are checked on-the-�y again; assuming at least one pristine copy is
found, it will be used to overwrite corrupted copies, �healing� them automatically.

5.4 Current status and roadmap

The Software Heritage archive grows incrementally over time as long as new listers/load-
ers get implemented and periodically run to ingest new content.

5.4.1 Listers

In terms of listers, we initially focused on targeting GitHub as it is today by far the
largest and most popular code hosting platform. We have hence implemented and put
in production a GitHub lister, capable of both full and incremental listing. Additionally,
we have recently put in production a similar lister for Bitbucket. Common code among
the two has been factored out to an internal lister helper component that can be used
to easily implement listers for other code hosting platforms.8 Upcoming listers include
FusionForge, Debian and Debian-based distributions, as well as a lister for bare bone FTP
sites distributing tarballs.

5.4.2 Loaders

Regarding loaders, we initially focused on Git as, again, the most popular VCS today.
We have additionally implemented loaders for Subversion, tarballs, and Debian source
packages. A Mercurial loader is in the working.

5.4.3 Archive coverage

Using the above software components we have already been able to assemble what, to
the best of our knowledge, is the largest software source code archive in existence.

We have fully archived once, and routinely maintain up-to-date since, GitHub into
Software Heritage, for more than 50 million Git repositories. GitHub itself has acknowl-
edged Software Heritage role as 3rd-party archive of source code hosted there.9

Additionally we have archived, as one shot but signi�cant in size archival experi-
ments, all releases of each Debian package in between 2005�2015, and all current and
historical releases of GNU projects as of August 2015. We have also retrieved full copies
of all repositories that were previously available from Gitorious and Google Code, now
both gone. All Git repositories previously available on those forges have been injected
into Software Heritage; loading of the Subversion and Mercurial repositories previously
available there is in our backlog.

In terms of storage, each copy of the Software Heritage object storage currently occu-
pies �150 TB of individually compressed �le contents. The average compression ration
is 2x, corresponding to 300 TB of raw source code content. Each copy of the RDBMS used
to store the rest of the graph (Postgres) takes �5 TB. We currently maintain 3 copies of

8see https://www.softwareheritage.org/2017/03/24/list-the-content-of-your-favorite-forge-in-just-a-

few-steps/ for a detailed technical description
9https://help.github.com/articles/about-archiving-content-and-data-on-github/

https://www.softwareheritage.org/2017/03/24/list-the-content-of-your-favorite-forge-in-just-a-few-steps/
https://www.softwareheritage.org/2017/03/24/list-the-content-of-your-favorite-forge-in-just-a-few-steps/
https://help.github.com/articles/about-archiving-content-and-data-on-github/
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the object storage and 2 copies of the database, the latter with point-in-time recovery
over a 2-week time window.

As a logical graph, the Software Heritage Merkle DAG has �5 billion nodes and �50
billion edges. We note that more than half of the nodes are (unique) �le contents (�3 B)
and that there are �750 M revision/commit nodes, collected from �55 M origins.

5.4.4 Features

The following functionalities are currently available for interacting with the Software
Heritage archive:

content lookup allows to check whether speci�c �le contents have been archived by
Software Heritage or not. Lookup is possible by either uploading the relevant �les
or by entering their checksum, directly from the Software Heritage homepage.

browsing via API allows developers to navigate through the entire Software Heritage
archive as a graph. The API o�ered to that end is Web-based and permits to lookup
individual nodes (revisions, releases, directories, etc.), access all their metadata,
follow links to other nodes, and download individual �le contents. The API also
gives access to visit information, reporting when a given software origin has been
visited and what its status was at the time.

The API technical documentation10 has many concrete examples of how to use it in
practice.

The following features are part of the project technical road map and will be rolled out
incrementally in the near future:

Web browsing equivalent to API browsing, but more convenient for non-developer Web
users. The intended user interface will resemble state-of-the art interfaces for
browsing the content of individual version control systems, but will be tailored
to navigate a much larger archive.

provenance information will o�er �reverse lookups� of sort, answering questions such
as �give me all the places and timestamps where you have found a given source
code artifact�. This is the key ingredient to address some of the industrial use
cases discussed in Section 5.1.4.

metadata search will allow to perform searches based on project-level metadata, from
simple information (e.g., project name or hosting place), to more substantial ones
like the entity behind the project, its license, etc.

content search conversely, content search will allow to search based on the content of
archived �les. Full-text search is the classic example of this, but in the context
of Software Heritage content search can be implemented at various level of �un-
derstanding� of the content of individual �les, from raw character sequences to
full-�edged abstract syntax trees for a given programming language.

10https://archive.softwareheritage.org/api/

https://archive.softwareheritage.org/api/


Chapter 6

Conclusion and future work

We conclude this research overview by brie�y recapitulating our research work thus far
and sketching a few research directions for the future.

Our research journey over the past decade followed an organic evolution path through
the analysis of component-based FOSS systems. It started by investigating the state-of-
the-art of package life-cycle management in FOSS distributions and observed that, at the
time, many issues were still plaguing upgrades [54]. Our contributions in the context of
the Mancoosi project (Chapter 2) have all been geared towards addressing those issues.

Quality assurance for FOSS distributions On the distribution-editor side we have built
upon seminal work by the EDOS project [114] and introduced the notion of strong depen-

dency [1] as a mechanism to e�ciently pinpoint critical packages that should be handled
with care in large repositories, and contributed to the development of the notion of repos-
itory futures [7, 9] that serves the related need of identifying packages that need manual
intervention to become installable again. We have had the chance to look back at all the
work done�by ourselves and a few other groups around the world�on the front of for-
mal analyses of package dependencies in FOSS collections [153, 53]. We found that it has
had a signi�cant, positive impact on the quality of curated FOSS collections, most notably
on the amount of non-installable packages that get distributed to users over time [3].

While that line of work focused on the static aspects of packages, such as depen-
dencies and con�icts, we have also worked on the dynamic aspects that might adversely
impact software upgrades. In particular, we have worked on the classi�cation and sim-
ulation of maintainer scripts, using meta-modeling techniques [59, 35, 45]. In between
static and dynamic package features, we have studied the origin of inter-package con-

�icts [19, 20], which are visible at the abstract level of packages, but generally stem from
lower-level aspects like the layout of installed �les on disk or indeed the behavior of
maintainer scripts.

Outside the context of the Mancoosi project, and not detailed in this manuscript, we
have contributed to a di�erent aspect of distribution quality assurance: data warehous-
ing for FOSS metadata. We have developed the Ultimate Debian Database [119] (UDD) to
consolidate Debian and Ubuntu distribution metadata to server a number of use cases,
from quality assurance (for distribution maintainers) to data mining (for researchers).
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UDD has been in production in Debian/Ubuntu since then, it has been used as a basis for
the well-known MSR mining challenge competition [86] in 2010, and it tied thematically
well into subsequent work of ours on Debsources and Software Heritage.

Better dependency solving for FOSS distributions On the distribution-user side we
have worked to improve the quality of dependency solving by inducing a synergy between
package manager engineers (who needed to realize that ad hoc solving solutions were
showing their limits, like incompleteness and poor request expressivity) and constraint
solving researchers (who are generally eager to tackle challenging problems coming from
the real world).

This line of work resulted in standardized formats and languages, like CUDF [154,
156], equipped with formal semantics that can be used as a lingua franca for depen-
dency solving among package managers and constraint solvers [4]. We have then used
CUDF�and its the reference implementation that we authored: libCUDF�to a�rm and
establish better engineering practices and design patterns for package managers [5, 8].
To further adoption and impact of these principles we have run the MISC dependency

solving competition [6], which resulted in FOSS dependency solvers that are nowadays
used in production, either as plug-in solvers for major distributions (this is the case for
Debian) or as the main building block for novel package managers (this is the case of
OPAM [4]) that have adopted since day 1 the software architecture we introduced.

We have also worked on a side topic not detailed in this manuscript: bridging the gap
between nearby but previously unrelated formalisms for modeling software components.
In particular, we have introduced a one-way mapping from software product lines (SPL)
expressed as feature diagrams to distribution packages [56]. This has paved the way to
reusing package research results and technologies in large industrial settings, where SPL
have seen large adoption.

Component modeling for the �cloud� To expend both modeling and automated de-
ployment of FOSS components outside the boundaries of individual machines we have
introduced a component model for cloud- and networked-applications, called Aeolus [58]
(see Chapter 3). It allows to capture intra-machine package details like dependencies and
con�icts, but also inter-machine aspects such as running services and their requirements,
capacity constraints, and the dynamic spawning and disposal of cloud resources.

As the expressivity of the Aeolus component model implies that operations that we
can take for granted for packages are either non decidable or computationally very hard,
Aeolus and its variants underwent thorough explorations of what can be automated on
top of them, which resulted in several theoretical publications on the topic [51, 52, 48].

To overcome some of the proven limitations when working with this expressivity
we have worked on automating deployment of cloud and networked applications, creat-
ing pragmatic FOSS planning and deployment tools, based on more limited variants of
the full Aeolus component model, that have seen relevant industrial adoption such as
Zephyrus [32, 50, 46] and its companion tools in the Aeolus suite.

FOSS source code analysis in the large As the most recent step of our research journey
thus far, we have turned our attention to delving into large collections of FOSS source



108 Conclusion and future work

code. It was natural for us to do so because we felt we had reached the limits of the
quality improvements that could be delivered by stopping at the abstraction level of
inter-package relationships. It was time to look at the roots of those relationships, that
is, the actual code implementing packages of which dependencies and con�icts provide
a coarse-grained abstract view.

Out of �rst-hand research need, we took what seemed at the time only a quick detour
to design and implement a generic platform that would allow to perform large-scale
analyses on the source code of Debian: Debsources (see Chapter 4) was born [31]. In
addition to the platform itself, that has since been adopted by Debian in production and
still is today, Debsources has been used to polish and publish one of the largest open
dataset in existence about long-term FOSS evolution: the Debsources Dataset [168, 30].

Software Heritage (Chapter 5) came to be as the conjunction point of several interests.
On the one hand, it is the natural expansion of Debsources to its largest extent possible:
collecting, organizing, and sharing all publicly available source code with all researchers
out there so that they can systematize analyses of our entire Software Commons. But
on the other hand Software Heritage is also much more, due to synergies that become
visible only at its scale and that indeed were not apparent in the more limited scope of
Debsources. FOSS preservation became a natural concern that Software Heritage can ad-
dress, given its comprehensiveness; it is in fact a concern that the project should address,
given the task is currently unattended to in the digital preservation landscape. Other use
cases became apparent as well, such as easing the tracking of FOSS for industrial needs,
helping out with the reproducibility of science when it comes to the use of FOSS as part
of scienti�c experiments, and helping educators with the assembly of the ultimate source
book for computing education.

To tackle all these issues we have prototyped, designed, and launched Software Her-
itage [57], that has already become the largest source code archive in existence and cred-
ited as the premier project for source code preservation in the world by renowned scien-
ti�c, industrial, and institutional partners.

6.1 Research directions

Software Heritage is still far from realizing its full mission though. Aside from technical
work�which are �Simple Matter[s] of Programming�, as the software engineering expres-
sion goes�many scienti�c challenges will need to be tackled for the project to succeed.
Some of them are summarized below.

Data model and storage The chosen data model for Software Heritage (a Merkle DAG)
is the best �t for the archival of software artifacts that are massively redundant over the
Internet, and increasingly more so, and hence need to be subject to deduplication for
their long-term archival to be viable. But such a model has its own drawbacks.

Most notably, to answer provenance queries of the form �tell me all the places and

times where/when you have encountered this source code artifact� (e.g., a speci�c �le
content or commit) one needs to solve a single-source shortest path problem on the
entire graph, whose size is, at the time of writing, approximately 7 billion nodes and 70
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billion edges. While algorithmically the complexity of the problem is linear in the size of
the graph, I/O costs makes the problem practically unwieldy when the graph does not �t
in primary memory (RAM).

Research techniques to deal with even larger graphs on secondary storage exist [113,
136, 135], but they do not work well on the Software Heritage graph which does not
appear to exhibit small world properties, and hence is not amenable to e�cient treatment
with distributed approaches that require computations to quickly complete after a few
iterative rounds. General purpose state-of-the-art graph database products do not seem
to fare better and generally rule out the possibility of dealing with graphs of the Software
Heritage size.

While it looks possible (at least for now. . . ) to make at least the naked graph structure
�t into main memory and work from there, the challenge of �nding the most appropriate
data model, or physical representation of it, for storing the Software Heritage canonical
graph in a way that is amenable to cheap and scale-out processing is up.

Metadata alignment In the cases of Debsources and UDD metadata management didn't
pose much of a problem: well-de�ned metadata schemata existed in the origin context
that the two infrastructure were meant to represent, so we just needed to store the cor-
responding metadata and use them as needed. In the context of Software Heritage things
get more complicated, because the archive contains source code artifacts coming from
very di�erent projects that might use very di�erent, and often inconsistent, schemata to
encode their metadata. Even worse, the same artifacts Software Heritage archives can be
found in di�erent locations that might use di�erent metadata schemata and/or provide
contradicting metadata within the same schema.

The underlying problem here is schema matching [130], which is well-known in data
warehousing and frequently emerges in corporate merger situations. However, Software
Heritage is faced with the extra complexity of wanting to both preserve the original soft-
ware metadata as closely as possible, together with accurate provenance information as
we do for other archived information, and to abstract over all found metadata�no mat-
ter how inconsistent and heterogeneous they might be�to provide some basic metadata-
based search functionalities that should have chances to �nd results across the archive.

The number of di�erent software ontologies out there is very signi�cant and appears
to be growing�Schema.org, FOAF, DOAP, etc. are just some of the most used ontologies
and technologies in the domain [81, 28, 60].1 Software Heritage will need to deal with
this heterogeneity and resulting inconsistencies, striking a good balance between faithful
preservation and practical functionalities for its users.

Software Heritage will also be the natural playground where to synthesize missing

metadata in any given anthology applying, for instance, supervised machine learning
approaches that could then leverage available metadata as training/learning sets.

Software phylogenetics As we have seen, public software development routinely mi-
grate from one platform to another. Furthermore, due to their inherent licensing proper-
ties, FOSS software components and even individual code snippets get embedded, with

1see CodeMeta [94] for a recent attempt at surveying most of them
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or without modi�cations, into projects other than those where they originated from. As
of today Software Heritage seems to be the only dataset where one could observe to its
largest extent possible the impact that any given line of publicly released source code
has had in terms of adoption, adaptation, and reuse. This is so due to: a) the comprehen-
siveness of the archive, and b) the data model that deduplicates, and hence keeps closely
together, all source code artifacts encountered in the wild.

To reap the bene�ts of this potential we will need to make clone detection tech-
niques [137, 97] work at this scale, as they currently consider to be �large scale� collec-
tions of software development projects that are one order of magnitude smaller than
the Software Heritage [138]. Research communities that are interested in this topic
abound [103, 128], but do not seem to have had access to such a vast playground as
of yet. We will need to work with them on the preliminary required step of de�ning the
most appropriate access mechanisms and scienti�c APIs to exploit the archive.

Code search at scale Code search, one of the features on the Software Heritage roadmap,
is an open research challenge as well. Generally speaking, code search can be imple-
mented at very di�erent level of �understanding� of source code.

At the richest level, any (syntactically correct) source code �le can be parsed into an
abstract syntax tree (AST) and indexed as such using a number of proven AST index-
ing techniques and technologies. But even letting aside for a moment the scale issue,
the Software Heritage archive is very heterogeneous in terms of programming languages
and also of their versions, which have evolved signi�cantly and often in non backward
compatible ways over the time frame of source code that is already archived in Soft-
ware Heritage today. Finding the right parser for any given �le stored in the archive,
especially considering that it might appear with many di�erent names (something that
programming languages detectors tend not to like), is already a challenging problem per

se. One could then either resort to partial indexing, allowing to search only a limited
set of programming languages that can both be recognized as such and parsed, as it as
already been done at a much smaller scale [63], or resort to indexing approaches that
�understand� much less of the actual structure of source code.

At the extreme end of low-understanding approaches we can �nd reverse indexes
approach with very simple stemming: just split the content of source code �les into
�words�, using any sequence of non-alphanumeric character as word separators. This
works at much larger scales than Software Heritage (like the entire Web, which is rou-
tinely indexed by search engines), but o�ers poor expressivity to the developers that will
actually perform the searches.

A sweet spot in the spectrum, that have been successfully applied in the context
of Debsources, is using trigram-based reverse indexes [146, 170]. Doing so allows to
support regular expression based searches on large code bases [39], without having to
actually �grep� through the actual content of the �les at search time, which is daunting
at large scale due to I/O costs. However, while this has proven to be viable on rela-
tively cheap hardware for the code shipped by the development release of Debian [146]
(with more than 1 billion source lines of code), Software Heritage is projected to be 2�3
orders of magnitude larger, meaning that indexes can no longer be made to �t in pri-
mary memory without incurring non-sustainable hardware costs. Di�erent, very likely
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distributed/scale-out approaches will need to be found to make the approach viable at
the Software Heritage scale.

Working on some of these challenges will require continuing doing what we have
been doing in recent work to design and implement solutions like Debsources, UDD, and
Software Heritage. Other challenges will require going back to research work we were
doing a long while ago (not discussed in this manuscript) touching the Semantic Web,
ontologies, and related technologies. Others challenges yet will need leaving our comfort
zone and reach out to other research communities to work together on topics that have
evident synergies with the mission of Software Heritage, but require di�erent skill sets.

It will be a novel research journey.

All things considered, it sounds like a lot of fun.



References

[1] Pietro Abate, Jaap Boender, Roberto Di Cosmo, and Stefano Zacchiroli. Strong de-
pendencies between software components. In ESEM 2009: 3rd International Sym-

posium on Empirical Software Engineering and Measurement, pages 89�99, 2009.

[2] Pietro Abate and Roberto Di Cosmo. Predicting upgrade failures using dependency
analysis. In Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan,
editors, Workshops Proceedings of the 27th International Conference on Data Engi-

neering, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 145�150. IEEE,
2011.

[3] Pietro Abate, Roberto Di Cosmo, Louis Gesbert, Fabrice Le Fessant, Ralf Treinen,
and Stefano Zacchiroli. Mining component repositories for installability issues. In
MSR 2015: The 12th Working Conference on Mining Software Repositories, pages
24�33. IEEE, 2015.

[4] Pietro Abate, Roberto Di Cosmo, Louis Gesbert, Fabrice Le Fessant, and Stefano
Zacchiroli. Using preferences to tame your package manager. In OCaml 2014: The

OCaml Users and Developers Workshop, 2014.

[5] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Mpm: a mod-
ular package manager. In CBSE 2011: 14th International ACM SIGSOFT Symposium

on Component Based Software Engineering, pages 179�188. ACM, 2011.

[6] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Dependency
solving: a separate concern in component evolution management. Journal of Sys-
tems and Software, 85(10):2228�2240, October 2012.

[7] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Learning
from the future of component repositories. In CBSE 2012: 15th International

ACM SIGSOFT Symposium on Component Based Software Engineering, pages 51�
60. ACM, 2012.

[8] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. A modular
package manager architecture. Information and Software Technology, 55(2):459�
474, February 2013.

[9] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Learning
from the future of component repositories. Science of Computer Programming,
90(B):93�115, 2014.

[10] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General
decidability theorems for in�nite-state systems. In LICS, pages 313�321. IEEE, 1996.

112



References 113

[11] Bram Adams, Christian Bird, Foutse Khomh, and Kim Moir. 1st international work-
shop on release engineering (RELENG 2013). In ICSE'13, pages 1545�1546, 2013.

[12] Aeolus Team. Aeolus Tools. https://github.com/aeolus-project/.

[13] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack tolerance
of complex networks. Nature, 406(6794):378�382, 2000.

[14] Roberto Amadini. Evaluation and application of portfolio approaches in constraint
programming. Theory and Practice of Logic Programming (TPLP), 13(4-5-Online-
Supplement), 2013.

[15] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An empirical evaluation
of portfolios approaches for solving CSPs. In CPAIOR 2012: Integration of AI and

OR Techniques in Constraint Programming for Combinatorial Optimization Prob-

lems, 10th International Conference, volume 7874 of Lecture Notes in Computer

Science, pages 316�324, 2013.

[16] David Anderson. The digital dark age. Communications of the ACM, 58(12):20�23,
2015.

[17] Josep Argelich, Daniel Le Berre, Inês Lynce, João P. Marques Silva, and Pascal Rapi-
cault. Solving linux upgradeability problems using boolean optimization. In Lo-

CoCo 2010: Proceedings of the 1st International Workshop on Logics for Component

Con�guration, pages 11�22, 2010.

[18] William Y. Arms. Uniform resource names: handles, purls, and digital object iden-
ti�ers. Commun. ACM, 44(5):68, 2001.

[19] Cyrille Valentin Artho, Roberto Di Cosmo, Kuniyasu Suzaki, and Stefano Zacchi-
roli. Sources of inter-package con�icts in Debian. In LoCoCo 2011 International

Workshop on Logics for Component Con�guration, 2011.

[20] Cyrille Valentin Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Ste-
fano Zacchiroli. Why do software packages con�ict? InMSR 2012: 9th IEEE Working

Conference on Mining Software Repositories, pages 141�150. IEEE, 2012.

[21] Donald Beagle. Conceptualizing an information commons. The Journal of Academic

Librarianship, 25(2):82�89, 1999.

[22] Daniel Le Berre and Anne Parrain. On SAT technologies for dependency man-
agement and beyond. In Software Product Lines, 12th International Conference,

SPLC 2008, pages 197�200. Lero Int. Science Centre, University of Limerick, Ire-
land, 2008.

[23] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of
code later: using static analysis to �nd bugs in the real world. Communications of

the ACM, 53(2):66�75, 2010.

[24] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.
Semantic services, interoperability and web applications: emerging concepts, pages
205�227, 2009.

https://github.com/aeolus-project/


114 References

[25] Jaap Boender. E�cient computation of dominance in component systems (short
paper). In SEFM: Software Engineering and Formal Methods - 9th International Con-

ference, pages 399�406, 2011.

[26] Hongyu Pei Breivold, Muhammad Aufeef Chauhan, and Muhammad Ali Babar. A
systematic review of studies of open source software evolution. In APSEC, pages
356�365, 2010.

[27] Brian Harry's blog. Shutting down CodePlex. https://blogs.msdn.microsoft.
com/bharry/2017/03/31/shutting-down-codeplex/, 2017.

[28] Dan Brickley and Libby Miller. Foaf vocabulary speci�cation 0.91. Technical report,
ILRT, 2007.

[29] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The FRACTAL component model and its support in Java. Softw.,
Pract. Exper., 36(11-12):1257�1284, 2006.

[30] Matthieu Caneill, Daniel M. Germán, and Stefano Zacchiroli. The Debsources
dataset: Two decades of free and open source software. Empirical Software En-

gineering, 22:1405�1437, June 2017.

[31] Matthieu Caneill and Stefano Zacchiroli. Debsources: Live and historical views on
macro-level software evolution. In ESEM 2014: 8th International Symposium on

Empirical Software Engineering and Measurement. ACM, 2014.

[32] Michel Catan, Roberto Di Cosmo, Antoine Eiche, Tudor A. Lascu, Michael Lien-
hardt, Jacopo Mauro, Ralf Treinen, Stefano Zacchiroli, Gianluigi Zavattaro, and
Jakub Zwolakowski. Aeolus: Mastering the complexity of cloud application de-
ployment. In ESOCC 2013: Service-Oriented and Cloud Computing, volume 8135 of
LNCS, pages 1�3. Springer-Verlag, 2013.

[33] Vinton G Cerf. Avoiding" bit rot": Long-term preservation of digital information
[point of view]. Proceedings of the IEEE, 99(6):915�916, 2011.

[34] Scott Chacon and Ben Straub. Pro Git. Apress, Berkely, CA, USA, 2nd edition, 2014.

[35] Antonio Cicchetti, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and
Stefano Zacchiroli. A model driven approach to upgrade package-based software
systems. In ENASE 2009: 4th international conference on Evaluation of Novel As-

pects to Software Engineering, pages 262�276. Springer-Verlag, 2010.

[36] Eric Clayberg and Dan Rubel. Eclipse Plug-ins (3rd Edition). Addison-Wesley Profes-
sional, 3 edition, December 2008.

[37] Cloud Foundry. http://cloudfoundry.org/.

[38] Christian Collberg, Todd Proebsting, Gina Moraila, Akash Shankaran, Zuoming Shi,
and Alex M Warren. Measuring reproducibility in computer systems research. Tech-
nical report, Department of Computer Science, University of Arizona, Tech. Rep,
2014.

[39] Russ Cox. Regular expression matching with a trigram index or how google code
search worked. https://swtch.com/~rsc/regexp/regexp4.html, 2012.

https://blogs.msdn.microsoft.com/bharry/2017/03/31/shutting-down-codeplex/
https://blogs.msdn.microsoft.com/bharry/2017/03/31/shutting-down-codeplex/
http://cloudfoundry.org/
https://swtch.com/~rsc/regexp/regexp4.html


References 115

[40] IBM ILOG Cplex. User's manual. ILOG. See ftp://ftp. software. ibm. com/soft-

ware/websphere/ilog/docs/optimization/cplex/ps_usrmancplex. pdf, 2010.

[41] Quynh Dang. Changes in federal information processing standard (�ps) 180-4,
secure hash standard. Cryptologia, 37(1):69�73, 2013.

[42] Martin Davis and Hilary Putnam. A computing procedure for quanti�cation theory.
Journal of the ACM, 7(3):201�215, 1960.

[43] Serge Demeyer, Alessandro Murgia, Kevin Wyckmans, and Ahmed Lamkan�. Happy
birthday! a trend analysis on past msr papers. In MSR 13: 10th Working Confer-

ence on Mining Software Repositories, MSR'13, pages 353�362, Piscataway, NJ, USA,
2013. IEEE.

[44] J. Des Rivières and J. Wiegand. Eclipse: a platform for integrating development
tools. IBM Systems, 43(2):371�383, 2004.

[45] Roberto Di Cosmo, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and
Stefano Zacchiroli. Supporting software evolution in component-based FOSS sys-
tems. Science of Computer Programming, 76(12):1144�1160, 2011.

[46] Roberto Di Cosmo, Antoine Eiche, Jacopo Mauro, Stefano Zacchiroli, Gianluigi Za-
vattaro, and Jakub Zwolakowski. Automatic deployment of services in the cloud
with aeolus blender. In ICSOC 2015: 13th International Conference on Service Ori-

ented Computing, pages 397�411. Springer-Verlag, 2015.

[47] Roberto Di Cosmo, Olivier Lhomme, and Claude Michel. Aligning component up-
grades. In Conrad Drescher, Inês Lynce, and Ralf Treinen, editors, LoCoCo 2011

International Workshop on Logics for Component Con�guration, volume 65, pages
1�11, 2011.

[48] Roberto Di Cosmo, Michael Lienhardt, Jacopo Mauro, Stefano Zacchiroli, Gianluigi
Zavattaro, and Jakub Zwolakowski. Automatic application deployment in the cloud:
from practice to theory and back. In CONCUR 2015: 26th International Confer-

ence on Concurrency Theory, volume 42 of Leibniz International Proceedings in In-

formatics (LIPIcs), pages 1�16. Schloss Dagstuhl�Leibniz-Zentrum fuer Informatik,
2015.

[49] Roberto Di Cosmo, Michael Lienhardt, Ralf Treinen, Stefano Zacchiroli, and Jakub
Zwolakowski. Optimal provisioning in the cloud. Technical report, Aeolus project,
Juin 2013.

[50] Roberto Di Cosmo, Michael Lienhardt, Ralf Treinen, Stefano Zacchiroli, Jakub
Zwolakowski, Antoine Eiche, and Alexis Agahi. Automated synthesis and deploy-
ment of cloud applications. In ASE 2014: 29th IEEE/ACM International Conference

on Automated Software Engineering, pages 211�222. ACM, 2014.

[51] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi Zavattaro. Com-
ponent recon�guration in the presence of con�icts. In ICALP 2013: 40th Inter-

national Colloquium on Automata, Languages and Programming, volume 7966 of
LNCS, pages 187�198. Springer-Verlag, 2013.



116 References

[52] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi Zavattaro. Aeo-
lus: a component model for the cloud. Information and Computation, 239:100�121,
2014.

[53] Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Formal aspects of free and
open source software components. In FMCO 2012: HATS International School on

Formal Models for Components and Objects, volume 7866 of LNCS, pages 216�239.
Springer-Verlag, 2013.

[54] Roberto Di Cosmo, Paulo Trezentos, and Stefano Zacchiroli. Package upgrades in
FOSS distributions: Details and challenges. In HotSWUp'08: Hot Topics in Software

Upgrades. ACM, 2008.

[55] Roberto Di Cosmo and Jérôme Vouillon. On software component co-installability.
In SIGSOFT FSE'11 19th ACM SIGSOFT Symposium on the Foundations of Software

Engineering (FSE-19), pages 256�266. ACM, 2011.

[56] Roberto Di Cosmo and Stefano Zacchiroli. Feature diagrams as package dependen-
cies. In SPLC 2010: 14th International Software Product Line Conference, volume
6287 of LNCS, pages 476�480. Springer-Verlag, 2010.

[57] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and how to
preserve software source code. In iPRES 2017: 14th International Conference on

Digital Preservation, 2017.

[58] Roberto Di Cosmo, Stefano Zacchiroli, and Gianluigi Zavattaro. Towards a formal
component model for the cloud. In SEFM 2012: 10th International Conference on

Software Engineering and Formal Methods, volume 7504 of LNCS, pages 156�171.
Springer-Verlag, 2012.

[59] Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and Stefano Zacchiroli.
Towards maintainer script modernization in FOSS distributions. In IWOCE 2009:

International Workshop on Open Component Ecosystem, pages 11�20. ACM, 2009.

[60] Edd Dumbill. Doap: Description of a project. https://github.com/ewilderj/

doap, 2010.

[61] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, et al.
The matter of heartbleed. In Proceedings of the 2014 Conference on Internet Mea-

surement Conference, pages 475�488. ACM, 2014.

[62] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving

software quality and reducing risk. Pearson Education, 2007.

[63] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. Boa: A lan-
guage and infrastructure for analyzing ultra-large-scale software repositories. In
Proceedings of the 2013 International Conference on Software Engineering, pages
422�431. IEEE Press, 2013.

[64] E-ark (european archival records and knowledge preservation) project. http://

www.eark-project.com/, 2014.

https://github.com/ewilderj/doap
https://github.com/ewilderj/doap
http://www.eark-project.com/
http://www.eark-project.com/


References 117

[65] EDOS Project. Report on formal management of software dependencies. EDOS
Project Deliverables D2.1 and D2.2, EDOS Project, March 2006.

[66] Keep: Eu cooperating. https://www.keep.eu/, 2000.

[67] Ingo Feinerer. E�cient large-scale con�guration via integer linear programming.
Arti�cial Intelligence for Engineering, Design, Analysis and Manufacturing (AI

EDAM), 27(1):37�49, 2013.

[68] Ingo Feinerer and Gernot Salzer. Consistency and minimality of UML class speci-
�cations with multiplicities and uniqueness constraints. In Theoretical Aspects of

Software Engineering (TASE), pages 411�420, 2007.

[69] Joseph Feller, Brian Fitzgerald, et al. Understanding open source software develop-

ment. Addison-Wesley London, 2002.

[70] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! The-
oretical Computer Science, 256:63�92, 2001.

[71] Je�rey Fischer, Rupak Majumdar, and Shahram Esmaeilsabzali. Engage: a deploy-
ment management system. In PLDI'12: Programming Language Design and Imple-

mentation, pages 263�274. ACM, 2012.

[72] Martin Gebser, Roland Kaminski, and Torsten Schaub. aspcud: A linux package con-
�guration tool based on answer set programming. arXiv preprint arXiv:1109.0113,
2011.

[73] Daniel M. German, Yuki Manabe, and Katsuro Inoue. A sentence-matching method
for automatic license identi�cation of source code �les. In Proceedings of the

IEEE/ACM international conference on Automated software engineering, ASE'10,
pages 437�446. ACM, 2010.

[74] Carlo Ghezzi. Re�ections on 40+ years of software engineering research and be-
yond: an insider's view. In Keynote address in 31st International Conference on

Software Engineering, 2009.

[75] Inc. GitHub. Open source survey. http://opensourcesurvey.org/2017/, 2017.

[76] GitLab. Gitlab acquires gitorious to bolster its on premises code
collaboration platform. https://about.gitlab.com/2015/03/03/

gitlab-acquires-gitorious/, 2015.

[77] Gmane. http://gmane.org, 2017.

[78] GNU. GNU General Public License, version 2, 1991. retrieved September 2015.

[79] Robert Gobeille. The fossology project. In MSR 2008: The 5th Working Conference

on Mining Software Repositories, pages 47�50. ACM, 2008.

[80] Jesús M. González-Barahona, Gregorio Robles, Martin Michlmayr, Juan José Amor,
and Daniel M. Germán. Macro-level software evolution: a case study of a large
software compilation. Empirical Software Engineering, 14(3):262�285, 2009.

[81] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. Schema.org: Evolution of
structured data on the web. Communications of the ACM, 59(2):44�51, 2016.

https://www.keep.eu/
http://opensourcesurvey.org/2017/
https://about.gitlab.com/2015/03/03/gitlab-acquires-gitorious/
https://about.gitlab.com/2015/03/03/gitlab-acquires-gitorious/
http://gmane.org


118 References

[82] Ahmed E Hassan. The road ahead for mining software repositories. In Frontiers of

Software Maintenance, 2008. FoSM 2008., pages 48�57. IEEE, 2008.

[83] Brian Hayes. Cloud computing. Communications of the ACM, 51:9�11, 2008.

[84] John A. Hewson, Paul Anderson, and Andrew D. Gordon. A Declarative Approach
to Automated Con�guration. In LISA '12: Large Installation System Administration

Conference, pages 51�66, 2012.

[85] Roger High�eld. Large hadron collider: Thirteen ways to change the world. The

Daily Telegraph, October 2008.

[86] Abram Hindle, Israel Herraiz, Emad Shihab, and Zhen Ming Jiang. Mining challenge
2010: Freebsd, gnome desktop and debian/ubuntu. InMining Software Repositories

(MSR), 2010 7th IEEE Working Conference on, pages 82�85. IEEE, 2010.

[87] Google Project Hosting. Bidding farewell to google code. https://opensource.
googleblog.com/2015/03/farewell-to-google-code.html, 2015.

[88] Jez Humble and David Farley. Continuous delivery: reliable software releases

through build, test, and deployment automation. Pearson Education, 2010.

[89] Internet archive: Digital library of free books, movies, music & wayback machine.
https://archive.org, 2017.

[90] Mikolás Janota. Do SAT solvers make good con�gurators? In SPLC: Software Prod-

uct Lines Conference, 2nd Volume, pages 191�195, 2008.

[91] Nicolas Jeannerod, Claude Marché, and Ralf Treinen. A Formally Veri�ed Inter-
preter for a Shell-like Programming Language. In VSTTE 2017 - 9th Working Confer-

ence on Veri�ed Software: Theories, Tools, and Experiments, Heidelberg, Germany,
July 2017.

[92] Nicolas Jeannerod, Yann Régis-Gianas, and Ralf Treinen. Having Fun With 31.521
Shell Scripts. working paper or preprint, April 2017.

[93] Graham Jenson, Jens Dietrich, and Hans W. Guesgen. An empirical study of the
component dependency resolution search space. In CBSE 2011: International ACM

Sigsoft Symposium on Component Based Software Engineering, volume 6092 of
LNCS, pages 182�199. Springer, 2010.

[94] Jones, Matthew B., Carl Boettiger, Abby Cabunoc Mayes, Arfon Smith, Peter Slaugh-
ter, Kyle Niemeyer, Yolanda Gil, Martin Fenner, Krzysztof Nowak, Mark Hahnel,
Luke Coy, Alice Allen, Mercè Crosas, Ashley Sands, Neil Chue Hong, Patricia Cruse,
Dan Katz, and Carole Goble. CodeMeta: an exchange schema for software meta-
data. version 2.0. https://codemeta.github.io/, 2017.

[95] Juju, devops distilled. https://juju.ubuntu.com/.

[96] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software evolution.
Journal of software maintenance and evolution: Research and practice, 19(2):77�
131, 2007.

https://opensource.googleblog.com/2015/03/farewell-to-google-code.html
https://opensource.googleblog.com/2015/03/farewell-to-google-code.html
https://archive.org
https://codemeta.github.io/
https://juju.ubuntu.com/


References 119

[97] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Cc�nder: a multilinguistic
token-based code clone detection system for large scale source code. IEEE Trans-

actions on Software Engineering, 28(7):654�670, 2002.

[98] Luke Kanies. Puppet: Next-generation con�guration management. ;login: the

USENIX magazine, 31(1):19�25, 2006.

[99] Michael Kerrisk. Surveying open source licenses. Available at https://lwn.net/
Articles/547400/, 2013.

[100] Nancy Kranich and Jorge Reina Schement. Information commons. Annual Review
of Information Science and Technology, 42(1):546�591, 2008.

[101] Alyson La. Language trends on GitHub. Available at https://github.com/blog/
2047-language-trends-on-github, 2015.

[102] Nathan LaBelle and Eugene Wallingford. Inter-package dependency networks in
open-source software. CoRR, cs.SE/0411096, 2004.

[103] Ralf Lämmel, Rocco Oliveto, and Romain Robbes, editors. 20th Working Conference

on Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-17, 2013. IEEE
Computer Society, 2013.

[104] Tudor A. Lascu, Jacopo Mauro, and Gianluigi Zavattaro. Automatic component
deployment in the presence of circular dependencies. In Formal Aspects of Compo-

nent Software - 10th International Symposium, FACS 2013, volume 8348 of Lecture
Notes in Computer Science, pages 254�272. Springer, 2013.

[105] Tudor A. Lascu, Jacopo Mauro, and Gianluigi Zavattaro. A planning tool supporting
the deployment of cloud applications. In 2013 IEEE 25th International Conference

on Tools with Arti�cial Intelligence, pages 213�220, 2013.

[106] Daniel Le Berre. Sat4j: un moteur libre de raisonnement en logique propositionnelle.
HDR (habilitation à diriger des recherches) thesis, Université d'Artois, 2010.

[107] Daniel Le Berre and Pascal Rapicault. Dependency management for the Eclipse
ecosystem: Eclipse P2, metadata and resolution. In Proceedings of the 1st inter-

national workshop on Open component ecosystems, IWOCE '09, pages 21�30, New
York, 2009. ACM.

[108] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for �nding domina-
tors in a �owgraph. ACM Trans. Program. Lang. Syst., 1(1):121�141, 1979.

[109] Josh Lerner and Jean Tirole. Some simple economics of open source. The journal

of industrial economics, 50(2):197�234, 2002.

[110] Xavier Leroy, Damien Doligez, Jacques Garrigue, and Didier Rémy. The Objective

Caml system release 4.01; Documentation and user's manual. INRIA, Rocquencourt,
Paris, 2013.

[111] Gloriana St Clair Mahadev Satyanarayanan, Benjamin Gilbert, Yoshihisa Abe, Jan
Harkes, Dan Ryan, Erika Linke, and Keith Webster. One-click time travel. Technical
report, Technical report, Computer Science, Carnegie Mellon University, 2015.

https://lwn.net/Articles/547400/
https://lwn.net/Articles/547400/
https://github.com/blog/2047-language-trends-on-github
https://github.com/blog/2047-language-trends-on-github


120 References

[112] T. Maillart, D. Sornette, S. Spaeth, and G. von Krogh. Empirical tests of zipf's law
mechanism in open source linux distribution. Phys. Rev. Lett., 101:218701, Nov
2008.

[113] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-

agement of data, pages 135�146. ACM, 2010.

[114] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérôme Vouillon, Berke Durak,
Xavier Leroy, and Ralf Treinen. Managing the complexity of large free and open
source package-based software distributions. In ASE 2006, pages 199�208. IEEE,
2006.

[115] Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J. Stuckey, Maria Garcia de la
Banda, and Mark Wallace. The design of the zinc modelling language. Constraints,
13(3):229�267, 2008.

[116] Ralph C Merkle. A digital signature based on a conventional encryption function.
In Conference on the Theory and Application of Cryptographic Techniques, pages
369�378. Springer, 1987.

[117] Claude Michel and Michel Rueher. Handling software upgradeability problems with
MILP solvers. In LoCoCo 2010: Proceedings of the 1st International Workshop on

Logics for Component Con�guration, pages 1�10, 2010.

[118] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard CP modelling language. In
Principles and Practice of Constraint Programming (CP), pages 529�543, 2007.

[119] Lucas Nussbaum and Stefano Zacchiroli. The ultimate Debian database: Consoli-
dating bazaar metadata for quality assurance and data mining. In MSR 2010: 7th

IEEE Working Conference on Mining Software Repositories, pages 52�61. IEEE, 2010.

[120] Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh - a locality sensitive hash.
In CTC, 4th Cybercrime and Trustworthy Computing Workshop, pages 7�13. IEEE,
2013.

[121] Openaire. https://www.openaire.eu/, 2014.

[122] Opscode. Chef. http://www.opscode.com/chef/.

[123] OSGi Alliance. OSGi Service Platform, Release 3. IOS Press, Inc., 2003.

[124] Bryan O'Sullivan. Making sense of revision-control systems. Communications of the

ACM, 52(9):56�62, 2009.

[125] Yoann Padioleau, Julia L Lawall, and Gilles Muller. Understanding collateral evolu-
tion in linux device drivers. In ACM SIGOPS Operating Systems Review, volume 40,
pages 59�71. ACM, 2006.

[126] Norman Paskin. Digital object identi�er (doi) system. Encyclopedia of library and

information sciences, 3:1586�1592, 2010.

[127] Ken Pepple. Deploying openstack. O'Reilly Media, Inc., 2011.

https://www.openaire.eu/
http://www.opscode.com/chef/


References 121

[128] Martin Pinzger, Gabriele Bavota, and Andrian Marcus, editors. IEEE 24th Interna-

tional Conference on Software Analysis, Evolution and Reengineering, SANER 2017,

Klagenfurt, Austria, February 20-24, 2017. IEEE Computer Society, 2017.

[129] Clément Quinton, Romain Rouvoy, and Laurence Duchien. Leveraging feature mod-
els to con�gure virtual appliances. In Proceedings of the 2nd International Work-

shop on Cloud Computing Platforms, CloudCP '12, pages 2:1�2:6, New York, NY,
USA, 2012. ACM.

[130] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal�The International Journal on Very Large Data Bases,
10(4):334�350, 2001.

[131] Eric S. Raymond. The cathedral and the bazaar. O'Reilly, 2001.

[132] Eric S Raymond. The art of Unix programming. Addison-Wesley Professional, 2003.

[133] Gregorio Robles, Jesus M Gonzalez-Barahona, and Martin Michlmayr. Evolution
of volunteer participation in libre software projects: evidence from debian. In
Proceedings of the 1st International Conference on Open Source Systems, pages 100�
107, 2005.

[134] David Rosenthal, Rob Baxter, and Laurence Field. Towards a
shared vision of sustainability for research and e-infrastructures.
https://www.eudat.eu/news/towards-shared-vision-sustainability-research-and-e-
infrastructures, 24-25 September 2014. EUDAT conference.

[135] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
Chaos: Scale-out graph processing from secondary storage. In Proceedings of the

25th Symposium on Operating Systems Principles, pages 410�424. ACM, 2015.

[136] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph
processing using streaming partitions. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, pages 472�488. ACM, 2013.

[137] Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach. Science of

computer programming, 74(7):470�495, 2009.

[138] Hitesh Sajnani, Vaibhav Saini, Je�rey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. Sourcerercc: Scaling code clone detection to big-code. In Software Engi-

neering (ICSE), 2016 IEEE/ACM 38th International Conference on, pages 1157�1168.
IEEE, 2016.

[139] Peter H Salus. A quarter century of UNIX. Addison-Wesley Reading, 1994.

[140] Philippe Schnoebelen. Revisiting ackermann-hardness for lossy counter machines
and reset petri nets. In MFCS, volume 6281 of Lecture Notes in Computer Science,
pages 616�628. Springer, 2010.

[141] Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode. http://www.

gecode.org/.

http://www.gecode.org/
http://www.gecode.org/


122 References

[142] Charles M Schweik and Robert C English. Internet success: a study of open-source

software commons. MIT Press, 2012.

[143] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio Schiavoni,
and Jean-Bernard Stefani. Recon�gurable SCA applications with the FraSCAti plat-
form. In IEEE SCC: International Conference on Services Computing, pages 268�275,
2009.

[144] Megan Squire and David Williams. Describing the software forge ecosystem. In
System Science (HICSS), 2012 45th Hawaii International Conference on, pages 3416�
3425. IEEE, 2012.

[145] Richard Stallman. Free software, free society: Selected essays of Richard M. Stallman.
GNU Press, 2002.

[146] Michael Stapelberg. Debian Code Search. B.S. thesis, Hochschule Mannheim, 2012.

[147] Ralph E. Steuer. Multiple Criteria Optimization: Theory, Computation and Applica-

tion. Wiley, 1986.

[148] Kate Stewart, Phil Odence, and Esteban Rockett. Software package data exchange
(SPDX�) speci�cation. International Free and Open Source Software Law Review,
2(2):191�196, 2011.

[149] Michael Stonebraker and Lawrence A. Rowe. The design of postgres. SIGMOD Rec.,
15(2):340�355, June 1986.

[150] Peter J. Stuckey, Maria Garcia de la Banda, Michael Maher, John Slaney, Zoltan Som-
ogyi, Mark Wallace, and Toby Walsh. The G12 project: Mapping solver independent
models to e�cient solutions. In ICLP 2005: Logic Programming, 21st International

Conference, volume 3668 of Lecture Notes in Computer Science, pages 9�13, 2005.

[151] M. M. Mahbubul Syeed, Imed Hammouda, and Tarja Systä. Evolution of open source
software projects: A systematic literature review. JSW, 8(11):2815�2829, 2013.

[152] Clemens Szyperski. Component Software. Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

[153] Ralf Treinen and Stefano Zacchiroli. Solving package dependencies: from EDOS to
Mancoosi, 2008.

[154] Ralf Treinen and Stefano Zacchiroli. Common upgradeability description format
(cudf) 2.0. Technical report, Mancoosi project, November 2009.

[155] Ralf Treinen and Stefano Zacchiroli. Expressing advanced user preferences in com-
ponent installation. In IWOCE 2009: International Workshop on Open Component

Ecosystems, pages 31�40. ACM, 2009.

[156] Ralf Treinen and Stefano Zacchiroli. Expressing advanced user preferences in com-
ponent installation. In IWOCE 2009: International Workshop on Open Component

Ecosystem, pages 31�40. ACM, 2009.

[157] Paulo Trezentos, Inês Lynce, and Arlindo Oliveira. Apt-pbo: Solving the software
dependency problem using pseudo-boolean optimization. In ASE'10: Automated

Software Engineering, pages 427�436. ACM, 2010.



References 123

[158] V Trimble and JA Ceja. Productivity and impact of astronomical facilities: A recent
sample. Astronomische Nachrichten, 331(3):338�345, 2010.

[159] Chris Tucker, David Shu�elton, Ranjit Jhala, and Sorin Lerner. OPIUM: Optimal
package install/uninstall manager. In ICSE'07: International Conference on Soft-

ware Engineering, pages 178�188. IEEE, 2007.

[160] Frederic Tuong, Fabrice Le Fessant, and Thomas Gazagnaire. OPAM: an OCaml
package manager. In SIGPLAN OCaml Users and Developers Workshop, 2012.

[161] Unesco persist programme. https://unescopersist.org/, 2015.

[162] Herbert Van de Sompel and Andrew Treolar. A perspective on archiving the
scholarly web. Proceedings of the International Conference on Digital Preservation

(iPRES), pages 194�198, 2014.

[163] Richard Van Noorden, Brendan Maher, and Regina Nuzzo. The top 100 papers.
Nature, pages 550�553, October4 2014.

[164] Jérôme Vouillon, Mehdi Dogguy, and Roberto Di Cosmo. Easing software compo-
nent repository evolution. In Proceedings of the 36th International Conference on

Software Engineering, pages 756�766. ACM, 2014.

[165] Steve Weber. The success of open source. Harvard University Press, 2004.

[166] Joel West and Scott Gallagher. Challenges of open innovation: the paradox of �rm
investment in open-source software. R&d Management, 36(3):319�331, 2006.

[167] David A Wheeler. More than a gigabuck: Estimating GNU/Linux's size. http:

//www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.1.03.html, 2001.

[168] Stefano Zacchiroli. The debsources dataset: Two decades of Debian source code
metadata. In MSR 2015: The 12th Working Conference on Mining Software Reposi-

tories, pages 466�469. IEEE, 2015.

[169] Zenodo. https://zenodo.org/, 2013.

[170] Justin Zobel, Alistair Mo�at, and Ron Sacks-Davis. Searching large lexicons for
partially speci�ed terms using compressed inverted �les. In Proceedings of the

19th International Conference on Very Large Data Bases, pages 290�301. Morgan
Kaufmann Publishers Inc., 1993.

[171] Jakub Zwolakowski. A formal approach to distributed application synthesis and

deployment automation. PhD thesis, University Paris Diderot, France, 2015.

https://unescopersist.org/
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.1.03.html
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.1.03.html
https://zenodo.org/


Part II

Curriculum Vitae

124



Chapter 7

Detailed curriculum vitae and list

of publications

Due to local requirements this chapter is in French.

For the most part it covers facts about scienti�c

artifacts that are reported using their original

(English) names.

Données personnelles

Stefano Zacchiroli
né le 16 mars 1979 à Bologne, Italie
marié, un enfant

Adresse professionnelle:

Laboratoire IRIF
bureau 3019
Bâtiment Sophie Germain
8 place Aurélie Nemours
75013 Paris

Email: zack@upsilon.cc
Page web: http://upsilon.cc/zack
Fingerprint GPG: 4900 707D DC5C 07F2 DECB 0283 9C31 503C 6D86 6396

Langues

Italien langue maternelle (ILR 5�native or bilingual pro�ciency)

Français lu, écrit et parlé couramment (ILR 4�full professional pro�ciency)

Anglais lu, écrit et parlé couramment (ILR 4�full professional pro�ciency)

Espagnol compréhension de base (ILR 1�elementary pro�ciency)

Emplois dans l'université et la recherche

2011�présent maître de conférences en informatique, Laboratoire IRIF, Université Paris
Diderot

125

mailto:zack@upsilon.cc
http://upsilon.cc/zack


126 Detailed curriculum vitae and list of publications

2011 post-doc en informatique, Laboratoire PPS, Université Paris Diderot, projet Aeolus;
directeur: Prof. Roberto Di Cosmo

2008�2011 post-doc en informatique, Laboratoire PPS, Université Paris Diderot, projet
Mancoosi; directeur: Prof. Roberto Di Cosmo

2007 post-doc en informatique, Département d'Informatique, Université de Bologne, Italie;
directeur: Prof. Fabio Vitali

2006 chercheur invité, Département d'Informatique, Université Brown, Providence, RI,
États-Unis; directeur: Prof. David G. Durand

2004�2007 titulaire de contrat de recherche (assegno di ricerca), Département d'Informatique,
Université de Bologne, Italie

Formation

2007 Doctorat en Informatique, Université de Bologne (Italie). Thèse e�ectuée au Dé-
partement d'Informatique. Titre: User Interaction Widgets for Interactive Theorem

Proving. Directeur: Andrea Asperti. Jury: Christoph Benzmueller, Marino Miculan,
Roberto Giacobazzi, Simonetta Balsamo, Gianluigi Ferrari, Giovanni Pau.

2003 Laurea (équivalent Master 2), Université de Bologne (Italie). Dissertation e�ec-
tuée au Département d'Informatique. Titre: Web services per il supporto alla di-

mostrazione interattiva. Directeur: Andrea Asperti. Mention: 110/110, cum laude.

Recherche

Comités des conférences, workshops, revues

Revues internationales

2015�présent membre du comité de lecture du blog de la revue IEEE Software (http:
//blog.ieeesoftware.org/)

2013�présent membre du comité de lecture de la revue Journal of Peer Production (http:
//peerproduction.net/)

2013 membre du comité de lecture de la revue Journal of Web Engineering, Rinton
Press, special issue au sujet des technologies web (http://www.rintonpress.com/
journals/jwe/

2012 membre du comité de lecture de la revue Science of Computer Programming, Else-
vier, special issue au sujet des technologies web (http://www.journals.elsevier.
com/science-of-computer-programming)

2011 membre du comité de lecture de la revue Software: Practice and Experience, Wi-
ley, special issue au sujet des technologies web (http://onlinelibrary.wiley.com/
journal/10.1002/(ISSN)1097-024X)

Conférences et workshops internationaux

2017 free/open source software chair de MSR 2017 (International Conference on Mining
Software Repositories)

http://blog.ieeesoftware.org/
http://blog.ieeesoftware.org/
http://peerproduction.net/
http://peerproduction.net/
http://www.rintonpress.com/journals/jwe/
http://www.rintonpress.com/journals/jwe/
http://www.journals.elsevier.com/science-of-computer-programming
http://www.journals.elsevier.com/science-of-computer-programming
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-024X
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-024X
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2017 proceedings chair de OSS 2017 (International Conference on Open Source Systems)

2013,2015�présent membre du comité de programme de OpenSym (International Sym-
posium on Open Collaboration) http://www.opensym.org/

2014�présent membre du comité de programme de OSS (International Conference on
Open Source Systems)

2013�présent membre du comité de programme de RelEng (International Workshop on
Release Engineering) http://releng.polymtl.ca/

2011�2015 co-président du comité de programme de SAC WT (ACM Symposium on Ap-
plied Computing, track Web Technologies) http://www.acm.org/conferences/sac/

2012�2013 membre du comité de programme de OSDOC (Workshop Open Source and
Design of Communication)

2010 membre du comité de programme de SAC WT (ACM Symposium on Applied Com-
puting, track Web Technologies) http://www.acm.org/conferences/sac/

2010 membre du comité d'organisation de la compétition MISC 2010: Mancoosi Interna-

tional Solver Competition

2009 publicity chair de IWOCE 2009 (International Workshop on Open Component Ecosys-
tems)

Conférences et workshops nationaux

2009�2010,2012,2015�présent membre du comité de programme de CONFSL (conférence
italienne sur le logiciel libre) http://www.confsl.it/

2015 membre du comité de programme de SCORE-it 2015 (Italian Student Contenst in
Software Engineering)

Rapporteur

En dehors de ma participation dans des comités de programme, pendant les 5 derniers
années j'ai aussi été rapporteur pour les revues internationales suivantes:1

� IEEE Software

� Information Technology (De Gruyter Open)

� Journal of Systems and Software (Elsevier)

� PeerJ

� Science of Computer Programming (Elsevier)

� Software: Practice and Experience (Wiley)

Thèses J'ai été rapporteur pour les thèses de doctorat suivantes:

2016 Jacopo Soldani,Modelling, analysing, and reusing composite cloud applications, Uni-
versité de Pise (Italie), dirigé par Antonio Brogi

1https://publons.com/author/705657/stefano-zacchiroli#stats

http://www.opensym.org/
http://releng.polymtl.ca/
http://www.acm.org/conferences/sac/
http://www.acm.org/conferences/sac/
http://www.confsl.it/
https://publons.com/author/705657/stefano-zacchiroli#stats
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Conseils scienti�ques et responsabilités collectives

2017�présent membre du conseil scienti�que, projet européen Horizon 2020 CROSS-
MINER (https://www.crossminer.org/), grant No. 732223

2016�présent membre du conseil scienti�que, UFR Informatique, Université Paris Diderot

2016�présent membre du conseil consultatif, association Center for the Cultivation of

Technology, Germany (https://techcultivation.org)

2016�présent membre du conseil consultatif, entreprise Purism, USA (https://puri.sm)

2013�présent membre du conseil consultatif, entreprise Bitergia, Spain (https://bitergia.
com)

2013�présent membre du comité de déontologie, association Nos oignons, France (https:
//nos-oignons.net)

2014�2017 membre du conseil d'administration, association Open Source Initiative, USA
(http://www.opensource.org)

2010�2013 Debian Project Leader , projet Debian (http://www.debian.org)

2013 membre du groupe de travail de l'agence publique pour le numérique du gouverne-
ment italien (Agenzia per l'Italia Digitale) sur les critères d'acquisition des logiciels
dans l'administration publique

2012 membre du comité scienti�que pour l'agenda numérique de la ville de Bologne
(Italie)

2011 membre du group de travail W3C Social Web Incubator (http://www.w3.org/2005/
Incubator/socialweb)

2007�2011 membre du group de travail W3C XML Schema (http://www.w3.org/XML/
Schema)

2007�2011 membre du conseil scienti�que du Master en Technologies du Logiciel Libre,
Université de Bologne (Italie)

Distinctions

2014�2018 titulaire de la PEDR (Prime d'Encadrement Doctoral et de Recherche) 2014�
2018

2015 récompensé par le prix O'Reilly Open Source Award2

2014 récompensé avec un Flash Grant de la fondation Shuttleworth3

2012 Best Paper Award pour l'article « Learning from the Future of Component Repos-
itories », CBSE 2012: 15th International ACM SIGSOFT Symposium on Component
Based Software Engineering

2011 Distinguished Paper Award pour l'article « MPM: a modular package manager »,
CBSE 2011: 14th International ACM SIGSOFT Symposium on Component Based Soft-
ware Engineering

2https://en.wikipedia.org/wiki/O%27Reilly_Open_Source_Award
3https://www.shuttleworthfoundation.org/fellows/flash-grants/

https://www.crossminer.org/
https://techcultivation.org
https://puri.sm
https://bitergia.com
https://bitergia.com
https://nos-oignons.net
https://nos-oignons.net
http://www.opensource.org
http://www.debian.org
http://www.w3.org/2005/Incubator/socialweb
http://www.w3.org/2005/Incubator/socialweb
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
https://en.wikipedia.org/wiki/O%27Reilly_Open_Source_Award
https://www.shuttleworthfoundation.org/fellows/flash-grants/
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Participation à des projets de recherche

2016�présent co-fondateur et CTO (Chief Technology O�cier) du projet Inria Software
Heritage (https://www.softwareheritage.org)

2016�présent participant au projet ANR Colis: « Correctness of Linux Scripts »

2010�2014 responsable du site Université Paris Diderot, projet ANR Aeolus: « Maîtriser
la complexité du Cloud Computing »

2010�2013 participant au projet de recherche FEDER DORM: « Derived Objects Repos-
itory Manager », projet �nancé par le pôle de compétitivité Île de France, Groupe
Thématique Logiciel Libre

2008�2011 participant au projet de recherche européen FP7 Mancoosi: « MANaging the
COmplexity of the Open Source Infrastructure »

2005�2007 participant au projet de recherche européen (ISTworking group) TYPES (http:
//www.cse.chalmers.se/research/group/logic/Types)

2005�2006 participant au projet de recherche PRIN (programme de recherche national
italien, eq. ANR) McTAFI: « Méthodes Constructives pour la Topologie Algébrique »

2002�2006 participant au projet de recherche européen FP6 MoWGLI: « Mathematics on
the Web: Get It by Logics and Interfaces »

2003 participant au projet de recherche européen FP5 MKM-NET: « Mathematical Knowl-
edge Management Network »

Enseignement

2015�présent cours, Conduite de projet, Licence 3 en informatique, Université Paris
Diderot

2014�présent cours et TD/TP, Logiciels libres, Master 1 en informatique, Université Paris
Diderot

2011�2015 cours, Programmation système, Master 1 en informatique, Université Paris
Diderot

2011�2015 cours et TD, Génie Logiciel Avancé, Master 1 en Informatique, Université
Paris Diderot

2013�2014 cours, Méthodes de test, Master 2 en informatique, Université Paris Diderot

2013�2014 cours, Logiciels libres, Licence 2 (tous parcours scienti�ques), Université
Paris Diderot

2012�2014 cours, Programmation fonctionnelle, Licence 3 en informatique, Université
Paris Diderot

2012�2014 cours, Projet long, Master 1 en informatique, Université Paris Diderot

2011-2014 cours, Environnements et outils de développement, Licence 3 en informa-
tique, Université Paris Diderot

2011�2014 TP, Programmation objet: concepts avancés, Master 2 en informatique, Uni-
versité Paris Diderot

https://www.softwareheritage.org
http://www.cse.chalmers.se/research/group/logic/Types
http://www.cse.chalmers.se/research/group/logic/Types
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2008�2010 cours, Basi di Dati e Programmazione Web (bases de données et programma-
tion web), Master en Technologies du Logiciel Libre, Université de Bologne, Italie

2007�2010 cours, Logica Matematica (logique mathématique), apprentissage en ligne,
Licence 1 en informatique, Université de Urbino, Italie

2004�2008 TP, Programmazione (Programmation), Licence 1 en informatique, Université
de Bologne, Italie

2006�2007 cours, Laboratorio di Sistemi Informativi (laboratoire des bases de données),
Master en Technologies du Logiciel Libre, Université de Bologne, Italie

2004�2007 cours, Laboratorio di Sistemi Operativi (laboratoire des systèmes d'exploitation),
Master en Technologies du Logiciel Libre, Université de Bologne, Italie

Encadrement

Thèses de doctorat

2017�présent co-direction de thèse, Antoine Pietri, Inria

2011�2014 co-direction de thèse, Jakub Zwolakowski, Université Paris Diderot

Stages

2017 direction de stage Master 2, Morane Gruenpeter, Inria

2017 direction de stage Master 2, Sushant Mukhija, Inria

2016 direction de stage Master 2, Quentin Campos, Inria

2016 direction de stage Master 1, Jordi Bertran De Balanda, Inria

2015 direction de stage Licence 3, Clément Schreiner, Inria

2014 direction de stage Master 2 (tesi di laurea), Giacomo Mantani, Université de Bologne
(Italie)

2013 direction de stage Master 1, Matthieu Caneill, Inria

2008 direction de stage Master 2 (tesi di laurea), Edoardo Gargano, Université de Bologne
(Italie)

2006 direction de stage Master 2 (tesi di laurea), Paolo Marinelli, Université de Bologne
(Italie)

Autres

2012�2013 co-encadrement post-doc, Michael Lienhardt, projet ANR Aeolus, Université
Paris Diderot

2015 encadrement Google Summer of Code, Orestis Ioannou, projet Debian

2014 encadrement FOSS Outreach Program, Jingjie Jiang, projet Debian

2014 encadrement Google Summer of Code, Joseph Bisch, projet Debian

2013 encadrement Google Summer of Code, Boris Bobrov, projet Debian

2008 encadrement Google Summer of Code, Christian von Essen, projet Debian

2007 encadrement Google Summer of Code, Margerita Manterola, projet Debian
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Publications

Revues internationales, avec comité de lecture

1. The Debsources Dataset: Two Decades of Free and Open Source Softwarewith Matthieu
Caneill, Daniel M. Germán. In Empirical Software Engineering, Volume 22, pp. 1405-
1437, June, 2017. ISSN 1382-3256, Springer.
DOI 10.1007/s10664-016-9461-5.

2. Aeolus: a Component Model for the Cloud with Roberto Di Cosmo, Jacopo Mauro,
Gianluigi Zavattaro. In Information and Computation, Volume 239, pp. 100-121.
2014. ISSN 0890-5401, Elsevier.
DOI 10.1016/j.ic.2014.11.002.

3. Learning from the Future of Component Repositories with Pietro Abate, Roberto Di
Cosmo, Ralf Treinen. In Science of Computer Programming, Volume 90, Part B, pp.
93-115. ISSN 0167-6423, Elsevier, 2014.
DOI 10.1016/j.scico.2013.06.007.

4. A Modular Package Manager Architecture with Pietro Abate, Roberto Di Cosmo, Ralf
Treinen. In Information and Software Technology, Volume 55, Issue 2, pp. 459-474.
ISSN 0950-5849, Elsevier, February 2013.
DOI 10.1016/j.infsof.2012.09.002.

5. Dependency Solving: a Separate Concern in Component Evolution Management with
Pietro Abate, Roberto Di Cosmo, Ralf Treinen. In Journal of Systems and Software,
Volume 85, Issue 10, pp. 2228-2240. ISSN 0164-1212, Elsevier, October 2012.
DOI 10.1016/j.jss.2012.02.018.

6. Constrained Wiki: The WikiWay to Validating Content with Angelo Di Iorio, Francesco
Draicchio, Fabio Vitali. In Advances in Human-Computer Interaction, Volume 2012,
Article ID 893575, pp. 1-19. Hindawi, 2012
DOI 10.1155/2012/893575.

7. Supporting Software Evolution in Component-Based FOSS Systems with Roberto Di
Cosmo, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio. In Science of
Computer Programming, Volume 76, Issue 12, pp. 1144-1160. ISSN 0167-6423,
Elsevier, 2011.
DOI 10.1016/j.scico.2010.11.001.

8. Towards the uni�cation of formats for overlapping markup with Paolo Marinelli,
Fabio Vitali. In New Review of Hypermedia and Multimedia, Volume 14, Issue 1,
January 2008, pp. 57-94. Taylor and Francis, ISSN 1361-4568.
DOI 10.1080/13614560802316145.

9. Spurious Disambiguation Errors and How to Get Rid of Them with Claudio Sacerdoti
Coen. In Mathematics in Computer Science, Volume 2, Number 2, pp. 355-378,
December 2008. Springer Birkhäuser, ISSN 1661-8270.
DOI 10.1007/s11786-008-0058-2.

10. User Interaction with the Matita Proof Assistant with Andrea Asperti, Claudio Sacer-
doti Coen, Enrico Tassi. In Journal of Automated Reasoning, Volume 39, Number 2.
Springer Netherlands, ISSN 0168-7433, pp. 109-139, 2007.
DOI 10.1007/s10817-007-9070-5.

http://upsilon.cc/~zack/research/publications/debsources-ese-2016.pdf
http://link.springer.com/journal/10664
https://link.springer.com/article/10.1007%2Fs10664-016-9461-5
https://link.springer.com/article/10.1007%2Fs10664-016-9461-5
http://upsilon.cc/~zack/research/publications/ic-2014-aeolus.pdf
http://www.journals.elsevier.com/information-and-computation
http://www.sciencedirect.com/science/article/pii/S0890540114001424
http://upsilon.cc/~zack/research/publications/scp2013-futures.pdf
http://www.elsevier.com/locate/scico/
http://www.sciencedirect.com/science/article/pii/S0167642313001561
http://www.sciencedirect.com/science/article/pii/S0167642313001561
http://upsilon.cc/~zack/research/publications/infsof2012-mpm.pdf
http://www.journals.elsevier.com/information-and-software-technology/
http://www.sciencedirect.com/science/article/pii/S0950584912001851
http://upsilon.cc/~zack/research/publications/jss2012-concern.pdf
http://www.journals.elsevier.com/journal-of-systems-and-software/
http://www.sciencedirect.com/science/article/pii/S0164121212000477
http://upsilon.cc/~zack/research/publications/ahci2012-wiki.pdf
http://www.hindawi.com/journals/ahci/
http://www.hindawi.com/journals/ahci/2012/893575/
http://upsilon.cc/~zack/research/publications/scp2010-evolution.pdf
http://www.elsevier.com/locate/scico/
http://www.elsevier.com/locate/scico/
http://www.sciencedirect.com/science/article/pii/S0167642310002005
http://upsilon.cc/~zack/research/publications/nrhm-overlapping-conversions.pdf
http://www.tandf.co.uk/journals/titles/13614568.asp
http://www.informaworld.com/smpp/title~content=t713599880~db=all~tab=issueslist~branches=14#v14
http://www.informaworld.com/smpp/title~content=g903097087~db=all
http://www.informaworld.com/smpp/content~db=all?content=10.1080/13614560802316145
http://www.tandf.co.uk/
http://www.informaworld.com/smpp/title~content=t713599880~link=cover
http://upsilon.cc/~zack/research/publications/mcs-disambiguation-errors.pdf
http://www.springerlink.com/content/1661-8270
http://www.springerlink.com/content/1p816h3610g8k854/
http://www.springerlink.com/content/1661-8270
http://upsilon.cc/~zack/research/publications/matita.pdf
http://www-unix.mcs.anl.gov/JAR/
http://springerlink.metapress.com/content/h81468706x24/
http://www.springerlink.com/content/0168-7433
http://springerlink.metapress.com/content/y4wt440q28136q47
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Éditorials

1. Editorial with Angelo Di Iorio, Davide Rossi. In Journal of Web Engineering, Volume
14, Number 1-2, pp. 1-2. ISSN 1540-9589, Rinton Press, 2014.

2. Web Technologies: Selected and extended papers from WT ACM SAC 2012 with An-
gelo Di Iorio, Davide Rossi. In Science of Computer Programming, Volume 94, Part
1, pp. 1-2. ISSN 0167-6423, Elsevier, 2014.
DOI 10.1016/j.scico.2014.03.001.

3. Editorial with Angelo Di Iorio, Davide Rossi. In Software: Practice and Experience,
Volume 43, Issue 12, pp. 1393-1394. ISSN 1097-024X, Wiley, 2013.
DOI 10.1002/spe.2169.

Chapitres de livre

1. Web Semantics via Wiki Templating with Angelo Di Iorio, Fabio Vitali. Chapter 34
of Handbook of research on Web 2.0, 3.0 and x.0: technologies, business and social
applications. San Murugesan Ed., Information Science Reference, November 2009,
ISBN 978-1605663845.

Conférences internationales, avec comité de lecture

1. Software Heritage: Why and How to Preserve Software Source Code with Roberto Di
Cosmo. To appear in Proceedings of iPRES 2017: 14th International Conference on
Digital Preservation, Kyoto, Japan, September 2017, 10 pages.

2. Automatic Deployment of Services in the Cloud with Aeolus Blender with Roberto
Di Cosmo, Antoine Eiche, Jacopo Mauro, Gianluigi Zavattaro, Jakub Zwolakowski.
In proceedings of ICSOC 2015: 13th International Conference on Service Oriented
Computing, November 16-19, 2015, Goa, India. ISBN 978-3-662-48615-3, pp. 397-
411, Springer-Verlag 2015.
DOI 10.1007/978-3-662-48616-0_28.

3. Automatic Application Deployment in the Cloud: from Practice to Theory and Back

with Roberto Di Cosmo, Michael Lienhardt, Jacopo Mauro, Gianluigi Zavattaro, Jakub
Zwolakowski. In proceedings of CONCUR 2015: 26th International Conference on
Concurrency Theory, September 1-4, 2015, Madrid, Spain. Leibniz International
Proceedings in Informatics (LIPIcs) 42, pp. 1-16, ISBN 978-3-939897-91-0, Schloss
Dagstuhl�Leibniz-Zentrum fuer Informatik 2015.
DOI 10.4230/LIPIcs.CONCUR.2015.1.

4. The Debsources Dataset: Two Decades of Debian Source Code Metadata with . In
proceedings of MSR 2015: The 12th Working Conference on Mining Software Repos-
itories, May 16-17, 2015, Florence, Italy. Co-located with ICSE 2015. ISBN ISBN 978-
0-7695-5594-2, pp. 466-469, IEEE 2015.
DOI 10.1109/MSR.2015.65.

5. Mining Component Repositories for Installability Issues with Pietro Abate, Roberto
Di Cosmo, Louis Gesbert, Fabrice Le Fessant, Ralf Treinen. In proceedings of MSR

http://upsilon.cc/~zack/research/publications/jwe-wt-2014-editorial.pdf
http://www.rintonpress.com/journals/jwe/
http://upsilon.cc/~zack/research/publications/scp-wt-2012-editorial.pdf
http://www.journals.elsevier.com/science-of-computer-programming/
http://www.sciencedirect.com/science/article/pii/S0167642314001051
http://upsilon.cc/~zack/research/publications/spe-wt-2011-editorial.pdf
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-024X
http://onlinelibrary.wiley.com/doi/10.1002/spe.2169/abstract
http://upsilon.cc/~zack/research/publications/web30-semantics-templating.pdf
http://www.amazon.com/Handbook-Research-Web-2-0-3-0/dp/1605663840
http://www.amazon.com/Handbook-Research-Web-2-0-3-0/dp/1605663840
http://upsilon.cc/~zack/research/publications/ipres-2017-software-heritage.pdf
https://ipres2017.jp/
http://upsilon.cc/~zack/research/publications/aeolus-icsoc-2015.pdf
http://icsoc.in/
http://link.springer.com/chapter/10.1007%2F978-3-662-48616-0_28
http://link.springer.com/chapter/10.1007%2F978-3-662-48616-0_28
http://upsilon.cc/~zack/research/publications/aeolus-concur-2015.pdf
http://mafalda.fdi.ucm.es/concur2015/
http://drops.dagstuhl.de/opus/volltexte/2015/5395/pdf/p001-01-dicosmo.pdf
http://upsilon.cc/~zack/research/publications/debsources-msr-2015.pdf
http://2015.msrconf.org/
http://2015.icse-conferences.org/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7180119
http://upsilon.cc/~zack/research/publications/distcheck-msr-2015.pdf
http://2015.msrconf.org/
http://2015.msrconf.org/
http://2015.msrconf.org/
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2015: The 12th Working Conference on Mining Software Repositories, May 16-17,
2015, Florence, Italy. Co-located with ICSE 2015. ISBN ISBN 978-0-7695-5594-2, pp.
24-33, IEEE 2015.
DOI 10.1109/MSR.2015.10.

6. Automated Synthesis and Deployment of Cloud Applications with Roberto Di Cosmo,
Michael Lienhardt, Ralf Treinen, Jakub Zwolakowski, Antoine Eiche, Alexis Agahi. In
proceedings of ASE 2014: 29th IEEE/ACM International Conference on Automated
Software Engineering, September 15-19, 2014, Vasteras, Sweden. ISBN 978-1-4503-
3013-8, pp. 211-222, ACM 2014.
DOI 10.1145/2642937.2642980.

7. Debsources: Live and Historical Views on Macro-Level Software Evolutionwith Matthieu
Caneill. In proceedings of ESEM 2014: 8th International Symposium on Empirical
Software Engineering and Measurement, September 18-19, 2014, Torino, Italy. ISBN
978-1-4503-2774-9, ACM 2014.
DOI 10.1145/2652524.2652528.

8. Aeolus: Mastering the Complexity of Cloud Application Deployment with Michel
Catan, Roberto Di Cosmo, Antoine Eiche, Tudor A. Lascu, Michael Lienhardt, Ja-
copo Mauro, Ralf Treinen, Gianluigi Zavattaro, Jakub Zwolakowski. In proceedings
of ESOCC 2013: Service-Oriented and Cloud Computing, 2nd European Conference,
Málaga, Spain, September 11-13, 2013. LNCS 8135, pp. 1-3, Springer-Verlag, 2013.
DOI 10.1007/978-3-642-40651-5_1.

9. Formal Aspects of Free and Open Source Software Components with Roberto Di
Cosmo, Ralf Treinen. In proceedings of FMCO 2012: HATS International School
on Formal Models for Components and Objects, Bertinoro, Italy, 24-28 September
2012. LNCS 7866, pp. 216-239, Springer-Verlag, 2013.
DOI 10.1007/978-3-642-40615-7_8.

10. Component Recon�guration in the Presence of Con�icts with Roberto Di Cosmo,
Jacopo Mauro, Gianluigi Zavattaro. In proceedings of ICALP 2013: 40th Interna-
tional Colloquium on Automata, Languages and Programming, Riga, Latvia, 8-12
July, 2013. LNCS 7966, pp. 187-198, Springer-Verlag, 2013.
DOI 10.1007/978-3-642-39212-2_19.

11. Why do software packages con�ict? with Cyrille Valentin Artho, Kuniyasu Suzaki,
Roberto Di Cosmo, Ralf Treinen. In proceedings of MSR 2012: 9th IEEE Working
Conference on Mining Software Repositories, co-located with ICSE 2012, IEEE, ISBN
978-1-4673-1760-3, pp. 141-150. June 2-3, Zurich, Switzerland.
DOI 10.1109/MSR.2012.6224274.

12. Towards a Formal Component Model for the Cloud with Roberto Di Cosmo, Gianluigi
Zavattaro. In proceedings of SEFM 2012: 10th International Conference on Software
Engineering and Formal Methods, Thessaloniki, Greece, 1-5 October, 2012. LNCS
7504, pp. 156-171, Springer-Verlag, 2012.
DOI 10.1007/978-3-642-33826-7_11.

13. Learning from the Future of Component Repositories with Pietro Abate, Roberto Di
Cosmo, Ralf Treinen. In proceedings of CBSE 2012: 15th International ACM SIGSOFT
Symposium on Component Based Software Engineering, Bertinoro, Italy, June 26-28,

http://2015.msrconf.org/
http://2015.msrconf.org/
http://2015.msrconf.org/
http://2015.icse-conferences.org/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7180064
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7180064
http://upsilon.cc/~zack/research/publications/zephyrus-ase-2014.pdf
http://ase2014.org/
http://dl.acm.org/citation.cfm?doid=2642937.2642980
http://upsilon.cc/~zack/research/publications/debsources-esem-2014.pdf
http://softeng.polito.it/ESEIW2014/ESEM/
http://dl.acm.org/citation.cfm?doid=2652524.2652528
http://upsilon.cc/~zack/research/publications/esocc2013-aeolus.pdf
http://www.springer.com/computer/swe/book/978-3-642-40650-8
http://link.springer.com/chapter/10.1007%2F978-3-642-40615-7_8
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Chapter 8

Dependency Solving: a Separate

Concern in Component Evolution

Management

This chapter contains the full text of the article

�Dependency Solving: a Separate Concern in
Component Evolution Management� [6].
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Abstract

Maintenance of component-based software platforms often has to face rapid evolution of
software components. Component dependencies, conflicts, and package managers with
dependency solving capabilities are the key ingredients of prevalent software maintenance
technologies that have been proposed to keep software installations synchronized with
evolving component repositories.

We review state-of-the-art package managers and their ability to keep up with evo-
lution at the current growth rate of popular component-based platforms, and conclude
that their dependency solving abilities are not up to the task.

We show that the complexity of the underlying upgrade planning problem is NP-
complete even for seemingly simple component models, and argue that the principal
source of complexity lies in multiple available versions of components. We then discuss
the need of expressive languages for user preferences, which makes the problem even
more challenging.

We propose to establish dependency solving as a separate concern from other upgrade
aspects, and present CUDF as a formalism to describe upgrade scenarios. By analyzing
the result of an international dependency solving competition, we provide evidence that
the proposed approach is viable.

Keywords: component, dependency solving, software evolution, package management,
open source, competition

1. Introduction

A program that is used and that as an implementation of its specification reflects
some other reality, undergoes continual change or becomes progressively less useful.
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The above law of Continuing Change [20] applies to all evolving software systems, which
are deemed to be the vast majority of existing systems [7]. The advent of Component-
Based Software Engineering [6, 36] did not affect this fundamental truth: mutatis mu-
tandis continuing change also holds for component-based systems [21]. The diffusion of
rapidly evolving component-intensive software platforms—i.e. platforms where the num-
ber of components is in the tens or even hundreds of thousands—has raised the quality
requirements for automatic tools that maintain component installations on behalf of
users, be them developers, architects, administrators, or final users empowered to assem-
ble components.

Component-intensive platforms are commonplace: FOSS (Free and Open Source Soft-
ware) distributions (where components are called “packages”), development platforms
like Eclipse and Apache Maven [9, 25] (which call components “plugins”), OSGi [29]
(“bundles”), CMS communities (“add-ons”), Web browsers (“extensions”), and countless
others. Despite apparent differences in terminology, all these platforms share concepts,
properties, and problems. For instance, components have expectations on the deploy-
ment context: they may need other components to function properly—declaring this fact
by means of dependencies—and may be incompatible with some other components—
declaring this fact by means of conflicts. Those expectations must be respected not only
at initial deployment-time, but also at each component release and for each individual
component: a new version of a component cannot be deployed if its expectations are not
met on the target system.

To maintain component assemblies, (semi-)automatic component manager applica-
tions are used to perform component installation, removal, and upgrades on target
machines—we use the term upgrade to refer to any combination of those actions. Ex-
amples of component managers are as commonplace as component-intensive platforms:
package managers, such as APT or Aptitude used in FOSS distributions to manage
packages; P2 [19], used in Eclipse to deal with plugins; OSGi resolvers, which perform
component deployment and configuration. These tools—called generically package man-
agers in the following—incorporate numerous functionalities: trusted retrieval of com-
ponents from remote repositories; planning of upgrade paths in fulfillment of deployment
expectations (also known as dependency solving); user interaction to allow for interactive
tuning of upgrade plans; and the actual deployment of upgrades by removing and adding
components in the right order, aborting the operation if problems are encountered at
deploy-time [10].

In contexts where the pace of component releases is rapid (e.g. FOSS [31, 14, 1])
the quality demand on package managers, and in particular on dependency solving, is
very high. Package managers should: (1) devise upgrade plans that are correct (i.e. no
plan that violates component expectations is proposed) and complete (i.e. every time a
suitable plan exists, it can be found); (2) have performances that scale up gracefully at
component repositories growth; (3) empower users to express preferences on the desired
component configuration when several options exist, which is often the case. Surprisingly,
all mainstream component manager applications the authors are aware of fail to address
one or several of those concerns. Not addressing them is far from being a purely academic
exercise, as Figures 1 and 2 show. Although anecdotal those and similar examples,
which populate the experience of everyday package manager users, show that state-
of-the-art component managers are short of fulfilling the aforementioned requirements.
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# aptitude upgrade
1163 packages upgraded , 633 newly installed ,
195 to remove and 0 not upgraded.
The following packages have unmet dependencies:
[...]
open: 4892; closed: 4995; defer: 170; conflict: 86
No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies ...
open: 7592; closed: 7654; defer: 193; conflict: 89
open: 7798; closed: 7879; defer: 233; conflict: 89
open: 9938; closed: 9977; defer: 315; conflict: 89
No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies ...
open: 14915; closed: 14952; defer: 372; conflict: 89
No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies ...
open: 19880; closed: 19981; defer: 445; conflict: 89
No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies ...
open: 25017; closed: 24998; defer: 467; conflict: 90
No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies ...
open: 30110; closed: 29978; defer: 498; conflict: 91
No solution found within the allotted time. Try harder? [Y/n]n

Figure 1: Unexpected behaviour while using the legacy Aptitude package manager, on a FOSS system
on the Debian GNU/Linux distribution. The user attempts to upgrade all components in need of
upgrade on a machine equipped with the GNOME desktop environment and several LATEX packages.
The dependency solver loops and is unable to find a solution; after several attempts, the user gives up.
(See http://bugs.debian.org/590470; retrieved November 29th, 2010.)

Considering the recent popularity of dependency-based abstractions in Component Based
Software Engineering (CBSE, e.g. [17, 33, 11]), overlooking important dependency solving
requirements appears to be dangerous.

This work provides substantial coverage of concepts and problems that are common
in component managers equipped with automatic dependency solving abilities, for any
non-trivial component model. Understanding such problems is of paramount importance
because, in the context of component-intensive software platforms, software evolution is
observed by users through the lens of component releases and often judged by the pack-
age manager abilities to successfully deploy new releases. Therefore, to avoid software
evolution bottlenecks at the component deployment stage, we need to improve the ability
of our tools to plan component upgrades. Unfortunately, as we will show, the problem is
a hard one to tackle. In order to attack such a non-trivial and fairly overlooked problem,
this paper proposes to treat dependency solving as a separate concern of component
evolution and details the formalisms and technologies that are needed to enable such
separation.

Paper contributions and structure. In Section 2 we present the upgrade planning prob-
lem, or simply upgrade problem, in a general setting, showing that in any non-trivial
component model dependency solving is NP-complete. To tackle the problem, in Sec-
tion 3 we propose to treat dependency solving as a separate concern, in order to share
research and development efforts on upgrade planning. To that end, we need formalisms
to: (1) capture upgrade scenarios coming from different component models in a unifying,
well-defined semantics and (2) describe user preferences which are advanced enough to
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# aptitude install baobab
[...]
The following packages are BROKEN: gnome -utils
The following NEW packages will be installed: baobab
[...]
The following actions will resolve these dependencies:
Remove the following packages:

gnome gnome -desktop -environment libgdict -1.0 -6
Install the following packages:

libgnome -desktop -2 [2.22.3 -2 (stable )]
Downgrade the following packages:

gnome -utils [2.26.0 -1 (now) -> 2.14.0 -5 (oldstable )]
[...]
0 packages upgraded , 2 newly installed , 1 downgraded ,
180 to remove and 2125 not upgraded. Need to get 2442kB
of archives. After unpacking 536MB will be freed.
Do you want to continue? [Y/n/?]

Figure 2: Attempt to install a disk space monitoring utility (called baobab) using Aptitude. In response to
the request, the package manager proposes to downgrade the GNOME desktop environment all together
to a very old version compared to what is currently installed. As shown in Section 6 a trivial alternative
solution exists that minimizes system changes: remove a couple of dummy (or “meta”) packages.

cover realistic use cases, but yet simple enough to be efficiently dealt with by state-of-the-
art constraint solvers. Our proposals for those two formalisms are detailed in Sections 4
and 5. Section 6 validates the proposed approach by discussing an international depen-
dency solving competition—called MISC—which has been run exploiting the proposed
formalisms. Competition results show that state-of-the-art constraint solvers can eas-
ily outperform ad-hoc solvers embedded in mainstream package managers, confirming
the thesis that separation of concerns and reuse are not only feasible, but also a viable
strategy to improve upgrade planning and support component evolution.

2. Component Evolution and the Complexity of the Upgrade Problem

In this section we start by studying the complexity of the upgrade problem that
package managers for component-intensive software platforms have to face. An important
feature of the problem is that there is usually a multitude of possible choices. This has
two consequences:

• For any given user request, there potentially exists an exponential number of so-
lution candidates, which makes the problem NP-complete in all relevant cases (see
Sections 2.1 and 2.2).

• There might be an exponential number of actual solutions to a problem instance,
and we need a good way to pick the best among these solutions (see Section 2.3).

2.1. Complexity of the Upgrade Problem

A software component is a bundle of: (1) files that are to be installed on a target
machine, (2) configuration logic to be executed at various stages of deployment, and (3)
metadata which, among others, describe component expectations [10]. For the purpose of
this paper we focus only on metadata since this is the information used by package man-
agers to plan upgrades. There are different component models, but metadata contains
at least the following features:
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name: a component identifier that has a meaning over a time-line of releases;

version: an identifier of a specific release of a component that is meaningful relative to
a given name;

dependencies: components that must be installed to make a component usable.

The expressiveness of the dependency language varies, but at the very minimum allows
for a list of components that are required to be installed. More evolved models also allow
for disjunctions (alternatives) and version constraints (like “component c in any version
greater than 42”). Most component models also allow for:

conflicts: components that are not to be installed at the same time as the given com-
ponent. Conflicts may come with version constraints, similar to dependencies.

features: names of virtual components provided by a component. They may be used to
satisfy dependencies of other components and must not conflict with other installed
components.

We assume that each package is uniquely identified by its name n and version v, and
denote it as (n, v). A repository R is a set of components. An R-installation I is a set
of components I ⊆ R that has the properties of:

abundance: each package in I has its dependencies satisfied by packages in I;

peace: no package in I conflicts with another package in I.

The following theorem was proven, in a more specific context, in [12]:

Theorem 1. Satisfiability of package upgrade requests is NP-complete, provided the com-
ponent model features conflicts and disjunctive dependencies.

Proof. First, we remark that the problem is clearly in NP since, given a subset of the
repository, one can check in polynomial time that it satisfies abundance, peace, and the
specific user request.

To prove NP-completeness, we show how to reduce the well known NP-complete
problem 3-SAT to the upgrade problem. For this, we show that any instance of 3-SAT
can be encoded into a simple instance of the upgrade problem, consisting of a single
component installation request in an empty initial installation.

Let F = C1 ∧ . . . ∧ Cn be an instance of the 3-SAT problem, where each Ci is a
disjunction of three literals. We define a repository RF that contains:

• for every literal L occurring in F a package (L, 0) which conflicts with the package
whose name is the complement of L,

• for every clause Ci = L1
i ∨L2

i ∨L3
i occurring in F a package (Ci, 0) which depends

on the disjunction of the packages (L1
i , 0), (L2

i , 0), and (L3
i , 0),

• a package (F, 0) which depends on the conjunction of the packages (C1, 0), . . . , (Cn, 0).

It is easy to see that F has a solution iff there is an RF installation containing pack-
age (F, 0). Note that no sophisticated usage of versions is needed for this encoding: we
have used version 0 everywhere.
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The above proof makes essential use both of disjunctions in dependencies, and con-
flicts. In fact there are different ways how disjunctions in dependencies may appear:
through explicit alternatives (as used in the proof), features, or multiple versions of a
package. In fact, having both conflicts and disjunctions (in any form) are crucial for
NP-completeness, as the following theorem shows:

Theorem 2. Installability of a package in an empty environment is in PTIME in any
of the two following cases:

1. The component model does not allow for conflicts.
2. The component model does not allow for disjunctive dependencies or features, and

the repository does not contain multiple versions of packages.

Proof. We first recall that component installability can be encoded into Boolean sat-
isfiability [23]. Given a repository R, we construct a logical theory TR as follows: we
introduce, for every component or feature in R of name n and version v, a propositional
variable Xv

n. A dependency d of package (n, v) is translated into an implication Xv
n → d̄,

where d̄ is the logical formula representing the dependency d, obtained by replacing an
atomic dependency by the disjunction of all variables corresponding to components sat-
isfying that atomic dependency1. For every conflict (n′, v′) of a package (n, v) we add a
formula ¬Xv

n∨¬Xv′
n′ . If packages (n1, v1), . . . , (nk, vk) provide feature f of version v then

we add Xv
f → (Xv1

n1
∨ . . .∨Xvk

nk
). It is easy to see that TR∧Xv

n has a propositional model
iff there exists an R-installation that contains component (n, v). The formula TR ∧Xv

n

falls into particular classes in the two cases of the theorem:

1. If there are no alternatives in dependencies, no features, and no multiple ver-
sions of packages then all implications obtained from dependencies are of the form
X → (X1∧. . .∧Xn), which is equivalent to (X → X1), . . . , (X → Xn). Since clauses
obtained from conflicts are always binary, and since the formula Xv

n is unary, one
obtains a theory which is a set of unary and binary clauses. The PTIME results
follows since satisfiability of sets of unary and binary clauses is decidable in poly-
nomial time [32].

2. If there are no conflicts then one just has formulas (Xv
n → d̄). Since all occurrences

of literals in d̄ are positive, we can rewrite each of these formulas by transforming
d̄ into disjunctive normal form as a set of clauses of the form Xv

n → (L1∨ . . .∨Ln).
These are dual Horn clauses, that is clauses that contain at most one negative
literal. Satisfiability of sets of dual Horn clauses is again decidable in PTIME ([32],
who calls them weakly positive clauses).

2.2. Complexity in the Case of Component Evolution

The problem of package installation becomes significantly harder when one imposes
that old versions of packages have to be replaced by new versions of packages, instead
of just installing old and new version at the same time. This requirement appears in
different form in different component models:

1This disjunction is empty, yielding the formula ⊥, in case the package mentioned in the dependency
is absent from the repository.
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• The Debian package model allows to install only one version of a package at a time.

• In the RPM package model, it is a priori possible to install multiple versions of a
package at a time; however it is in practice almost always excluded by the fact that
different versions of a package install files with the same path on the file system,
and hence are in conflict with each other.

• The Eclipse model allows for an explicit singleton property in component meta-
data, with the semantics that only one version of that component must be installed.

In order to state a complexity result, we will consider in this subsection that com-
ponent installations must be flat, that is must not contain two packages with the same
name (which then would have different version). The complexity result stated in the
following theorem, however, applies equally to the other models mentioned above since
we may always require uniqueness of version for the packages used in the proof.

Theorem 3. Existence of a flat installation containing a component is NP-complete,
even when the component model does not allow for explicit conflicts, alternatives, and
features.

Proof. The problem is in NP for the same reason as in Theorem 1: one can check in
polynomial time for every subset of the repository whether it satisfies abundance, peace,
flatness, and the specific user request.

We show NP-completeness by giving a polynomial reduction of the 3-SAT problem.
Let F = C1∧. . .∧Cn be a problem instance, where each Ci is of the form Ci = L1

i∨L2
i∨L3

i .
We define a repository RF consisting of the following components:

• for each propositional variable X a package with name X, existing in versions 0
and 1. Each of these versions has no explicit conflicts or dependencies.

• for each clause Ci a package Ci in three versions 1, 2, and 3. None of them has
conflicts. If the literal Lji (j = 1, 2, 3) is a positive literal X then component (Ci, j)

depends on X(= 1). If the literal Lji is a negative literal ¬X then component
(Ci, j) depends on X(= 0).

• a package of name F and version 1 that depends on C1, . . . , Cn.

If there is a flat RF -installation containing (F, 1) then F is satisfiable : Any flat
installation may in particular contain at most one version of any package associated to a
propositional variable. Hence, a flatRF -installation I defines a propositional valuation αI
(if I does not contain any version of a package X then we may choose αI(X) arbitrarily),
and when I contains (F, 1) then αI obviously satisfied the 3-SAT instance F .

If F is satisfiable then there exists a flat RF -installation containing (F, 1) : Let α
be a solution of F . This means that one may choose, for any clause Ci, one index

s(i) ∈ {1, 2, 3} such that α satisfies the literal L
s(i)
i . We construct an RF -installation

from all the packages corresponding to propositional variables in the version according
to their respective truth value in α, the packages (L1, s(1)), . . . , (Ln, s(n)), and finally
the package (F, 1).
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In some sense, a dependency on a package with name n acts like an exclusive choice
in case of the flatness requirement on installations. If we have versions 1, 2 and 3 of
packages with name n, then an unqualified dependency on name n can be read as the
requirement on exactly one of (n, 1), (n, 2), (n, 3).

For the problem to be NP-complete, it is enough to have just two versions of each
component:

Corollary 1. Theorem 3 holds for repositories containing at most two versions per
package.

Proof. It is sufficient to replace in the above proof each of the components Ci by two
components, C1

i and C2
i , each of them coming in version 1 and 2:

• (C1
i , 1) depends on (X, v) corresponding to the first literal of Ci,

• (C1
i , 2) depends on C2

i ,

• (C2
i , 1) depends on (X, v) corresponding to the second literal of Ci,

• (C2
i , 2) depends on (X, v) corresponding to the third literal of Ci,

The component (F, 1) depends on C1
1 , . . . , C

1
n.

2.3. Dealing with exponentially many solutions

Having established the complexity of finding a solution to an upgrade problem, we
now turn our attention to the amount of existing solutions for any given user request. The
interest in analyzing that aspect stems from the observations that, among all possible
solutions, package managers generally try to offer to the user the “best” solution, at
least according to some predefined strategy. Indeed an often overlooked fact is that a
user request that consists of just a list of components to install, remove or upgrade may
have exponentially many solutions. This is closely related to the complexity results of the
previous section which rely on the fact that there is an exponential number of solution
candidates.

Example 1. Consider a repository R consisting of components qi, for 1 ≤ i ≤ n, in
versions 1 and 2, and a component p in version 1 depending on all of q1, . . . , qn in any
version. The initial installation contains each of the package qi in version 1, and we ask
to install package p, where installations have to be flat.

Any of the 2n configurations {(p, 1)} ∪ {(qi, i)|i ∈ 1 . . . n, 1 ≤ i ≤ 2} is a solution.

These 2n solutions are all pretty different from a user point of view. The solution that
keeps the originally initially version of all the qi may be preferred by “paranoid” users
who want to avoid unnecessary changes to the system (as it is often the case for system
administrators of critical production servers). The solution that changes all the qi to
their most recent version might be preferred by “trendy” users willing to have a system
as up to date as possible (which is the case for many desktop and developer users).

State of the art package managers try to handle this issue by incorporating hard-
wired criteria (most of which would give preference to the trendy solution above) and
sometimes provide a bit of flexibility by means of cumbersome mechanisms that let the
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user alter the standard solver behavior, like the pinning schema used by APT [28], or an
API for programming custom criteria in Smart2 and libzypp.3

Such ad-hoc mechanisms suffer from two main drawbacks: (1) they are package man-
ager specific and therefore cannot be shared among different tools, preventing the devel-
opment of common good practices in component deployment; (2) they are not expressive
enough to encode all but the simplest use cases, making it difficult to precisely specify
user needs. The right approach is—on the user side—to expose a high-level, solver in-
dependent, flexible mechanism to specify user preferences and—on the package manager
side—to enable solver externalization and reuse.

3. Dependency solving as a separate concern

We have seen how dependency solving is a difficult, recurrent, and apparently under-
estimated problem. Re-developing from scratch dependency solvers as soon as depen-
dencies and conflicts are introduced in yet another component model does not seem to
have not served well users of component based systems. We argue that an alternative,
more modular, approach is possible by treating dependency solving as a separate concern
from other component management concerns. The goal is to decouple the evolution [sic]
of dependency solving from that of specific package managers and component models.

We believe such a separation will benefit, at first, the involved scientific communities:
CBSE and constraint solving. The former will gain the attention of the latter and will
avoid to reinvent (solving) wheels, the latter will get access to a corpus of challenging
upgrade problems to better tune existing solvers and techniques. Later on, we posit
that synergies among the involved stakeholders will benefit final component users, by
improving dependency solving abilities in state-of-the art package managers. Our early
results seem to support these beliefs, as shown in Section 6.

To treat dependency solving as a separate concern, however, we need suitable ab-
stractions and technologies that allow to describe upgrade problems in a way which is
agnostic from specific component models and tools. In particular, we need ways to grasp
all the information that describe any given upgrade problem instance:

1. installed and available components—describing all known components (local and
remote) and information about which are currently installed;

2. user request—detailing the components that are requested to be installed, removed
or upgraded, possibly with version constraints;

3. user preferences—the criteria describing how a user wants to choose a preferred
solution out of the many possible ones.

In the following we present a Domain Specific Language (DSL)—called CUDF—able to
encode (1.) and (2.), as well as a formalism defined on top of it to grasp (3.). Taken
together they provide an unified way to capture all of the above in a unified way, which
is both independent from component model details and rigorously defined to enable
independent implementations of upgrade problem solvers. Having those devices available,

2http://labix.org/smart, retrieved December 2010
3http://en.opensuse.org/Portal:Libzypp, retrieved December 2010
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Figure 3: Modular package manager architecture

we can build adapters for each component platform and then build a modular solver
engine where solvers can be plugged in according to user needs. Even more so, solvers
can be run in parallel locally or outsourced (e.g. to solver farms in the “cloud”), in order
to provide the user with the best solution current techniques and technologies can find.

The resulting modular architecture is shown in Figure 3. In such an architecture sep-
aration of concerns is established as following: package manager developers may focus
on the killer features of their software (trust management, user interface and interaction,
transactional upgrade deployment, etc.) and stop worrying about dependency solving
issues; CUDF adapters are created for each component model and maintained by compo-
nent metadata architects, or by CUDF experts working with them; dependency solvers
are maintained by solver experts, who will see their technology gain many new fields
of application by just supporting one generic I/O format—CUDF—which comes with
a rigorous semantics, relieving the pain of interpreting the meaning of platform-specific
component metadata.

4. A unified description of upgrades

To enable treating dependency solving as a separate concern in component upgrade
planning, we need a language able to capture all relevant aspects of upgrade problem
instances. In this section we present a DSL called CUDF (for Common Upgrade Descrip-
tion Format), whose documents describe instances of the component upgrade problem.
The design of CUDF has been guided by a few general principles:
Platform independence. CUDF is a common format to describe upgrade scenarios
coming from diverse environments. As a consequence, CUDF makes no assumptions on
specific component model, version schema, dependency formalism, or package manager.
Solver independence. In contrast to encodings of inter-component relations which are
targeted at specific solver techniques (see Section 7), CUDF stays close to the original
problem, in order to preserve its structure and avoid bias towards specific solver.
Readability. CUDF is a compact plain text format which makes it easy for humans to
read upgrade scenario, and ease interoperability with package managers.4

4As evidence of the benefits of this choice, CUDF is routinely used by the Eclipse P2 team to reason
about upgrade scenarios, instead of the native XML encoding that comes with Eclipse. See http:
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Extensibility. Only core component properties that are shared by mainstream plat-
forms and essential to grasp the meaning of upgrade scenarios are predefined in CUDF.
Other auxiliary properties can be declared and used in CUDF documents, to allow
the preservation of relevant information that can then be used in optimization crite-
ria, e.g. component size, number of bugs, etc.
Formal semantics. CUDF comes with a rigorous semantics that allows package man-
ager and solver developers to agree on the meaning of upgrade scenarios. For example,
the fact that self-conflicts are ignored is not a tacit convention implemented by some
obscure line of code, but a property of the formal semantics.

4.1. Language overview

An upgrade scenario is represented by a CUDF document. It consists of a sequence
of stanzas, each of which is a collection of key-value pairs called properties. Properties
are typed within a simple type system containing basic data types (integers, booleans,
strings) and more complex, component-specific data types such as boolean formulae over
versioned components used to represent inter-component relationships.

Each CUDF document is made up of three logical sections: a preamble, a component
universe, and a request. The universe contains one component stanza for each component
known to the package manager, so both installed and non-installed (but available) com-
ponents are represented uniformly in a document, in contrast to current platforms which
often distribute this information in different locations using different formats. Component
stanzas support a set of core properties (possibly optional, with default values), the most
important of which are: package and version (which uniquely identify a component
in the universe), depends and conflicts (context requirements), provides (features
provided by the component), and installed (whether the component is installed).

Figure 4 shows a sample CUDF document. The component universe contains several
component stanzas, where both core and extra properties are used. Extra properties
must be declared in the preamble, which starts the document. Extra properties account
for extensibility of the format and enable type checking of CUDF documents. A request
stanza encodes the user request and concludes the document. In its general form, the
request stanza details the components the user wants to install/remove/upgrade (using
the homonymous properties), possibly specifying version requirements.

The full syntax of CUDF is given, as an EBNF grammar, in Appendix A; the formal
semantics in Appendix B.

4.2. Expressiveness

As CUDF lays at the “interface” between package managers and dependency solvers,
its expressiveness should be validated looking from both angles. From the point of
view of package managers, we have shown that upgrade scenarios coming from several
major component models can be encoded in CUDF; adapters are already available for:
Debian and RPM packages,5 Eclipse [5]—with an extension for full OSGi bundles in the
working—, and common feature diagram formalisms used in software product lines [11].

//wiki.eclipse.org/Equinox/p2/Meetings/20091221, retrieved November 2010.
5both are supported out-of-the-box by Mancoosi tools [24]
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preamble:
property: bugs: int = 0, suite: enum(stable ,unstable) = "stable",

package: car
version: 1
depends: engine , wheel > 2, door , battery <= 13
installed: true
bugs: 183

package: bicycle
version: 7
suite: unstable

package: gasoline -engine
version: 1
depends: turbo
provides: engine
conflicts : engine , gasoline -engine
installed: true
...

request:
instal l : bicycle , gasoline -engine = 1
upgrade: door , wheel > 3

Figure 4: Sample CUDF document

Figure 5: Sharing upgrade problems and solvers among communities

All encodings are linear in the number of components to encode, even in the presence of
XOR dependencies.6

From the converse angle, that of dependency solvers, we observe that entrants in the
MISC competition (see Section 6) have used very different solver technologies: boolean
satisfiability (SAT), Mixed Integer Linear Programming (MILP), Answer Set Program-
ming (ASP), and graph constraints. They have all been able to handle upgrade problems
encoded as CUDF documents, providing convincing evidence that CUDF is adequate for
a large spectrum of solving techniques.

Hence, at the time of writing, CUDF is already a unique pivot format that allows on
one hand to share solvers among different package managers, and on the other hand to
share a corpus of challenging upgrade problems among solver communities, as shown in
Figure 5. The number of supported solver technologies and component frameworks has

6while usual SAT encodings blow up quadratically in the number of XOR dependencies.
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grown steadily over the past years and it is likely to keep growing in the future.

4.3. Implementations

CUDF has been subject to an ad-hoc standardization process, resulting in a specifi-
cation [37]. libcudf is the “reference” implementation of the specification; it consists of
a parsing and pretty-printing library for CUDF, as well as an implementation of CUDF
semantics. The latter consists in:

1. given a CUDF document, libcudf can verify whether installed components are
consistent, i.e. whether they satisfy abundance and peace;

2. given a CUDF document and an encoding of a potential solution, libcudf can
verify whether the solution is valid, i.e. abundance, peace, and request satisfaction.

libcudf comes with the cudf-check command line tool which provides the above two
features out of the box. libcudf is Free Software and can be used both from the OCaml
and C programming languages; it is available at http://www.mancoosi.org/software/.

The authors are aware of other CUDF implementations. Some have been developed
in the context of the Mancoosi project to capture FOSS distribution upgrade scenario
descriptions into CUDF, in order to build a cross-distribution corpus of upgrade problem
instances [3]. Using the tools we have verified that the average size of an upgrade scenario
encoded in CUDF is linear with the size of the original package manager information and
usually smaller, since metadata not relevant for describing the upgrade problem can be
dropped. For instance, on a large Debian installation, using both testing and unstable
suites (totaling ≈ 45’000 packages), APT information on disk amounts to 14 Mb while
the corresponding CUDF document is only 9 Mb.

An independent CUDF implementation is also available in CUPT,7 a recent APT-
compatible package manager for Debian. In CUPT, CUDF is used as an interface format
to pipe upgrade scenarios to external solvers, so that upgrade planning can be decoupled
from other package manager activities. While no stable software has been released yet,
work is ongoing to implement CUDF in APT and APT2 in order to decouple dependency
solving from the package managers.

5. User preferences as multicriteria optimization

The DSL presented in the previous section addresses the need of grasping those
aspects of an upgrade scenario that are related to the correctness of a given solution
(i.e. “does the solution satisfy the user request as well as the expectations of all installed
components?”). Quality aspects of solutions (i.e. “is the proposed solution to my liking?”)
are much less known, not to mention agreed upon, and hence they do not yet constitute
suitable material for DSL standardization. Nonetheless, to improve the state-of-the-art
in upgrade planning we do need at the very least a rigorous framework to reason about
solution quality. In this section we propose one such formalism.

As we have seen in Section 2, there are in general exponentially many solutions to
a user request, so it is necessary to allow users to express their preferences about the

7http://wiki.debian.org/Cupt, retrieved December 2010
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desired solution. The state-of-the-art approach is to present one particular solution—
found according to some built-in strategies generally unknown to the user—and then
allow the user to interactively fiddle with the solution. Considering again Example 1,
it is easy to see why this approach has serious shortcomings: a “paranoid” user who
is presented with a “trendy” solution will need to make n changes to the solution (and
usually rerun the solver each time) before getting what she wants. In modern component
repositories, where n can be quite large, this approach is not viable.

An alternative approach is to let the user specify high-level criteria that capture what
she considers important in a solution: she may be concerned about the packages that are
changed, the packages that are not up to date, the packages that get removed, or even
“the number of installed security fixes”, or “the overall installed size”. On top of CUDF
semantics, we can build an extensible dictionary of well-defined criteria like the above
and then let the user inform the solvers that the required solution should maximize, or
minimize, a given criterion.

It is quite natural for the user to combine several of these criteria: to compare two
solutions s and s′ whose criteria have values (c1, . . . , cn) and (c′1, . . . , c

′
n), the user will

prefer s over s′ if all criteria of s are better or equal than s′ (i.e. s is Pareto-better then s′).
Unfortunately, when one has more than one criterion, there may be many incomparable
Pareto-optimal solutions; this is the core problem of multicriteria optimization which has
been extensively studied in the optimization research community [34]. Many different
approaches have been proposed to aggregate multiple criteria, the most common being:
Lexicographic. The criteria are ordered by importance, and compared lexicographi-
cally: (c1, . . . , cn) is better than (c′1, . . . , c

′
n) iff there exists a i s.t. for all j < i cj = c′j ,

and ci > c′i; for example, a security upgrade may be considered more important than
any other criterion, and put first in the order.
Weighted sum. The criteria are aggregated into a single measure using user-specified
weights ki: (c1, . . . , cn) is better than (c′1, . . . , c

′
n) iff

∑
1≤i≤n kici >

∑
1≤i≤n kic

′
i; this may

be useful when trying to balance different criteria for which no clear order is established.
More sophisticated approaches exists, like leximin and leximax [13], and an extensive

literature is devoted to them. According to the use case, the best aggregation function
may vary widely. Our own proposal for a high level user preferences formalism is simple
yet expressive:

1. define a dictionary of useful criteria ci;

2. define a dictionary of aggregation functions lex, weightedsum, leximin, etc.

3. write the user preference as an expression op(k1c1, . . . , kncn) where ki can be one of
{+,−} to indicate maximization or minimization of the criterion (for aggregation
functions like lex, leximin and leximax), or an integer (for aggregation functions
like weightedsum).

Formally we define the criteria as in Table 1, where I is the initial installation and S
is a proposed new installation. We write V (X,name) the set of versions in which name
(the name of a component) is installed in X, where X may be I or S. That set may
be empty (name is not installed), contain one element (name is installed in exactly that
version), or even contain multiple elements in case a component is installed in multiple

14



Table 1: Optimization criteria

removed(I, S) ={name | V (I, name) 6= ∅ and V (S, name) = ∅}
new(I, S) ={name | V (I, name) = ∅ and V (S, name) 6= ∅}
changed(I, S) ={name | V (I, name) 6= V (S, name)}
notuptodate(I, S)={name | V (S, name) 6= ∅

and does not contain the most recent version of name in S}
unsatrec(I, S) ={(name, v, c) — v is an element of V (S, name)

and (name, v) recommends ..., c, ...
and c is not satisfied by S}

versions.8 Using this formalism, it is quite easy to define a paranoid preference as

paranoid = lex (−removed ,−changed)

The solution scoring best under this criterion will be the one with the minimum number
of removed functionalities, and then with the minimum number of changes. A trendy
preference is also easy to write

trendy = lex (−removed ,−notuptodate,−unsatrec,−new)

Currently, each criterion and aggregation function must be specifically encoded for
a given solver technology, but work on a generic system which will be able to produce
these encodings automatically is ongoing [38].

6. Experimental results: the Mancoosi International Solver Competition

The DSL and formalism presented in the previous two sections have been used to
run a dependency solving competition called MISC, for Mancoosi International Solver
Competition. The variety of solving techniques implemented by participants, as well as
the popularity of FOSS distributions from which package manager entrants come, give,
in the authors opinion, a reasonable guarantee of the generality of the following results,
that come from MISC 2010, the first edition of the competition:

1. The proposed languages and formalisms are expressive enough to encode both real
upgrade scenarios coming from users of popular FOSS distributions and synthetic
problems of increasing complexity.

2. The proposed languages and formalisms are unbiased enough to allow constraint
solvers, based on a wide range of techniques, to attack upgrade problem instances.
Dependency solving can therefore be outsourced to external solvers, as depicted in
Figure 3.

3. The complexity of real upgrade problem instances grows with the number of com-
ponent repositories, as well as the complexity of the optimization criteria.

8The CUDF component model is not flat but allows to encode both flat and non-flat models [3].
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4. Dependency solving abilities of package managers used in popular FOSS distri-
butions fall short of state-of-the-art constraint solvers, both in terms of solution
quality and completeness.

In this section we present and discuss MISC 2010 results, as evidence of the above claims.

6.1. Competition details

MISC 2010 has been run in June 2010. Its results have been presented at the LoCoCo
workshop, in the context of FLoC (Federated Logic Conference) 2010. All competition
data (formal rules, problem instances, results, etc.) are available at http://www.mancoosi.
org/misc-2010/ and allow to independently re-run the competition.

Each participant had to face several problem instances. For each instance, the solver
received a full CUDF document as input and must produce a CUDF-encoded solution
(i.e. a CUDF document without a request stanza). Solvers could participate in either
one or both of two tracks—trendy and paranoid, as defined in Section 5—and strove
to optimize their solutions accordingly. Problem instances were classified in categories:
synthetic problems (categories: easy, difficult, impossible), instances of the problem 1-
in-3 SAT (category cudf set), and real instances collected from Debian users (category
debian-dudf ) using the mancoosi-contest utility [24] which plugs into package managers
for Debian-based distributions to store upgrade problems in CUDF format.

Synthetic problems have been generated from a real Debian installation by varying
a number of parameters such as the number of components in the universe, the number
of installed components, and the number of components requested to install/remove/up-
grade (i.e. request size). The size of requests ranges from 10 (for easy) to 20 (impossible)
and components appearing therein are possibly equipped with version constraints.

For the difficult and impossible categories, the initial state has been made on pur-
pose inconsistent by marking random components as installed, ensuring their context
requirements were not satisfied, to simulate a badly broken user installation.

The following solvers took part in the competition:

solver author/affiliation technique/solver
apt-pbo [39] Trezentos / Caixa Magica Pseudo Boolean Optimization
aspcud Matheis / University of Potsdam Answer Set Programming
inesc [4] Lynce et. al / INESC-ID Max-SAT
p2cudf [4] Le Berre and Rapicault / Univ. Artois Pseudo Boolean Optimization

/ Sat4j (www.sat4j.org)
unsa [26] Michel et. al / Univ. Sophia-Antipolis Mixed Integer Linear Programming

/ CPLEX (www.cplex.com)

No solver has been provided by the authors, who acted solely as competition orga-
nizers. We added two extra participants—apt-get and aptitude—by wrapping with a
CUDF-compatibility layer the solvers of package managers used in Debian-based FOSS
distributions. As they do not allow to specify preferences, the purpose of the experiment
was to check how hard-coded optimizations score with respect to competition criteria.
The solver ucl from Gutierrez et. al from Univ. Louvain that took part to the Misc
competition it is not presented here as its results were not relevant.
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MISC 2010 results are given in Table 2. The clear winner in both tracks is unsa,
followed by p2cudf for the trendy track and inesc for the paranoid track. It is important
to notice that the solvers perform differently on different problem sets: for example,
p2cudf shows better results than the others in the category debian-dudf, and it will be
surely interesting to analyse, in future work, the structural differences among the different
problem sets.

6.2. Discussion

CUDF acceptance. The actual run has been preceded by a discussion period among
organizers and participants. During this period, solver authors could expose their doubts
about CUDF semantics and competition rules, as well as submit solver prototypes for the
only purpose of testing their CUDF-based interface with the competition infrastructure.

Solver authors have not reported any perceived bias, of either CUDF or the opti-
mization criteria, towards specific solving techniques. The acceptance of the proposed
languages and formalisms among participants has hence been very good, although self-
selection bias is possible. The main discussion topics revolved around parsing issues and
misconceptions about how upgrades “should” work. Interestingly, while CUDF seman-
tics is rigorous and has proven to be very stable thus far, solver authors used to specific
component platforms tend to believe upgrade should work as they are “used to”, even if
the semantics of upgrades in their platform of origin (e.g. RPM) is ambiguous and dele-
gated to implementation details of specific package managers. This aspect has reinforced
our conviction that an interface format equipped with a rigorous semantics is the way to
go in order to drive the attention of constraint solving communities to upgrade problem
issues.

How complexity grows in practice. MISC 2010 results clearly show that the number
of criteria in the optimization function is an important source of complexity: the trendy
and paranoid tracks are run on the same problem sets, whereas trendy (which has more
parameters than paranoid) is consistently more difficult to handle for all solvers.

We have also run all competition entrants on a separate set of problems, specifically
designed to test the impact of having several repositories available, a scenario that hap-
pens quite often in practice. The corresponding categories have been built as follows: in
a base universe, corresponding to the Debian distribution sarge (currently also known
as oldstable), a fixed request and a fixed set of installed components is generated, ensur-
ing it is satisfiable (meaning that the request has at least a solution, independently of
the optimization criteria). The very same upgrade problem is then replicated in larger
universes, by adding more recent Debian repositories: etch,lenny, squeeze, and sid.

Table 3 show the performance of the solvers on these categories. It is immediate
to notice how the time needed to answer the same request grows very quickly when
increasing the number of available component repositories. This is explained by the fact
that using multiple repositories greatly increases the number of components available in
multiple versions and, in turn, the number of conflicts in a flat component model.

Performance of FOSS package managers. Table 3 permits to assess the relative
performances of competition entrants and package managers from popular FOSS dis-
tributions. Package manager solvers exhibit decent performances on machines equipped
with a single component repository, which is often the case for freshly installed machines.
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Figure 6: Solver results with increasing number of repositories (trendy)

This matches end-user experience that package manager performance on newly installed
machines is quite good.

However, problems on machines that were installed from an old distribution and that
use a mixture of component repositories, turn out to be very challenging. In Figure 6 we
see clearly that, while apt-get and aptitude behave well with one repository, they become
unreliable from two repositories on, and are no longer able to solve the large majority
of problems at all. This corresponds to the end-user experience that installation and
upgrades become less reliable on FOSS machines after a year or so: this corresponds
more or less to the release cycle of several mainstream distributions, and end-users find
themselves on machines where the package manager needs to handle more than one
repository, the original one from which the machine was installed, and the newly released
one.

Looking at the time distribution of the same experimental data in Figure 7 (for the
trendy criterion) we observe a similar pattern. While state-of-the-art package managers
abort or time-out, solvers like unsa or inesc are still able to cope with complex problems in
less than 60 seconds. It is important to notice that in this context, a solution is “optimal”
only with respect to solutions given by other solvers. Therefore even if a solver does not
provide the best solution, it is still important to take it into consideration in the overall
evaluation.

The data for the paranoid criterion in Table 3 shows the same overall behaviour, with
significantly shorter execution times, indicating that the number of combined criteria
in the user preferences is another significant factor in the complexity of the upgrade
problems (paranoid involves 2 criteria, while trendy involves 4).
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Figure 7: Solver performances with increasing number of repositories (trendy)

7. Related work

Software evolution management has many facets; in this paper we have focused on
the area of post-development management. In particular we have studied how to improve
software upgrade planning in package managers which are equipped with automatic de-
pendency solving, given that such utilities are common place in component-intensive soft-
ware platforms. The problem of dealing with inter-component relationships was known
well-before the advent of such package managers, though. Seminal work in the area of
software configuration management (e.g. [8, 27]) has established the “provide/require”
paradigm to reason about component interconnection, with a varying degree of granu-
larity and expressiveness [30]. Those and subsequent works have also detailed formal
properties able to grasp, and practically verify, the compatibility of (new versions of)
components within a given deployment context.

The explicit notion of inter-component conflicts is not part of those seminal propos-
als. In the technology camp such a notion has been popularised by the advent of early
component managers (e.g. the FreeBSD porting system [35], RPM, and dpkg). Together
with conflicts, early package managers have brought to users the folklore problem known
as “dependency hell”, i.e. the difficulty of satisfying at the same time all component
dependencies and conflicts, sometimes stumbling upon the (apparent) impossibility of
doing so. The next technology leap has brought package managers equipped with auto-
matic dependency solving abilities (e.g. APT [28], Yum, Urpmi, etc.). Such systems have
not only solved most of the issues brought by the dependency hell, but also addressed
several of the concerns related to software distribution (see [16] for an introduction on the
subject), even though they have done so in a centralized rather than federated way [15].
Where the state of the art in package managers is still lacking though, as we have shown,

20



is in their actual dependency solving ability. Improvement in that area is badly needed
to properly plan upgrades in component-intensive software platforms.

Turning to formal encodings of the upgrade problem, an early SAT-encoding and
complexity analysis for the upgrade problem, limited to the component models of FOSS
distributions, has been provided by some of the authors in [12, 23] and has popularised
the use of SAT technology in package managers. Results and encoding detailed in the
present paper are more general and detail the minimum requirements for any component
model to exhibit similar complexity behaviors.

The OPIUM prototype used in 2006 a SAT solver with an ad-hoc, hard coded op-
timization in line with the paranoid criterion [40]; SUSE’s libzypp incorporated a SAT
solver in 2007; the Eclipse P2 system comes with the Sat4J solver since 2007 [18]. This
trend seems to continue steadily: a very recent entrant is apt-pbo, introduced in the
Caixa Mágica distribution in early 2010 [39]. None of those systems have offered the
ability to outsource dependency solving and optimization to an external solver.

The language we have proposed to encode user preferences is more flexible than those
of OPIUM and similar experiences: we provide a core ontology of criteria and combinators
to join them together. Even though user criteria must currently be specifically encoded
for any given solver, we have looked at ways to automate the encoding. Moreover instead
of leaving to the user the task of defining specific criteria, they could be asked for high
level preferences and then use a goal-based model to “compile” those desiderata to the
target criterion language. The work of Liaskos et al. [22], even if not directly related
to our domain, goes in the direction of making complex systems easily configurable by
deducing low-level options from high-level user specifications.

Several alternative encodings of the upgrade problem have been proposed: SAT [23,
40, 18], Pseudo Boolean Optimization [39], Partial Weighted Max SAT [4], Mixed Integer
Linear Programming [26], as well as some others championed by entrants in the MISC
2010 competition (see Section 6).

Jenson [17] proposes a component model without explicit (or implicit) component
conflicts and does not handle component removal in neither requests nor solutions. As
a consequence, such a degenerate upgrade problem is way simpler than what we have
modeled in this paper and can be solved in polynomial time, even though the number of
solutions may be huge. Dependency solving as SAT with optimization has been reviewed
in [18] where it was also observed that much of the complexity stems from multiple
versions of components and the constraints they entail.

The need of dealing properly with dependencies in CBSE have been observed be-
fore [21, 41]. Vieira et. al have argued that dependencies should be treated as a first
class problem in CBSE [41] and have established requirements for that. While we fo-
cus on static deploy-time dependencies, which have become popular in the meantime,
we observe that CUDF fulfills all their requirements of “being based on uniform design
principles following some kind of standardization” and offer dependency metadata which
are “expressive, intuitive, and concise [in] representation”. We agree with the authors
and believe that the proposed formalisms are a significant step forward in treating de-
pendencies as a first class problem in CBSE.
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8. Conclusions

Dependency solving is difficult. This is hardly a surprise for anyone maintaining soft-
ware installations, especially when they are made of thousands of components evolving
rapidly and independently. The phenomenon requires nevertheless a detailed analysis to
pinpoint the origin of the complexity. We found that, for common component models
and platforms, the complexity is due to inter-component conflicts, either explicitly de-
clared as component metadata or implicitly assumed between different versions of the
same components. This theoretical result is confirmed by experimentation on both real
and synthetic upgrade problem instances: dependency solving becomes harder as com-
ponent repositories are added, thus increasing the number of available versions of the
same components. Complexity also increases with the complexity of user preferences
(i.e. optimization criteria). This explains why shortcomings of state-of-the-art depen-
dency solvers are often not observed on freshly installed machines, but pop up as soon
as one tries to do upgrades among distribution major releases, or else to mix and match
components from different releases.

Better tools to support evolution of component-based systems are needed. Design,
development, integration, and deployment of these new tools will only be made possible if
we treat dependency solving as a separate concern of evolution management, i.e. as a first
class research problem in its own right. To that end, we need rigorous abstractions to be
put at the interface between component managers and solvers engineered by independent
research communities, which enjoy the challenges posed by concrete upgrade problems.
We have introduced some of those abstractions—CUDF and a companion user preference
language—and we have reported the results of MISC, an international solver competition
based on these abstraction, which confirm their adequateness.

On top of the proposed abstractions, it is easy to imagine a generic component man-
ager front-end, which implements the architecture of Figure 3 and can then be targeted,
adding back-ends, to specific component platforms. We have developed one such pro-
totype, called MPM [2], targeting Debian-based FOSS distributions. Any solver imple-
menting the interface of MISC 2010 can be plugged into MPM and used to plan package
upgrades; upgrade deployment will then be delegated to legacy distribution tools. As an
example, a trivial solution to the upgrade problem discussed in Figure 2 can be found
by MPM using the inesc solver submitted to the paranoid track:

remove: gnome-utils gnome-desktop-environment gnome

install: baobab=2.4.2-1.1+b1

in such a solution the (virtual) packages gnome-utils, gnome-desktop-environment,
and gnome are still removed, whereas all other packages forming the GNOME desktop
are not, saving the (possibly newbie) user from losing her user-friendly work environment.
This is a consequence of the paranoid criterion and of a dependency solver able to find
a high-quality solution with respect to such desiderata.

As this example shows, one-size–fits-all solvers are not the way to go, especially when
solvers are developed in house without reusing existing knowledge and results. Rather, we
need highly customizable upgrade planners able to satisfy diverse user needs. Decoupling
solvers from package managers is a necessary intermediate step that makes it possible to
experiment with independent solvers, and to outsource dependency solving to evolution
planners living far away from component managers.
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As evidence of the pertinence of our approach, the experimental version 0.8.16 exp5

of apt, a mainstream package manager for the Debian distribution, implements a CUDF
interface to call the solvers issued from the MISC competition.
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Appendix A. CUDF syntax

Overall structure.

cudf ::=preamble? universe request

Flow elements.

ssep::=(comment |‘\n’) ∗ ‘\n’ (comment |‘\n’)∗
comment ::=‘#’ line

line::=[^\n] ∗ ‘\n’

Document parts.

preamble::=‘preamble: ’ line stanza ssep
universe::=package∗
package::=‘package: ’ pkgname stanza ssep
request ::=‘request: ’ line stanza comment∗

Stanzas.

stanza::=(property ‘\n’ | comment)∗
property ::=propname ‘: ’ value

propname::=ident
value::=bool | enum | int | nat | posint | string | pkgname | ident | typedecl

| vpkg | veqpkg | vpkgformula | vpkglist | veqpkglist

Values: CUDF types.

bool ::=‘true’ | ‘false’
int ::=(‘+’|‘-’)? [0-9]+

string ::=[^\r\n]∗
vpkg ::=pkgname (sp + vconstr)?

vpkgformula::=andfla | ‘true!’ | ‘false!’
vpkglist ::=‘’ | vpkg (sp ∗ ‘,’sp ∗ vpkg)∗

enum::=ident
pkgname::=[A-Za-z0-9+./@()%-]+

ident ::=[a-z][a-z0-9-]∗
nat ::=‘+’[0-9]+

posint ::=‘+’[0-9] ∗ [1-9][0-9]∗
veqpkg ::=pkgname (sp + veqconstr)?

veqpkglist ::=‘’ | veqpkg (sp ∗ ‘,’ sp ∗ veqpkg)∗
typedecl ::=‘’ | typedecl1 (sp ∗ ‘,’ sp ∗ typedecl1 )∗
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Value: gory details.

vconstr ::=reop sp + ver
veqconstr ::=‘=’ sp + ver

relop::=‘=’ | ‘!=’ | ‘>=’ | ‘>’ | ‘<=’ | ‘<’
sp::=‘’ | ‘\t’

ver ::=posint
andfla::=orfla (sp∗ ‘,’ sp ∗ orfla)∗

orfla::=atomfla (sp∗ ‘|’ sp ∗ atomfla)∗
atomfla::=vpkg

typedecl1 ::=ident sp ∗ ‘:’ sp ∗ typeexpr(sp ∗ = sp ∗ ‘[’ value ∗ ‘]’)?
typeexpr ::=typename | ‘enum’ sp ∗ ‘[’ ident (‘,’ sp ∗ ident) ∗ ‘]’

typename::=‘bool’ | ‘int’ | ‘nat’ | ‘posint’ | ‘string’ | ‘pkgname’
| ‘ident’ | ‘vpkg’ | ‘veqpkg’ | ‘vpkgformula’ | ‘vpkglist’
| ‘veqpkglist’

Appendix B. CUDF semantics

Appendix B.1. CUDF types

We start by defining the domains of CUDF types, which are used in the definition of
the semantics later on.

Definition 1 (CUDF type domains).

• V(posint) is the set of positive natural numbers

• V(ident) is a set of distinguished labels (intuitively, there is one such label for each
lexically valid CUDF identifier)

• V(bool) is the set {true, false}

• V(vpkgformula) is the smallest set F such that:

true ∈ F (truth)
false ∈ F (untruth)
V(vpkg) ⊆ F (package predicate)∨
i=1,...,n ai ∈ F a1, . . . , an atoms ∈ F (disjunctions)∧
i=i,...,n di ∈ F d1, . . . , dn disjunctions ∈ F (conjunctions)

• V(vpkglist) is the smallest set L such that:

[] ∈ L (empty lists)
p::l ∈ L p ∈ V(vpkg), l ∈ L (package concatenations)

• V(veqpkglist) is the smallest set L′ ⊆ V(vpkglist) such that:

[] ∈ L′ (empty lists)
p::l ∈ L′ p ∈ V(veqpkg), l ∈ L′ (package concatenations)
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Appendix B.2. CUDF formal semantics

CUDF semantics is defined in a style similar to [23], however, we now have to deal
with an abstract semantics that is closer to “real” problem descriptions, and that contains
artifacts like features. This induces some complications for the definition of the semantics.
In [23] this and similar problems were avoided by a pre-processing step that expands many
of the notions that we wish to keep in the CUDF format.

Appendix B.3. Abstract syntax and semantic domains

The abstract syntax and the semantics is defined using the value domains defined in
Appendix B.1. In addition, we give the following definitions:

Definition 2.

• Constraints is the set of version constraints, consisting of the value > and all
pairs (relop, v) where relop is one of =, 6=, <,>,≤,≥ and v ∈ V(posint).

• Keepvalues is the set of the possible values of the keep property of package in-
formation items, that is: {version, package, feature, none}

The abstract syntax of a CUDF document is a pair consisting of a package description
(as defined in Definition 3) and a request (see Definition 5).

Definition 3 (Package description). A package description is a partial function

V(ident)× V(posint)  
V(bool)×Keepvalues× V(vpkgformula)× V(vpkglist)× V(veqpkglist)

The set of all package descriptions is noted Descr. If φ is a package description then
we write Dom(φ) for its domain. If φ(p, n) = (i, k, d, c, p) then we also write

• φ(p, n).installed = i

• φ(p, n).keep = k

• φ(p, n).depends = d

• φ(p, n).conflicts = c

• φ(p, n).provides = p

It is natural to define a package description as a function since we can have at most one
package description for a given pair of package name and version in a CUDF document.
The function is generally only partial since we clearly do not require to have a package
description for any possible pair of package name and version.

We define the removal operation of a particular versioned package from a package
description. This operation will be needed later in Definition 14 to define the semantics
of package conflicts in case a package conflicts with itself or a feature provided by the
same package.

28



Definition 4 (Package removal). Let φ be a package description, p ∈ V(ident) and
n ∈ V(posint). The package description φ− (p, n) is defined by

Dom(φ− (p, n)) = Dom(φ)− {(p, n)}
(φ− (p, n))(q,m) = φ(q,m) for all (q,m) ∈ Dom(φ− (p, n))

Definition 5 (Request). A request is a triple (li, lu, ld) with li, lu, ld ∈ V(vpkglist).

In a triple (li, lu, ld), li is the list of packages to be installed, lu the list of packages
to be updated, and ld the list of packages to be deleted.

Appendix B.4. Installations

Definition 6 (Installation). An installation is a function from V(ident) to P (V(posint)).

The idea behind this definition is that the function describing an installation asso-
ciates the set of versions that are installed to any possible package name. This set is
empty when no version of the package is installed.

We can extract an installation from any package description as follows:

Definition 7 (Current installation). Let φ be a package description, the current package
installation of φ

iφ:V(ident)→ P (V(posint))

is defined by

iφ(p) := {n ∈ V(posint) | (p, n) ∈ Dom(φ) and φ(p, n).installed = true}

A package can declare zero or more features that it provides. The function fφ defined
below associates to any package name (here intended to be a the name of a virtual
package) the set of version numbers with which this virtual package is provided by some
of the packages installed by φ:

Definition 8 (Current features). Let φ be a package description, the current features of
φ

fφ:V(ident)→ P (V(posint))

is defined by

fφ(p) := {n ∈ V(posint) | exists q ∈ Dom(iφ) exists m ∈ iφ(q) such that

(((=, n), p) ∈ φ(q,m).provides or (>, p) ∈ φ(q,m).provides)}

The second case in the definition above expresses the fact that providing a feature
without a version number means providing that feature at any possible version.

In order to define the semantics of a CUDF document, we will frequently need to
merge two installations. This will mainly be used for merging an installation of packages
with an installation of provided features. The merging operation is formalized as follows:

Definition 9 (Merging). Let f, g:V(ident)→ P (V(posint)) be two installations. Their
merge f ∪ g:V(ident)→ P (V(posint)) is defined as

(f ∪ g)(p) = f(p) ∪ g(p) for any p ∈ V(ident)
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Appendix B.5. Consistent package descriptions

We define what it means for an installation to satisfy a constraint:

Definition 10 (Constraint satisfaction). The satisfaction relation between a natural
number n and a constraint c ∈ Constraints, noted n |= c, is defined as follows:

n |= > for any n n |= (<, v) iff n < v
n |= (=, v) iff n = v n |= (>, v) iff n > v
n |= (6=, v) iff n 6= v n |= (≤, v) iff n ≤ v

n |= (≥, v) iff n ≥ v

Now we can define what it implies for a package installation to satisfy some formula:

Definition 11 (Formula satisfaction). The satisfaction relation between an installation
I and a formula p, noted I |= p, is defined by induction on the structure of p:

• I |= (c, p) where, c ∈ Constraints and p ∈ V(ident), iff there exists an n ∈ I(p)
such that n |= c.

• I |= φ1 ∧ . . . ∧ φn iff I |= φi for all 1 ≤ i ≤ n.

• I |= φ1 ∨ . . . ∨ φn iff there is an i with 1 ≤ i ≤ n and I |= φi.

We can now lift the satisfaction relation to sets of packages:

Definition 12. Let I be an installation, and l ∈ V(vpkglist). Then I |= l if for any
(c, p) ∈ l there exists n ∈ I(p) with n |= c.

Note that, given that V(veqpkglist) ⊆ V(vpkglist), this also defines the satisfac-
tion relation for elements of V(veqpkglist). Also note that one could transform any
l ∈ V(vpkglist) into a formula l∧ ∈ V(vpkgformula), by constructing the conjunction
of all the elements of l. The semantics of l is the same as the semantics of the formula
l∧.

Definition 13 (Disjointness). The disjointness relation between an installation I and a
set l ∈ V(vpkglist) of packages possibly with version constraints, is defined as: I ‖ l if
for any (c, p) ∈ l and all n ∈ I(p) we have that n 6|= c.

Definition 14. A package description φ is consistent if for every package p ∈ V(ident)
and n ∈ iφ(p) we have that

1. iφ ∪ fφ |= φ(p, n).depends

2. iφ−(p,n) ∪ fφ−(p,n) ‖ φ(p, n).conflicts

In the above definition, the first clause corresponds to the Abundance property of
[23]: all the dependency relations of all installed packages must be satisfied. The second
clause corresponds to the Peace property of [23]. In addition, we now have to take
special care of packages that conflict with themselves, or that provide a feature and at
the same time conflict with that feature: we only require that there be no conflict with
any other installed package and with any feature provided by some other package (see
also Section Appendix B.7).
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Appendix B.6. Semantics of requests

The semantics of a request is defined as a relation between package descriptions. The
idea is that two package descriptions φ1 and φ2 are in the relation defined by the request
r if there exists a transformation from φ1 to φ2 that satisfies r.9

First we define the notion of a successor of a package description:

Definition 15 (Successor relation). A package description φ2 is called a successor of a
package description φ1, noted φ1� φ2, if

1. Dom(φ1) = Dom(φ2)

2. For all p ∈ V(ident) and n ∈ V(posint): if φ1(p, n) = (i1, k1, d1, c1, p1) and
φ2(p, n) = (i2, k2, d2, c2, p2) then k1 = k2, d1 = d2, c1 = c2, and p1 = p2.

3. For all p ∈ V(ident)

• for all n ∈ iφ1
(p): if φ1(p, n).keep = version then n ∈ iφ2

(p).

• if there is an n ∈ iφ1(p) with φ1(p, n).keep = package then iφ2(p) 6= ∅
• for all n ∈ iφ1(p): if φ1(p, n).keep = feature then iφ2∪fφ2 |= φ1(p, n).provides

The first and the second item of the above definitions indicate that a successor of a
package description φ may differ from φ only in the status of packages. The third item
refines this even further depending on keep values:

• If we have a keep status of version for an installed package p and version n then
we have to keep that package and version.

• If we have a keep status of package for some installed version of a package p then
the successor must have at least one version of that package installed.

• If we have a keep status of feature for some installed version n of a package p
then the successor must provide all the features that where provided by version n
of package p.

Definition 16 (Request semantics). Let r = (li, lu, ld) be a request. The semantics of r

is a relation
ry⊆ Descr×Descr defined by φ1

ry φ2 if

1. φ1� φ2
2. φ2 is consistent

3. iφ2
∪ fφ2

|= li
4. iφ2

∪ fφ2
‖ ld

5. iφ2 ∪ fφ2 |= lu, and for all p such that (c, p) ∈ lu we have that (iφ2 ∪ fφ2)(p) = {n}
(i.e., is a singleton set) where n ≥ n′ for all n′ ∈ (iφ1

∪ fφ1
)(p).

9The definition of optimization criteria will is outside the scope of this document; see Section 5 of
the “Dependency Solving: a Separate Concern in Software Evolution Management” manuscript.
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Appendix B.7. Comments on the semantics

Installing multiple versions of the same package. The semantics allows a priori to in-
stall multiple versions of the same package. This coincides with the semantics found in
RPM-like FOSS distributions (which a priori do not forbid to install multiple versions
of the same package), but is in opposition to the semantics found in Debian-like FOSS
distributions (which allow for one version of any package to be installed at most).

In many practical cases the distinction between a priori allowing or not for multiple
versions of a package makes little difference. In the RPM world multiple versions of
the same package are very often in a conflict by their features or shipped files. If both
versions of the same package provide the same feature and also conflict with that feature
then the RPM semantics, as the CUDF semantics, does not allow to install both at the
same time. Only packages that have been designed to have distinct versions provide
distinct features (in particular, files with distinct paths) can in practice be installed in
the RPM world in several different versions at a time. This typically applies to operating
system packages. In order to have a meta-installer with Debian semantics work correctly
on such a package description, it is sufficient to rename the packages, and to create a
new package, say p− n, for a package p and version n when p can be installed in several
versions.

On the other hand, a meta-installer with RPM semantics will produce solutions on a
package description that would not be found by a meta-installer with Debian semantics
since it is free to install several version of the same package. The uniqueness restriction
of Debian can easily be made explicit in the package description by adding a to each
package description stanza, say for package name “p”, a serialized property “conflicts
p”.

Upgrading packages. Even though the semantics allows for multiple installed versions of
the same package, the notion of “upgrade” (at least for what concerns this specification)
is intimately tied to a single installed version of a given package.

Hence, for an upgrade request to be fulfilled for a package p, exactly one version of p
must be installed in the resulting package status. Additionally, to preserve the “upgrade”
intuition, the resulting installed version must be greater or equal than the greatest version
of p which was previously installed. Both these conditions are expressed by point (5) of
Definition 16. Note that a strictly greater version of what was previously installed can
be requested by specifying a suitable “>” predicate as part of the upgrade property.

Upgrading virtual packages. Virtual packages, or features, can be with or without version
specification. The fact that the lack of version specifications is interpreted as providing
all possible versions of a given feature (see Definition 8) interacts with the semantic of
upgrades when virtual packages are mentioned within upgrade. In particular, upgrades
are de facto possible only for versioned virtual packages.10

10The reason is that upgraded (virtual) packages must correspond to singleton sets in the resulting
package status, whereas non-versioned virtual packages will provide infinite sets. Similarly, if in the
initial package status a virtual package is non-versioned, it will provide an infinite version sets, whose
maximum cannot be matched by any singleton set in the resulting package status.
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Chapter 9

Strong Dependencies between

Software Components

This chapter contains the full text of the article

�Strong Dependencies between Software
Components� [1].
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Abstract

Component-based systems often describe context re-
quirements in terms of explicit inter-component dependen-
cies. Studying large instances of such systems—such as free
and open source software (FOSS) distributions—in terms
of declared dependencies between packages is appealing.
It is however also misleading when the language to express
dependencies is as expressive as boolean formulae, which
is often the case. In such settings, a more appropriate no-
tion of component dependency exists: strong dependency.
This paper introduces such notion as a first step towards
modeling semantic, rather then syntactic, inter-component
relationships.

Furthermore, a notion of component sensitivity is de-
rived from strong dependencies, with applications to quality
assurance and to the evaluation of upgrade risks. An em-
pirical study of strong dependencies and sensitivity is pre-
sented, in the context of one of the largest, freely available,
component-based system.

1. Introduction

Component-based software architectures [21] have the
property of being upgradeable piece-wise, without neces-
sarily touching all the pieces at the same time. The more
pieces are affected by a single upgrade, the higher the im-
pact of the upgrade can be on the usual operations per-
formed by the overall system; this impact can either be ben-
eficial (if the upgrade works as planned) or disastrous (if
not). Package-based FOSS (Free and Open Source Soft-
ware) distributions are possibly the largest-scale examples
of component-based architectures, their upgrade effects are
experienced daily by million of users world-wide, and the
historical data concerning their evolution is publicly avail-
able.

Within FOSS distributions, software components are
managed as packages [6]. Packages are described
with meta-information, which include complex inter-
relationships describing the static requirements to run prop-
erly on a target system. Requirements are expressed in
terms of other packages, possibly with restrictions on the
desired versions. Both positive requirements (dependen-
cies) and negative requirements (conflicts) are usually al-
lowed.

Example 1.1. An excerpt of the inter-package relationships
of the postfix Internet mail transport agent in Debian
GNU/Linux1 currently reads:

1 Package: postfix
2 Version: 2.5.5-1.1
3 Depends: libc6 (>= 2.7), libdb4.6, ssl-cert,
4 libsasl2-2, libssl0.9.8 (>= 0.9.8f-5),
5 debconf (>= 0.5) | debconf-2.0,
6 netbase, adduser (>= 3.48), dpkg (>= 1.8),
7 lsb-base (>= 3.0-6)
8 C o n f l i c t s: libnss-db (<< 2.2-3), smail,
9 mail-transport-agent, postfix-tls

10 Prov ides: mail-transport-agent, postfix-tls

As this short example shows, inter-package relationships
can get quite complex, and there are plenty of more com-
plex examples to be found in distributions like Debian. In
particular, the language to express package relationships
is not as simple as flat lists of component predicates, but
rather a structured language whose syntax and semantics
is expressed by conjunctive normal form (CNF) formu-
lae [17]. In Example 1.1, commas represent logical con-
junctions among predicates, whereas bars (“|”) represent
logical disjunctions. Also, indirections by the mean of
so-called virtual packages can be used to declare feature
names over which other packages can declare relationships;
in the example (see line 10: “Provides”) the package de-
clares to provide the features called postfix-tls and
mail-transport-agent.

1http://www.debian.org



Within this setting, it is interesting to analyse the depen-
dency graph of all packages shipped by a mainstream FOSS
distribution. This graph is potentially very large as distribu-
tions like Debian are composed of several tens of thousands
packages, but it is surely smaller than widely studied graphs
such as the World Wide Web graph [1]. It is also more ex-
pressive though, in the sense that it contains different types
of edges (dependencies and conflicts for example) and al-
lows the use of disjunctions to express alternative paths.
Simple encodings of the package universe have been pro-
posed in the past [14, 16], to study the adherence of the
dependency graph to small-world network laws. In such
encodings, inter-package relationships were approximated
by a simple binary relation of direct dependency, which is
noted p→ q in this paper. Formally, p→ q holds whenever
package q occurs syntactically in the dependency formula
of p. This notion of direct dependency does not distinguish
between q occurring in conjunctive or disjunctive position,
ignoring the semantic difference between conjunctive and
disjunctive dependencies, as well as the presence of con-
flicts among components.

In this paper we argue that there is a different depen-
dency graph to be studied to grasp meaningful relationships
among software components: a graph that represents the se-
mantics of inter-component relationships, in which an edge
between two components is drawn only if the first cannot
be installed without installing the second. We call such a
graph the strong dependency graph, argue that it is better
suited to study package universes in component-based ar-
chitectures, and study its network properties. Finally, we
argue that the strong dependency graph can be used to es-
tablish a measure of package “sensitivity” which has several
uses, from distribution wide quality assurance to establish-
ing the potential risks of package upgrades. As a relevant,
yet empirical, case study we build and analyse the strong
dependency graph of present and past FOSS distributions,
as well as the corresponding package sensitivity.

The rest of the paper is structured as follows: Section 2
introduces the notion of strong dependency, highlights the
differences with plain dependencies and proposes related
sensitivity metrics. Section 3 computes dependencies and
sensitivity of components of a large and popular FOSS dis-
tribution. Section 4 gives an efficient algorithm to compute
strong dependencies for large software repositories. Sec-
tion 5 discusses applications of the proposed metrics for
quality assurance and upgrade risk evaluation. Before con-
cluding, Section 6 discusses related research.

2. Strong dependencies

Component dependencies can be used to compute rele-
vant quality measures of software repositories, for instance
to identify particularly fragile components [7, 13, 15]. It is

well known that small-world networks are resilient to ran-
dom failures but particularly weak in the presence of at-
tacks, due to the existence of highly connected hub nodes
[2]. To identify the components whose modification (e.g.,
removal or upgrade) can have a high potential impact on the
stability of a complex software system, it is natural to look
for hubs on which a lot of other components depend.

In FOSS distributions, not unlike other component-based
systems [3, 4], the language used to encode inter-package
relationships is expressive enough to cover propositional
logic. As a consequence, considering only plain connec-
tivity—i.e., the possibility of going from one package to an-
other following dependency arcs—is no longer meaningful
to identify hubs. For example, if p is to be installed and
there exists a dependency path from p to q, it is not true that
q is always needed for p, and in some cases q may even be
incompatible with p.

In other terms, the syntactic connectivity notion does not
tell much about the real structure of dependencies: we need
to go further and analyse the semantic connectivity among
software components induced by the explicit dependencies
in the graph. That has led us to the following definition.

Definition 2.1 (Strong dependency). Given a repository R,
we say that a package p inR strongly depends on a package
q in R, written p⇒R q, if there exists a healthy installation
of R containing p, and every healthy installation of R con-
taining p also contains q. We write Spreds(p)R for the set
{q|q ⇒R p} of strong predecessors of a package p in R,
and Scons(p)R for the set {q | p ⇒R q} of strong succes-
sors of p in R.

In the following, we will drop the R subscript when the
repository is clear from the context.

The above notions of repository and healthy installation
come from [17]; the underlying intuitions are as follows. A
repository is a set of packages, together with dependencies
and conflicts encoded as propositional logic predicates over
other packages contained therein; an installation is a subset
of the repository; an installation is said to be healthy when
all its packages have their dependencies satisfied within the
installation and dually their conflicts unsatisfied.

Intuitively, p strongly depends on q with respect to R if
it is not possible to install p without also installing q. No-
tice that the definition requires p to be installable in R as
otherwise it would vacuously depend on all the packages q
in the repository. Due to the complex nature of dependen-
cies, there can be a huge gap with the syntactic dependency
graph as naively extracted from the metadata.

Example 2.2 (Direct vs strong dependencies). In simple
cases, conjunctive direct dependencies translate to identi-
cal strong dependencies whereas disjunctive ones vanish,
as for the packages of the following repository:



Package: p
Depends: q, r

Package: a
Depends: b | c

p

��������

��3
33333

q r

aW
��������

��4444444

b c

We have that p → q, p → r and p ⇒ q, p ⇒ r (be-
cause p cannot be installed without either q or r), and that
a → b, a → c whereas a 6⇒ b, a 6⇒ c (because a does
not forcibly require neither b nor c). In general however,
the situation is much more complex, like in the following
repository:

Package: p
Depends: q | r

Package: r
C o n f l i c t s: p

Package: q
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Notice that p ⇒ q in spite of q not being a conjunctive
dependency of p, and r is incompatible with p, despite the
fact that p→ r.

Proposition 2.3 (Transitivity). If p⇒R q and q ⇒R r then
p⇒R r.

Proof. Trivial from Definition 2.1.

On top of the strong and direct dependency notions, we
can define the corresponding dependency graphs.

Definition 2.4 (Dependency graphs). The strong depen-
dency graph SG(R) of a repository R is the directed graph
having as vertices the packages in R and as edges all pairs
〈p, q〉 such that p ⇒ q. Note that the SG(R) is transitively
closed as direct consequence as the transitivity of the strong
dependency relation.

Similarly, the direct dependency graph DG(R) is the di-
rected graph having as vertices the packages in R and as
edges all pairs 〈p, q〉 such that p→ q.

The dependency graphs can be used to formalise, via the
notion of impact set, the intuitive notion of the set of pack-
ages which are potentially affected by changes in a given
package.

Definition 2.5 (Impact set of a component). Given a repos-
itory R and a package p in R, the impact set of p in R is the
set Is(p,R) = {q ∈ R | q ⇒ p}.

Similarly, the direct impact set of p is the set
DirIs(p,R) = {q ∈ R | q → p}.

While the impact set gives a sound lower bound to the set
of packages which can be potentially affected by a change in

a package, the direct impact set offers no similar guarantees.
Note that by Definition 2.1, for all package p, p ∈ Is(p,R).
Package sensitivity—a measure of how sensitive is a pack-
age, in terms of how many other packages can be affected
by a change in it—can now be defined as follows.

Definition 2.6 (Sensitivity). The strong sensitivity, or sim-
ply sensitivity, of a package p ∈ R is |Is(p,R)| − 1, i.e.,
the cardinality of the impact set minus 1.2

Similarly, the direct sensitivity is the cardinality of the
direct impact set.

The higher the sensitivity of a package p, the higher the
minimum number of packages which will be potentially af-
fected by a change, such as a new bug, introduced in p. We
write |p| and ||p|| to denote the direct and strong sensitivity
of package p, respectively. The following basic property of
impact sets and sensitivity follows easily from the defini-
tions.

Proposition 2.7 (Inclusion of impact sets). If p⇒R q then
Is(p,R) ⊆ Is(q,R). As a consequence, the sensitivity of p
in R is smaller than the sensitivity of q in R.

When analysing a large component base, like Debian’s,
which contains about 22,000 components, it is important to
be able to identify some measure that can be used to eas-
ily pinpoint “interesting” packages. Sensitivity can be (and
actually is, in our tools) used to order packages, bringing
the most sensitive to the forefront. To this end is important
to note that (strong) sensitivity can be computed automat-
ically (and efficiently, see Section 4) from dependencies;
that is an important feature: given the sheer size of systems
like Debian, it would be unreasonable to try mix sensitivity
with hand-maintained classifications such as “core” pack-
ages, “end-user” packages, etc. But sensitivity alone is not
enough: we do not want to spend time going through hun-
dreds of packages with similar sensitivity to find the one
which is really important, so we need to keep some of the
structure of the strong dependency graph.

A first step is to group together only those packages that
are related by strong dependencies, but our analysis of the
Debian distribution led us to discover that we really need
to go further and distinguish the cases of related compo-
nents in the strong dependency graph from the cases of un-
related ones: in the picture in Figure 1,3 configuration 1c
shows q that clearly dominates r, as the impact set of r re-
ally comes from that of q, in configuration 1d, q and r are
clearly equivalent, while in configuration 1a, q and r are to-
tally unrelated, and in configuration 1b, q strong depends on
r but q does not generate all the impact set of r.

2The −1 accounts for the fact that the impact set of a package always
contains itself. This way we ensure that sensitivity 0 preserves the intuitive
meaning of “no package potentially affected”.

3Edges implied by transitivity are omitted from the diagrams for the
sake of clarity.
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Figure 1. Significant configurations in the strong dependency graph

Yet, the packages q and r all have essentially the same
sensitivity values (n or n + 1) in all the first three cases
(and n + k in the fourth, which can also contribute to the
mass of packages of sensitivity similar to n). To distinguish
these different configurations in strong dependency graphs,
we introduce one last notion.

Definition 2.8 (Strong dominance). Given two packages p
and q in a repository R, we say that p strongly dominates q
(p <Is q) iff

• Is(p,R) ⊇ (Is(q,R) \ Scons(p)), and

• p strongly depends on q

The intuition of strong dominance, is that a package p
dominates q if the strong dependency of p on q “explains”
the impact set of q: the packages that q has an impact on
are really those that p has an impact on, plus p. This no-
tion has some similarity in spirit with the standard notion
of dominance used in control flow graphs, but is technically
quite different, as strong dependency graphs are transitive,
and have no single start node.

Using the transitivity of strong dependencies, the follow-
ing can be established.

Proposition 2.9. The strong domination relation is a par-
tial pre-order.

Proof. Reflexivity is trivial to check. For transitivity, sup-
pose we have p <Is q and q <Is r: first of all, p strongly
depends on r is a direct consequence of the fact that the
strong dependency relation is transitive, so the second con-
dition for p <Is r is established. For the first condi-
tion, we know that Is(p,R) ⊇ (Is(q,R) \ Scons(p))
and Is(q,R) ⊇ (Is(r,R) \ Scons(q)). By transitivity of
strong dependencies, since p ⇒ q ⇒ r, we also have that
Scons(p) ⊇ Scons(q) ⊇ Scons(r). Then we have eas-
ily that Is(p,R) ⊇ (Is(q,R) \ Scons(p)) ⊇ (Is(r,R) \
Scons(q)) \ Scons(p) = Is(r,R) \ Scons(p).

This pre-order is now able to distinguish among the cases
of Figure 1. In Figure 1c we have that q <Is r, but not the
converse; in 1d both q <Is r and r <Is q hold, i.e., q and

r are equivalent according to strong domination; in 1a and
1b no dominance relationship can be established between q
and r.

It is possible, and actually quite useful, to generalise
the strong dominance relation to cover also the case shown
in 1b, where a part of the impact set of the package r is not
covered by the impact set of q, as follows.

Definition 2.10 (Relative strong dominance). Given two
packages p and q in a repository R, we say that p strongly
dominates q up to z (p <z

Is q) iff

• |(Is(q,R)\Scons(p))\Is(p,R)|
|Is(p,R)| ∗ 100 = z, and

• p strongly depends on q

It is easy to see that p <Is q iff p <0
Is q, and one can

compute in a single pass on the repository the values z for
each pair of packages such that p⇒ q, leaving for later the
choice of a threshold value for z. In the case of figure 1b,
we have that q dominates r up to k/n ∗ 100.

3. Strong dependencies in Debian

Due to the different properties of direct and strong de-
pendencies, the two measures of package sensitivity can dif-
fer substantially. To verify that, as well as other properties
of the underlying dependency graphs, we have chosen De-
bian GNU/Linux as a case study.4 The choice is not casual:
Debian is the largest FOSS distribution in terms of number
of packages (about 22, 000 in the latest stable release) and,
to the best of our knowledge, the largest component-based
system freely available for study.

All stable releases of Debian have been considered, from
1994 to February 2009. For each release the archive sec-
tion main and in particular the i386 architecture has been

4The data presents in this section, as well as what was omitted due
to space constraints, are available to download from http://www.
mancoosi.org/data/strongdeps/. The tools used to compute
the data are released under open source licenses and are available from
the Subversion repository at https://gforge.info.ucl.ac.be/
svn/mancoosi/.



Figure 2. Evolution of packages, direct, and
strong dependencies in Debian releases.

considered; the choices are justified by the fact that they
identify both the most used parts of Debian,5 and that they
are the only parts which have been part of all Debian re-
leases and hence can be better compared over time. The
obtained archive parts have been analysed by building both
the direct and strong dependency graphs; while the con-
struction of the former is a trivial exercise, the implemented
efficient way of constructing the latter is discussed in Sec-
tion 4. To build the direct dependency graph the Depends
and Pre-Depends inter-package relationships have been
considered [12].

Figure 2 shows the resulting evolution of the number of
graph nodes and edges across all Debian releases. The size
of the distribution has grown steadily, yet super-linearly,
across most releases [20, 11], but the growth rate has de-
creased in the past two releases. As expected, strong and
direct sensitivity are not entirely unrelated, given that the
former is the semantic view of the latter, hence they tend to
grow together.

More precisely the total number of strong dependen-
cies is higher, in all releases, than the total number of di-
rect dependencies. A partial explanation comes from the
fact that the strong dependency graph is a transitive closed
graph—property inherited by the underlying strong depen-
dency relationship—whereas the direct dependency graph
is not. Performing the transitive closure of the direct depen-
dency graph however would be meaningless, because the
propagation rules of disjunctive and conjunctive dependen-
cies are not expressible simply in terms of transitive arcs.

We have studied the apparent correlation between strong
and direct dependencies analysing the respective sensitivity

5According to the Debian popularity contest, available at http://
popcon.debian.org

measures for each release. Table 1 confirms the correla-
tion and gives some statistical data about package sensitiv-
ity. The first column is the Spearman ρ correlation index,6

a commonly used non-parametric correlation index that is
not sensible to exceptional values [8]. An index between
0.5 and 1.0—in all the releases we have ρ ∈ [0.91, 0.94]—
is commonly interpreted as a strong correlation between the
two variables. The more common correlation index r for the
same set of data (not shown in the table) gives consistently a
value of 0.55: the huge difference among ρ and r indicates
that the few exceptional values in the data series have re-
ally high weight; when analyzing some of these exceptional
values, we will see how this is indeed the case.

The remaining columns show mean and standard devi-
ation for, respectively, direct sensitivity, strong sensitivity,
and ∆ = ||p|| − |p|. In particular we note an increasingly
high standard deviation in latest Debian releases, which
hints that there is an increasing number of peaks.

Figure 3 shows in more detail the correlation phe-
nomenon for Debian 5.0 “Lenny”, the latest (and largest)
Debian release. The figure plots strong vs direct sensitiv-
ity for each package in the release. In most cases, strong
sensitivity is higher than direct sensitivity, yet close: 82.9%
of the packages fall in a standard deviation interval from the
mean of ∆; the next percentile ranks are 97.4% for two stan-
dard deviations, and 99.8% for three. The remaining cases
allow for important exceptions of packages with very high
strong sensitivity and very low direct sensitivity. Such ex-
ceptions are extremely relevant: metrics built on direct sen-
sitivity only would totally overlook packages with a huge
potential impact.

6The statistical info for the first two rows are possibly not relevant, due
to the small size of the two releases.

Table 1. Direct and strong sensitivity in De-
bian: correlation, mean, standard deviation.

Rel. ρ | · | || · || ∆
.93 .92 1.00, σ2.79 1.05, σ4.73 1.00, σ4.00
1.1 .93 1.70, σ13.9 2.90, σ25.9 1.88, σ18.5
1.2 .91 1.79, σ18.4 2.99, σ32.2 1.73, σ22.4
1.3 .91 1.92, σ21.9 3.06, σ38.2 1.69, σ25.8
2.0 .93 2.29, σ26.7 4.03, σ50.8 2.50, σ36.5
2.1 .94 2.60, σ34.9 4.93, σ64.5 2.93, σ46.6
2.2 .92 3.29, σ44.2 6.89, σ90.4 4.88, σ68.7
3.0 .92 3.99, σ59.2 10.4, σ131. 8.02, σ92.3
3.1 .92 5.29, σ91.4 22.3, σ282. 19.3 , σ246.
4.0 .92 5.55, σ85.1 28.2, σ352. 24.5 , σ313.
5.0 .93 5.07, σ86.1 36.0, σ480. 32.5 , σ440.



Figure 3. Correlation between strong and di-
rect sensitivity in Debian 5.0

3.1. Strong vs direct sensitivity: exceptions

It’s time now to look at some of these exceptional cases
to see how relevant they are. Table 2 lists the top 30 pack-
ages of Lenny having the largest ∆.
libc6 is the package shipping the C standard library

which is required, directly or not, by almost all applications
written or otherwise linked to the C programming language.
About a half of all the packages in the distribution depends
directly on libc6, as can be seen in row 13 of the table,
but almost all packages in the archive cannot be installed
without it, as the strong sensitivity of libc6 is 20’126, on
a total of 22’311 packages. In this case direct sensitivity
does not inhibit identifying the package as a sensitive one,
though, even if it underestimates widely its importance.

Now consider row 1 of Table 2: gcc-4.3-base,
which is a package without which libc6 cannot be in-
stalled. It is the package with the largest ∆, having di-
rect sensitivity of only 43 and strong sensitivity of 20’128.
Ranking its sensitivity with the direct metric would have
led to completely miss its importance: a bug into it can po-
tentially affect all packages in the distribution. Note how-
ever that gcc-4.3-base is not a direct dependency of
libc6, showing once more that to grasp this kind of inter-
package relationships the semantics, rather than the syntax,
of dependencies must be put into play.

In the second row, libgcc1 shows a similar pattern,
being this time a direct dependency of libc6. The third
row and many others in the table show more complex
patterns. Ordering packages only according to sensitivity
might lead to oversee other important characteristic. Pos-
sibly the most extreme cases are those of ncurses-bin
and libx11-data, which are mentioned just once in all

Table 2. Packages from Debian 5.0, sorted by
gap between strong / direct impact set sizes.

# Package |p| ||p|| ||p|| − |p|
1 gcc-4.3-base 43 20128 20085
2 libgcc1 3011 20126 17115
3 libselinux1 50 14121 14071
4 lzma 4 13534 13530
5 coreutils 17 13454 13437
6 dpkg 55 13450 13395
7 libattr1 110 13489 13379
8 libacl1 113 13467 13354
9 perl-base 299 13310 13011

10 libstdc++6 2786 14964 12178
11 libncurses5 572 11017 10445
12 debconf 1512 11387 9875
13 libc6 10442 20126 9684
14 libdb4.6 103 9640 9537
15 zlib1g 1640 10945 9305
16 debianutils 86 8204 8118
17 libgdbm3 68 8148 8080
18 sed 11 8008 7997
19 ncurses-bin 1 7721 7720
20 perl-modules 214 7898 7684
21 lsb-base 211 7720 7509
22 libxdmcp6 15 6782 6767
23 libxau6 42 6795 6753
24 libx11-data 1 6693 6692
25 libxcb-xlib0 3 6695 6692
26 libxcb1 87 6778 6691
27 x11-common 137 6317 6180
28 perl 2169 7898 5729
29 libmagic1 28 5585 5557
30 libpcre3 164 5668 5504

. . .

the explicit dependencies, and yet are really necessary for
several thousand other packages.

We believe this is sufficiently conclusive evidence to to-
tally dismiss, from now on, any analysis based on the syn-
tactic direct dependency graph, when considering compo-
nent based systems with expressive dependency languages.

3.2. Using strong dominance to cluster data

Now we turn to the problem of presenting the sensitive-
ness information in a relevant way to a Quality Assurance
team: we could simply print a list of package names, or-
dered by their sensitiveness; this would give a result quite
similar to that of table 2 above, just dropping the first and
fourth column. A smart Debian developer will surely spot
the fact that gcc-4.3-base, libgcc1 and libc6 are



Table 3. Small-world figures for Debian 5.0.
Direct dep.
graph

Strong dep.
graph

Vertices 22,311 22,311
Edges 107,796 40,074
Average degree 4.83 1.80
Clustering coeff. 0.41 0.39
Average distance 3.18 2.86
Components (WCCs) 1,425 2,809
Largest WCC 20,831 19,200
Density 0.00022 0.000081

related and would look at them together, but it would be dif-
ficult to see relationships among the other packages in the
list, even if we can see that many packages have impact sets
of similar size.

Here is where our definition of relative strong dominance
comes into play, allowing to build meaningful clusters that
provide sensible information to the maintainers: Figure 4
shows the graph of relative strong domination between the
first 20 packages of Table 2. Bold edges show strong dom-
ination as defined in Definition 2.8. Normal edges show
relative domination, where the install sets of the two pack-
ages almost fully overlap, apart from a few packages (edges
are labelled with the percentage z of Definition 2.10).

This figure shows clearly that it is possible to isolate five
clusters of related packages with similar sensitivity values;
some of them may look surprising at first sight to a Debian
developer, and evident after a little time spent exploring the
package metadata: this actually confirms the real value of
this way of presenting data.

3.3. Debian is a small world

We expected the strong dependency graph to retain the
small world characteristics previously established for the
direct dependency graph [14], but this required some ex-
tra effort to get sensible results: indeed, computing clus-
tering coefficients and other similar measures on the strong
dependency graph will yield very different values (as the
strong dependency graph is transitive), so we first built a
non-transitive version of the strong dependency graph, and
computed the usual small world measures on it.

Note that, since the strong dependency graph con-
tains some cycles, the obtained non-transitive graph is not
unique. The differences are however minor enough to not
alter the overall results.

The clustering coefficient and average path length of
the non-transitive graph are, though slightly smaller, well
within the range of small-world networks. More than half
the edges of the direct graph have disappeared, but this has
not significantly affected either the graph clustering or the

path length. The relevant statistics are summarised in Ta-
ble 3.3.

Some additional notes about obtained small-world statis-
tics. First, both graphs contain one enormous (weakly con-
nected) component, next to which all other components are
of insignificant size (for the direct graph, there are 1’480 re-
maining packages in 1’424 components, which would make
their average size just above 1; the ratio is similar for the
strong graph). Second, when we look at the density of
both graphs (the number of edges in the graph divided by
the maximum possible number of edges), we see that both
graphs are extremely sparse.

4. Efficient computation

It is not evident that strong dependencies as defined in
Section 2 are actually tractable in practise: from previous
results [17, 5] it is known that checking installability of a
package (or co-installability of a set of packages) is an NP-
complete problem. Even if in practise checking installabil-
ity turns out to be tractable on real-world problem instances,
the sheer number of instances that computing strong depen-
dencies may require in the general case makes the problem
much harder. We start by observing that the problem of de-
termining strong dependencies is decidable.

Proposition 4.1 (Decidability). Strong dependencies for
packages in a finite repository R are computable.

Proof. Since R is finite, the set of all installations is also
finite. Among these installations, finding the healthy one is
just a matter of verifying locally the dependency relations.
Then, for each p and q, it is enough to check all healthy
installations to see whether q is present whenever p is.

If we want to know if a particular packages p strongly
depends on q in a repository R however, the argument used
in the proof of decidability leads to an algorithm that has ex-
ponential worst-case complexity in the size n of a repository
R. One possible algorithm to find all strong dependencies
in a repository R is as follows.
Require: R 6= ∅
strongdeps← ∅
for all p, q ∈ R do

if strong dependency(p, q,R) then
strongdeps← strongdeps ∪ {p, q}

end if
end for
return strongdeps

Where the function strong dependency uses a SAT solver
to check whether it is possible to install p without installing
q (in repository R). This algorithm requires checking n2

SAT instances, which is unfeasible with n u 22, 000. We
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Figure 4. Dominance relations among the topmost 20 sensitive packages

need to look for an optimised approach; the following re-
mark is the key observation.

Remark 4.2 (Reducing the search space). All packages q
on which a given package p strongly depends are included
in any installation of p. Furthermore, if a package p con-
junctively depends on a package q, then q is a strong depen-
dency of p.

This leads to the following improved algorithm that
strongly relies on the notion of installation sets and the
property of transitivity of strong dependencies.

for all p ∈ R do
strongdeps← strongdeps ∪ conj deps(p,R)

end for
for all p ∈ R do
S ← install(p,R)
for all q ∈ S do

if (p, q) 6∈ strongdeps ∧ strong dep(p, q,R)
then
strongdeps← strongdeps ∪ {p, q}

end if
end for

end for
return strongdeps

The function conj deps(q,R) returns all packages in R
that are connected to q, considering only conjunctive paths.
We add to the strongdeps set all couples (p, q) such that
there exists a conjunctive path between p and q, and then
for all remaining packages in the install set of p, we check
if there is a strong dependency using the SAT solver.

On one hand, the analysis of the structure of the repos-
itories shows that it is in practise possible to find installa-
tion sets that are quite small. Considering only the instal-
lation set for a given package drastically reduces the num-
ber of calls to the SAT solver. On the other hand, since
the large majority of strong dependencies can be derived di-
rectly from conjunctive dependencies, building the graph of
conjunctive dependencies beforehand can further reduce the

computation time.
In our experiments, calculating the strong dependency

graph and sensitivity index for about 22, 000 packages takes
about 5 minutes on a modern commodity Unix worksta-
tion.7

5. Perspective applications

The given notions of strong dependency, impact set, sen-
sitivity, and strong dominance can be used to address issues
showing up in the maintenance of large component reposi-
tories. In particular, we have identified two areas of applica-
tion: repository-wide Quality Assurance (QA) and upgrade
risk evaluation for user machines.

Quality Assurance FOSS distribution the size of Debian
are not easily inspectable by hand, without specific tools.
The work of release managers in such scenario is about
maintaining a coherent package repository, i.e., in which
each package is installable in at least one healthy installa-
tion. Such repositories are usually not built from scratch,
but rather evolve from an unstable state to a stable one
which is periodically released as the new major release of
the distribution. Day to day maintenance of the repository
includes actions such as adding packages to the repository
(e.g., newly packaged software, or new releases) as well as
removing them (e.g., superseded softwares or sub-standard
quality packages which are not considered suitable for re-
leasing). Quality assurance is meant to spot repository-wide
incompatibilities or sub-standard quality packages, accord-
ing to various criteria.

In such ecosystems, removing a package can have non-
local effects which are not evident by just looking at the
direct dependencies of the involved packages. For instance,
removing a package p such that several packages depends
on p | q might be appropriate only if q is installable in

7Intel Xeon 3 GHz processor, 3 Gb of memory



the archive. The strong dependency graph can be used to
detect similar cases efficiently. Once the graph has been
computed—and Section 4 showed that the cost is afford-
able even for large distributions—detecting if a package is
removable in isolation reduces to check whether its node
has inbound edges or not. If really needed, following in-
bound edges can help building sets of packages removable
as a whole.

In the same context, sensitivity can be used to decide
when to freeze packages during the release process (deci-
sion currently delegated to folklore): the higher the sensi-
tivity, the sooner a package should be frozen. Sensitivity
can also be used to activate heuristic warnings in archive
management tools when apparently innocuous packages
are acted upon: attempting to remove or otherwise alter
gcc-4.3-base at the end of the Lenny release process
(see Table 2) would have surely been an error, in spite of
the few packages mentioning it directly in their dependen-
cies.

Upgrade risk evaluation System administrators of ma-
chines running FOSS distributions would like to be able
to judge the risks of a certain upgrade. Risk evaluation
not necessarily in the sense of deciding whether or not to
perform an upgrade—not performing one is often not an
option, due to the frequent case of upgrades that fix secu-
rity vulnerability. Upgrade risk evaluation is nevertheless
important to allocate suitable time slots to deploy upgrade
plans proposed by package managers: the riskier the up-
grade, the longer the time slot that should be planned for
it.

The general principle we propose is that a package that is
not strongly depended upon by other packages is relatively
safe to upgrade; conversely, a package that is needed by
many packages on the system might need some safety mea-
sures in case of problems (backup servers, . . . ). However
this measure should be computed in relation to the actual
user installation and not as an absolute value with respect to
the distribution such as plain impact sets. Once the strong
dependency graph of a user installation has been computed,
the legacy package manager can be used to find upgrade
plans as usual. On that plan the overall upgrade sensitivity
can then be computed by summing up the size of the instal-
lation impact sets of all packages touched by the proposed
plan; where the installation impact set of a package p is de-
fined as the intersection of the strong impact set with the
local installation.

The strong dependency graph used for risk evaluation
must be the one corresponding to the distribution snapshot
which was known before planning the upgrade. This is be-
cause we want to evaluate the risks with respect to the cur-
rent installation, not to a future potential one in which pack-
age sensitivity can have changed. The maintenance of such

graph on user machines is straightforward and can be post-
poned to after upgrade runs have been completed, in order
to be ready for future upgrades.

Note that in this way, what is computed is an under
approximation of the upgrade risk measure. For exam-
ple consider the following scenario: a package p having
Depends: q | r, and a healthy installation I = {p, q}.
The direct dependencies of p entail no strong dependency,
but in the given installation q has been “chosen” to solve
p dependencies. Even if p 6∈ Is(q,R) ∩ I , an upgrade of
q in that specific installation has potentially an impact on
p. The under approximation is nevertheless sound—i.e., all
packages in the installation impact set are installed.

Release upgrades A particular case of upgrade are the
so called release upgrades (or distribution upgrades) which
are performed periodically to switch from an older stable
release of a given distribution to a newer one. The rele-
vance of such upgrades is that they usually affect almost all
of the packages present in user installation. Such kind of
upgrades are usually already performed wisely by system
administrators devoting to them large time slots.

During release upgrades system administrators can be
faced with the choice of whether to switch to a new major
version of some available software or to stay with an older,
legacy one. For instance, one can have the choice to switch
to the Apache Web server 2.x series, or to stay with Apache
1.x. The upgrade is not forced by strict package version-
ing by either offering packages with different names (e.g.
apache1 vs apache2 in Debian and its derivatives) or
by avoiding explicit conflicts among the two set of versions
(as it happens in RPM-based distributions). The choice is
currently not technically well assisted: if apache2 is ten-
tatively chosen, the package manager will propose to up-
grade all involved packages to the most recent version with-
out highlighting which upgrades are mandatory to fulfil de-
pendencies and which are not.

While this is a deficiency of state of the art solving al-
gorithms [22], strong dependencies offer a cheap technical
device to work around the problem with current solvers. It
is enough to compute the strong dependency graph of both
distributions and, in particular, the strong dependencies of
the two (or more) involved packages. Then, by taking the
difference of the strong dependencies in the new and in the
old graph, the list of package which must be forcibly up-
graded to do the switch is obtained. All such forced up-
grades can then be presented to the administrator to better
guide her or his choice.

6. Related works

Several interesting works have dealt with issues related
to the topics touched by this paper. In the area of complex



networks, [14, 16] used FOSS distributions as case stud-
ies. The former is the closest to our focus, as it studies the
network structure obtained from Debian inter-package rela-
tionships, showing that it is small-world, as the node con-
nectivity follows a near power-law distribution. However,
the analysis is performed on the direct dependency graph
which, as discussed, misses the semantics of dependencies.

We could not get more information on how the data
of [14] has been computed, as the snapshot of Debian used
there comes from late 2004, and is no longer available in
the Debian archives; based on the figures presented in the
paper, and our analysis of the closest Debian stable distri-
bution, we conclude that their analysis dropped all informa-
tion about Conflicts and Pre-Depends. As a conse-
quence, the figures produced for what is called in the pa-
per “the 20 most highly depended upon packages” falls ex-
tremely short of reality: libc6 is crucial for 3 times more
packages than what is reported, and other critical packages
such as gcc-4.3-base are entirely missed.

In the area of quality assurance for large software
projects, many authors correlate component dependencies
and past failure rates in order to predict future failures [24,
18, 19]. The underlying hypothesis is that software “fault-
proneness” of a component is correlated to changes in com-
ponents that are tightly related to it. In particular if a
component A has many dependencies on a component B
and the latter changes a lot between versions, one might
expect that errors propagates through the network reduc-
ing the reliability of A. A related interesting statistical
model to predict failures over time is the “weighted time
damp model” that correlates most recent changes to soft-
ware fault-proneness [9]. Social network methods [10] were
also used to validate and predict the list of sensitive compo-
nents in the Windows platform [24].

Our work differs for two main reasons. First, the source
of dependency information is quite different. While depen-
dency analysing for software components is inferred from
the source code, the dependency information in software
distributions are formally declared and can be assumed to
be, on the average, trustworthy as reviewed by the package
maintainer. Second, FOSS distributions still lack the needed
data to correlate upgrade disasters with dependencies and
hence to create statistical models that allow to predict future
upgrade disasters. In more detail, the FOSS ecosystem is re-
ally fond of public bug tracker systems, but generally lacks
explicit logging of upgrade attempts and a way to associate
specific bugs to them. One of the goal of the Mancoosi8

project—in which the authors are involved—is to create a
corpus of upgrade problems which will be a first step in this
direction.

The key idea behind the notion of sensitivity can be seen
as a direct application of the evaluation of “disease spread-

8http://www.mancoosi.org

ing speed” in small world networks [23]: the higher the sen-
sitivity, the larger the impact sets, the higher the (potential)
bug spreading speed. The semantic definition of impact sets
is crucial in this analysis: using the direct dependency graph
would give no guarantee about which components will be
effectively installed and therefore help bug spreading.

7. Conclusion and future work

This paper has introduced the novel notions of strong de-
pendencies between software components, and of sensitiv-
ity as a measure of how many other components rely on the
availability of a specific components; strong dominance has
been introduced as well as a criterion to order and group
components with similar sensitivity into meaningful clus-
ters. We have shown concretely on a large scale real world
example that such notions are better suited to describe true
inter-component relationships than previous studies, which
were solely based on the analysis of the syntactic (or di-
rect) dependency graph. The main applications of these new
notions are tools for quality assurance in large component
ecosystems and upgrade risk evaluation.

The new notions have been tested on one of the largest
known component-based system: Debian GNU/Linux, a
popular FOSS distribution. Historical analysis of Debian
strong and direct dependency graphs have been performed.
Empirical evidence shows that, while the two notions are
generally correlated, there are several components on which
they give huge differences, with direct dependencies en-
tirely missing key components that are correctly pinpointed
by strong dependencies. We believe the case shown in this
paper is strong enough to totally dismiss, in the future, mea-
sures built on direct dependencies as soon as the depen-
dency language is expressive enough to encompass propo-
sitional logics.

We hence strongly advocate the evaluating of sensitiv-
ity on top of strong dependencies, and we have shown
clearly how clustering components according to the notion
of strong dominance allows to build a meaningful presenta-
tion of data, and uncover deep relationships among compo-
nents in a repository.

Despite the theoretical complexity of the problem, and
the sheer size of modern component repositories, we have
succeeded in designing a simple optimised algorithm for
computing strong dependencies that performs very well on
real world instances, making all the measures proposed in
this paper not only meaningful, but actually feasible.

Previous studies on network properties—such as small
world characteristics—have been redone on the Debian
strong dependency graph, showing that it stays small world.

Future works is planned in various directions. First of
all the notion of installation impact set needs to be refined.
While it is clear that the strong impact set is an under ap-



proximation of it, it is less clear how to further refine it. On
one hand we want to get closer to the actual set of poten-
tially affected packages on a given machine. On the other
it is not clear, for a package p depending on q | r to which
extent both packages should be considered as potentially
impacted by a bug in p. It appears to be a limitation in the
expressiveness of the dependency language which does not
state an order between q and r, but needs further investiga-
tion. Interestingly enough, the implicit syntactic order “p
before q” is already taken into account by some distribution
tools such as build daemons and is hence worth modelling.

Distributions like Debian use a staged release strategy, in
which two repositories are maintained: an “unstable” and a
“testing” one. Packages get uploaded to unstable and mi-
grate to testing when they satisfy some quality assurance
criteria, including the goal of maintaining testing devoid of
uninstallable packages. Current modelling of the problem
is scarce and implementations rely on empirical package-
by-package, brute force migration attempts. We believe that
the notion of strong dependency and the clusters entailed by
strong dominance can help in identifying clusters of pack-
ages which should forcibly migrate together.
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Abstract

We introduce the Aeolus component model, which is specifically designed to
capture realistic scenarii arising when configuring and deploying distributed
applications in the so-called cloud environments, where interconnected compo-
nents can be deployed on clusters of heterogeneous virtual machines, which can
be in turn created, destroyed, and connected on-the-fly.

The full Aeolus model is able to describe several component characteris-
tics such as dependencies, conflicts, non-functional requirements (replication
requests and load limits), as well as the fact that component interfaces to the
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When the number of components needed to build an application grows, it
becomes important to be able to automate activities such as deployment and
reconfiguration. This correspond, at the level of the model, to the ability to
decide whether a desired target system configuration is reachable, which we call
the achievability problem, and producing a path to reach it.

In this work we show that the achievability problem is undecidable for the
full Aeolus model, a strong limiting result for automated configuration in the
cloud. We also show that the problem becomes decidable, but Ackermann-
hard, as soon as one drops non-functional requirements. Finally, we provide a
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1. Introduction

The expression “cloud computing” is broadly used to refer to the possibility
of building sophisticated distributed software applications that can be run, on-
demand, on virtualised hardware infrastructure at a fraction of the cost which
was necessary just a few years ago. Reaping all the benefits of cloud computing
is not an easy task: even when the infrastructure costs fall dramatically, the
complexity of designing and maintaining distributed scalable software systems
is a serious challenge.

Attempts are being made both in industry and in the research world to model
and tame such complexity. On the industry side, a wealth of initiatives offer
different kinds of solutions for isolated aspects of the problem. Tools like Pup-
pet [3] or Chef [4] allow to automate the configuration of software components,
based on a set of descriptions stored in a central server. CloudFoundry [5] al-
lows to select, connect, and push to a cloud some predefined services (databases,
message buses, proxies, . . . ), that can be used as building blocks for writing ap-
plications using one of the supported frameworks. Finally, Juju [6] tries to
extend the basic concepts of package managers—used by software distributions
to automate software upgrades.

On the academic side, several teams are working, with different approaches,
on the problems posed by the complexity of designing cloud applications. The
Fractal component model [7], which itself pre-dates the popularization of the
“cloud computing” expression, focuses on expressivity and flexibility: it provides
a general notion of component assembly that can be used to describe concisely,
and independently of the programming language, complex software systems.
Building on Fractal, FraSCAti [8] provides a middleware that can be used to
deploy applications in the cloud. ConfSolve [9] on the other hand aims at
helping the application designer with some of the decisions to be made, and
more specifically to optimally allocate virtual machines to concrete servers.

In all the above mentioned approaches, the goal is to allow the user (i.e., the
application designer) to assemble a working system out of components that have
been specifically designed or adapted to work together. The actual component
selection (which web server should I use? which SQL database? which load
balancer?) and interconnection (which front-end should I connect to which
back-end, in order to avoid bottlenecks?) are the responsibility of the user. And
if some reconfiguration needs to happen, it is either obtained by reassembling
the system manually, or by writing specific code that is left for the user to write.

We believe that to make further progress in taming the complexity of so-
phisticated cloud applications, two major concerns must be taken into account.

Expressivity. We need component models that are expressive enough to capture
all the component characteristics that are relevant for designing distributed,
scalable applications which are typical in the cloud. Some of those characteris-
tics (see Section 2 for a more in-depth discussion) are:

dependencies e.g., which other components should be deployed in order to be
able to install, activate, upgrade, etc. a given component?
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conflicts e.g., which other components, if any, would inhibit the deployment
of a given component?

non-functional requirements e.g., if a component depends on others, how
many of those would be needed to guarantee the desired level of fault-
tolerance and/or load-balancing? Similarly, if a component offers func-
tionalities to other, how many of them it can reasonably satisfy before
needing to be replicated?

statefulness distributed/cloud-components have complex activation protocols,
making their contextual requirements (dependencies, conflicts, etc.) vary
over time, e.g., it might be enough to install a given component to be able
to install another one, but the requirements to activate them might be
different

Automation. While expressivity is certainly important, solving the challenge of
designing and maintaining a cloud also requires automation. When the number
of components grows, or the need to reconfigure appears more frequently, it
is essential to be able to specify at a certain level of abstraction a particular
target configuration of the distributed software system we want to realize, and
to develop tools that provide a set of possible evolution paths leading from the
current system configuration to one that corresponds to such a user request.

Automated approaches have been developed already, but thus far mostly for
the particular case of configuring package-based FOSS (Free and Open Source
Software) distributions on a single system, and there are generic, solver-based
component managers for this task [10]. Similar approaches have been developed
in the context of Software Product Lines where a correct instance of a product
needs to be composed of a consistent set of features [11].

The goal of this paper is to lay the formal foundations of such an automated
approach for the much more complex situation that arises when one needs to:
(re-)configure not a single machine, but a variety of possibly “elastic” clusters of
heterogeneous machines, living in different domains and offering interconnected
services that need to be stopped, modified, and restarted in a specific order for
the reconfiguration to be successful.

Contributions. We first elicit the expressivity requirements of a component
model that is suitable for the cloud from specific use cases presented in Sec-
tion 2. We then detail a formal component model for the cloud, called Aeolus,
where components describe resources which provide and require different func-
tionalities, and may be created or destroyed. As a major improvement over
state-of-the-art component models, Aeolus components are equipped with state
machines that declaratively describe how required and provided functionalities
are enacted. The declarative information is essential to provide a planner with
the input needed for exploring the possible evolution paths of the system, and
propose a reconfiguration plan, which is the key automation enabler.

In Section 4 we study formally the complexity of checking the existence of
a deployment plan in Aeolus, a property which we call achievability. We study
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achievability in the full Aeolus model, as well as in more limited variants of it
that exhibit different decidability and complexity characteristics.

We show that achievability is undecidable if one allows to impose capacity
constraints—i.e., restrictions on the number of connections between required
and provided functionalities—as it happens in the complete version of our model.
This limiting result is particularly significant, as some industrial tools are start-
ing to incorporate such restrictions to account for capacity limitations of services
in the cloud.

If we remove the possibility of constraining the number of provided and
required functionalities, we show that achievability becomes decidable but Acker-
mann-hard. Thus even in this simplified model, that we call Aeolus core, finding
a plan can be extremely costly and infeasible from the computational point of
view.

For this reason we consider a further restricted model, called Aeolus−, where
we drop the ability of stating capacity constraints on the provided and required
functionalities, and declaring conflicts between resources. We prove that in
Aeolus− achievability is decidable in polynomial time. This is interesting since
Aeolus− corresponds to what mainstream industry tools can handle at present.
Our result explains why it is still possible, in simple cases, to manage such
systems manually.

2. A gentle introduction to Aeolus

We introduce the key features of Aeolus by eliciting them, step-by-step, from
the analysis of realistic scenarii. As a running example, we consider several
deployment use cases for WordPress, a popular weblog solution that requires
several software services to operate, the main ones being a Web server and a SQL
database. We present the use cases in order of increasing complexity ranging
from the simplest ones, where everything runs on a single physical machine, to
more complex ones where the whole appliance runs on a cloud.

Use case 1 — Package installation

Before considering the services that a machine is offering to others (locally
or over the network), we need to model the software installation on the ma-
chine itself, so we will see how to model the three main components needed by
WordPress, as far as their installation is concerned.

Software is often distributed according to the package paradigm [12], popu-
larized by FOSS distributions, where software is shipped at the granularity of
bundles called packages. Each package contains the actual software artifact, its
default configuration, as well as a bunch of package metadata.

On a given machine, a software package may exists in different states (e.g., in-
stalled or uninstalled) and it should go through a complex sequence of states
in different phases of unpacking and configuration to get there. In each of its
states, similarly to what happens in most software component models [13], a
package may have contextual requirements and offer some features, that we call
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Package: wordpress

Version: 3.0.5+ dfsg -0+ squeeze1

Depends: httpd, mysql -client , php5 , php5 -mysql ,

libphp -phpmailer (>= 1.73-4), [...]

Package: mysql -server -5.5

Source: mysql -5.5

Version: 5.5.17 -4

Provides: mysql -server , virtual -mysql -server

Depends: libc6 (>= 2.12), zlib1g (>= 1:1.1.4) , debconf , [...]

Package: apache2

Version: 2.4.1 -2

Maintainer: Debian Apache Maintainers <debian -apache@...>

Depends: lsb -base , procps , perl , mime -support ,

apache2 -bin (= 2.4.1 -2), apache2 -data (= 2.4.1 -2)

Conflicts: apache2.2-common

Provides: httpd

Description: Apache HTTP Server

Figure 1: Debian package metadata for WordPress, Mysql and the Apache web server (excerpt)

provides. For instance in Debian, a popular FOSS distribution, there are pack-
ages for WordPress, Apache2 and MySQL equipped with metadata (reported in
Figure 1) including a list of requirements (the Depends field) and of functional-
ities that are offered (the Provides field).

To model a software package, at this level of abstraction, we may use a
simple state machine to capture its life cycle, with requirements and provides
associated to each state. The ingredients of this model are very simple: a set of
states Q, an initial state q0, a transition function T from states to states, a set
R of requirements, a set P of provides, and a function D that maps states to the
requirements and provides that are active at that state. We call component type
any such tuple 〈Q, q0, T, 〈P,R〉, D〉, which will be formalized in Definition 1.

A system configuration is then built out of a collection of components that
are instances of component types, with its current state, and a set of connections
between requirements and provides of the different components. Connections
indicate which provide is fulfilling the need of each requirement. A configuration
is correct if all the requires which are active are satisfied by active provides; this
will be made precise in Definition 4.

A straightforward graphical notation can capture all these pieces of infor-
mation together: Figure 2 presents systems built using the components from
Figure 1 (only modelling the dependency on httpd underlined in the metadata,
for the sake of conciseness). In Figure 2a the packages are available but not
installed yet. In Figure 2b the WordPress package is in the installed state and
activates the requirement on httpd; Apache2 is also in the installed state, so
the httpd provide is active and is used to satisfy the requirement, fact which is
visualized by the binding connecting together the two ports named httpd.
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(a) Available components, not installed.

(b) Installed components, bound together on the httpd port.

Figure 2

Figure 3: A graphical description of the basic model of services and packages.

Use case 2 — Services and packages

Installing the software on a single machine is a process that can already be
automated using package managers: on Debian for instance, you only need to
have an installed Apache server to be able to install WordPress. But bringing
it in production requires to tune and activate the associated service, which is
more tricky and less automated: the system administrator will need to edit con-
figuration files so that WordPress knows the network addresses of an accessible
MySQL instance.

The ingredients we have seen up to now in our model are sufficient to capture
the dependencies among services, as shown in Figure 3. There we have added
to each package an extra state corresponding to the activation of the associated
service, and the requirement on mysql up of the running state of WordPress
captures the fact that WordPress cannot be started before MySQL is running. In
this case, the bindings really correspond to a piece of configuration information,
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Figure 4: A graphical description of the model with redundancy and capacity constraints
(internal sate machines are omitted for simplicity).

i.e., where to find a suitable MySQL instance.
Notice how this model does not impose any particular way of modelling the

relations between packages and services. Instead of using a single component
with an installed and a running state, we can simply model services and packages
as different components, and relate them through dependencies.

Use case 3 — Redundancy, capacity planning, and conflicts

Services often need to be deployed on different machines to reduce the risk
of failure or to increase the load they can withstand by the means of load-
balancing. To properly design such scalable architectures system administrators
might want, for instance, to indicate that a MySQL instance can only support a
certain number of connected WordPress instances. Symmetrically, a WordPress
hosting service may want to expose a reverse web proxy/load balancer to the
public and require to have a minimum number of distinct instances of WordPress
available as its back-ends.

To model this kind of situations, we allow capacity information to be added
on provides and requires of each component in Aeolus: a number n on a provide
port indicates that it can fulfil no more than n requirements, while a number
n on a require port means that it needs to be connected to at least n provides
from n different components.

As an example, Figure 4 shows the modelling of a WordPress hosting sce-
nario where we want to offer high availability by putting the Varnish reverse
proxy/load balancer in front of several WordPress instances, all connected to
a cluster of MySQL databases.1 For a configuration to be correct, the model

1All WordPress instances run within distinct Apache instances, which have been omitted
for simplicity.
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requires that Varnish is connected to at least 3 (active and distinct) WordPress
back-ends, and that each MySQL instance does not serve more than 2 clients.

As a particular case, a 0 constraint on a require means that no provide
with the same name can be active at the same time; this can be effectively
used to model global conflicts between components. For instance, we can use
this feature to model the conflict between the apache2 and apache2.2-common

packages that had been omitted in Figure 2.

Use case 4 — Creating and destroying components

Use cases like WordPress hosting are commonplace in the cloud, to the point
that they are often used to showcase the capabilities of state-of-the-art cloud
deployment technologies. The features of the model presented up to here are
already expressive enough to encode these static deployment scenarii, where the
system architecture does not evolve over time in reaction to load changes.

To model faithfully deployment runs on the cloud, where an arbitrary num-
ber of instances of virtual machine images can be allocated and deallocated on
the fly, we also allow in our model creation and destruction of all kinds of com-
ponents, provided they belong to some existing component type. For instance,
in the configuration of Figure 4, to respond to an increase in traffic load one
will need to spawn 2 new WordPress instances, which in turn will require to
create new MySQL instances, as the available MySQL-s are no longer enough
to handle the load increase.

3. The Aeolus model

We now formalize the Aeolus model, implementing all the features elicited
from the use cases discussed in the previous section.

Notation. We assume given the following disjoint sets: I for interfaces and Z
for components. We use N to denote strictly positive natural numbers, N∞ for
N ∪ {∞}, and N0 for N ∪ {0}.

We model components as finite state automata indicating all possible com-
ponent states and state transitions. When a component changes state, the sets
of ports it requires from/provide to other components will also change: intu-
itively, the component interface with the external world varies with its state.
A provide port represents the possibility of furnishing a functionality having a
given interface. Similarly, a require port represent the need of a functionality
with a given interface.

Definition 1 (Component type). The set Γ of component types of the Aeolus
model, ranged over by T1, T2, . . . contains 5-ple 〈Q, q0, T, P,D〉 where:

• Q is a finite set of states;

• q0 ∈ Q is the initial state and T ⊆ Q×Q is the set of transitions;
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• P = 〈P,R〉, with P,R ⊆ I, is a pair composed of the set of provide and
the set of require ports, respectively;

• D is a function from Q to 2-ple in (P 7→ N∞)× (R 7→ N0).

Given a state q ∈ Q, D(q) returns two partial functions (P 7→ N∞) and (R 7→
N0) that indicate respectively the provide and require ports that q activates. The
functions associate to the activate ports a numerical constraint indicating:

• for provide ports, the maximum number of bindings the port can satisfy,

• for require ports, the minimum number of required bindings to distinct
components,

– as a special case: if the number is 0 this indicates a conflict, meaning
that there should be no other active port, in any other component,
with the same name.

When the numerical constraint is not explicitly indicated, we assume as
default value ∞ for provide ports (i.e., they can satisfy an unlimited amount of
requires) and 1 for require (i.e., one provide is enough to satisfy the requirement).
We also assume that the initial state q0 has no demands (i.e., the second function
of D(q0) has an empty domain).

Example 1. Figure 2a depicts two component types: wordpress and apache2.
In particular wordpress is formally defined as the 5-ple 〈Q, q0, T, P,D〉 with:

• Q = {uninstalled, installed},

• q0 = uninstalled,

• T = {(uninstalled 7→ installed), (installed 7→ uninstalled)},

• P = 〈{wordpress},
{httpd,mysql-client, php5, php5-mysql, libphp-phpmailer}〉,

• D = {(uninstalled 7→ 〈∅, ∅〉),
(installed 7→ 〈{(wordpress 7→ ∞)}, f〉)}

where f is a function that associates 1 to all require ports.

We now define configurations that describe systems composed by component
instances and bindings that interconnect them. A configuration, ranged over by
C1, C2, . . ., is given by a set of component types, a set of deployed components
with a type and an actual state, and a set of bindings. Formally:

Definition 2 (Configuration). A configuration C is a 4-ple 〈U,Z, S,B〉 where:

• U ⊆ Γ is the finite universe of all available component types;

• Z ⊆ Z is the set of the currently deployed components;
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• S is the component state description, i.e., a function that associates to
components in Z a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T, P,D〉,
and q ∈ Q is the current component state;

• B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed by an
interface, the component that requires that interface, and the component
that provides it; we assume that the two components are distinct.

Example 2. Figure 2b depicts a configuration with two components and one
binding. Formally, it corresponds to the 4-ple 〈U,Z, S,B〉 where:

• U is a set of component types including wordpress and apache2,

• Z = {z1, z2},

• S = {(z1 7→ 〈wordpress, installed〉), (z2 7→ 〈apache2, installed〉)},

• B = 〈httpd, z1, z2〉.

In the following we will use a notion of configuration equivalence that re-
late configurations having the same instances up to renaming. This is used to
abstract away from component identifiers and bindings.

Definition 3 (Configuration equivalence). Two configurations 〈U,Z, S,B〉 and
〈U,Z ′, S′, B′〉 are equivalent, noted 〈U,Z, S,B〉 ≡ 〈U,Z ′, S′, B′〉, iff there exists
a bijective function ρ from Z to Z ′ s.t.:

1. S(z) = S′(ρ(z)) for every z ∈ Z; and

2. 〈r, z1, z2〉 ∈ B iff 〈r, ρ(z1), ρ(z2)〉 ∈ B′.

Notation. We write C[z] as a lookup operation that retrieves the pair 〈T , q〉 =
S(z), where C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection
operators .type and .state to retrieve T and q, respectively. Similarly, given
a component type 〈Q, q0, T, 〈P,R〉, D〉, we use projections to (recursively) de-
compose it: .states, .init, and .trans return the first three elements; .prov, .req
return P and R; .P(q) and .R(q) return the two elements of the D(q) tuple.
When there is no ambiguity we take the liberty to apply the component type
projections to 〈T , q〉 pairs.

For example, C[z].R(q) stands for the partial function indicating the active
require ports (and their arities) of component z in configuration C when it is in
state q.

We are now ready to formalize the notion of configuration correctness:

Definition 4 (Configuration correctness). Let us consider the configuration
C = 〈U,Z, S,B〉.

We write C |=req (z, r, n) to indicate that the require port of component z,
with interface r, and associated number n is satisfied. Formally, if n = 0 all
components other than z cannot have an active provide port with interface r,
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namely for each z′ ∈ Z \ {z} such that C[z′] = 〈T ′, q′〉 we have that r is not
in the domain of T ′.P(q′). If n > 0 then the port is bound to at least n active
ports, i.e., there exist n distinct components z1, . . . , zn ∈ Z \ {z} such that for
every 1 ≤ i ≤ n we have that 〈r, z, zi〉 ∈ B, C[zi] = 〈T i, qi〉 and r is in the
domain of T i.P(qi).

Similarly for provides, we write C |=prov (z, p, n) to indicate that the provide
port of component z, with interface p, and associated number n is not bound
to more than n active ports. Formally, there exist no m distinct components
z1, . . . , zm ∈ Z \ {z}, with m > n, such that for every 1 ≤ i ≤ m we have that
〈p, zi, z〉 ∈ B, S(zi) = 〈T i, qi〉 and p is in the domain of T i.R(qi).

The configuration C is correct if for each component z ∈ Z, given S(z) =
〈T , q〉 with T = 〈Q, q0, T, P,D〉 and D(q) = 〈P,R〉, we have that (p 7→ np) ∈ P
implies C |=prov (z, p, np), and (r 7→ nr) ∈ R implies C |=req (z, r, nr).

Example 3. Figure 3 and 4 report examples of correct configurations. In Fig-
ure 3 it is easy to see that all active require ports are bound to an active provide
port: this condition is enough when the numerical constraints has the default
values.

In Figure 4 there are two kinds of non-default numerical constraints: the
constraint 3 on the require port wp back of the component of type varnish which
is satisfied because there are at least three bindings connecting it to three distinct
components (we assume that the wp back provide ports of these three components
are active) and the constraint 2 on the provide port mysql of the components of
type mysql which are satisfied because those ports are connected to less than two
bindings.

We now formalize how configurations evolve from one state to another, by
means of atomic actions:

Definition 5 (Actions). The set A contains the following actions:

• stateChange(z, q1, q2) where z ∈ Z;

• bind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I;

• unbind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I;

• new(z : T ) where z ∈ Z and T is a component type;

• del(z) where z ∈ Z.

The execution of actions can now be formalized using a labelled transition
systems on configurations, which uses actions as labels.

Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions

C α−→ C′ meaning that the execution of α ∈ A on the configuration C produces a
new configuration C′. The transitions from a configuration C = 〈U,Z, S,B〉 are
defined as follows:
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Figure 5: On the need of a multiple state change: how to install a and b?

C stateChange(z,q1,q2)−−−−−−−−−−−−−→ 〈U,Z, S′, B〉
if C[z].state = q1
and (q1, q2) ∈ C[z].trans
and S′(z′) =

{
〈C[z].type, q2〉 if z′ = z
C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U,Z, S,B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 6∈ B
and r ∈ C[z1].req ∩ C[z2].prov

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U,Z, S,B \ 〈r, z1, z2〉〉 if 〈r, z1, z2〉 ∈ B

C new(z:T )−−−−−−→ 〈U,Z ∪ {z}, S′, B〉
if z 6∈ Z, T ∈ U
and S′(z′) =

{
〈T , T .init〉 if z′ = z
C[z′] otherwise

C del(z)−−−−→ 〈U,Z \ {z}, S′, B′〉
if S′(z′) =

{
⊥ if z′ = z
C[z′] otherwise

and B′ = {〈r, z1, z2〉 ∈ B | z 6∈ {z1, z2}}

Notice that in the definition of the transitions there is no requirement on the
reached configuration: the correctness of these configurations will be considered
at the level of deployment runs.

Also, we observe that there are configurations that cannot be reached through
sequences of the actions we have introduced. In Figure 5, for instance, there
is no way for package a and b to reach the installed state, as each package re-
quires the other to be installed first. In practice, when confronted with such
situations—that can be found for example in FOSS distributions in the presence
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of loops of Pre-Depends that impose an order in the installation of two depend-
ing packages—current tools either perform all the state changes atomically, or
abort deployment.

We want our planners to be able to propose deployment runs containing
such atomic transitions. To this end, we introduce the notion of multiple state
change:

Definition 7 (Multiple state change). A multiple state change
M = {stateChange(z1, q11 , q

1
2), · · · , stateChange(zl, ql1, q

l
2)} is a set of state change

actions on different components (i.e., zi 6= zj for every 1 ≤ i < j ≤ l). We use

〈U,Z, S,B〉 M−−→ 〈U,Z, S′, B〉 to denote the effect of the simultaneous execution
of the state changes in M: formally,

〈U,Z, S,B〉 stateChange(z1,q11 ,q
1
2)−−−−−−−−−−−−−−→ . . .

stateChange(zl,ql1,q
l
2)−−−−−−−−−−−−−−→ 〈U,Z, S′, B〉

Notice that the order of execution of the state change actions does not matter
as all the actions are executed on different components.

We can now define a deployment run, which is a sequence of actions that
transform an initial configuration into a final correct one without violating cor-
rectness along the way. A deployment run is the output we expect from a
planner, when it is asked how to reach a desired target configuration.

Definition 8 (Deployment run). A deployment run is a sequence α1 . . . αm of
actions and multiple state changes such that there exist Ci such that C = C0,

Cj−1
αj−→ Cj for every j ∈ {1, . . . ,m}, and the following conditions hold:

configuration correctness for every i ∈ {0, . . . ,m}, Ci is correct;

multi state change minimality if αj is a multiple state change then there
exists no proper subset M ⊂ αj, or state change action α ∈ αj, and

correct configuration C′ such that Cj−1 M−−→ C′, or Cj−1 α−→ C′.

Example 4. Consider the configuration reported in Figure 3. Starting from an
empty configuration. Such configuration can be reached upon execution of the
following deployment run:

new(z1 : wordpress),
new(z2 : apache2),
stateChange(z2, uninstalled, installed),
bind(httpd, z1, z2),
stateChange(z1, uninstalled, installed),
new(z3 : mysql),
stateChange(z3, uninstalled, installed),
stateChange(z3, installed, running),
bind(mysql up, z1, z3),
stateChange(z2, installed, running),
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This sequence of actions is a deployment run because it guarantees the correct-
ness of all the traversed configurations. Notice that this sequence of actions
continues to be a deployment run even if stateChange(z1, uninstalled, installed)
is postponed.

On the contrary, it is no longer a deployment run if such action is anticipated
because the requirement on the httpd port is not yet fulfilled. It is no longer a
deployment run even if such action is joined with other state changes to form
a multiple state change action (like, e.g., {stateChange(z1, uninstalled, installed),
stateChange(z2, installed, running)}) because this violates minimality.

We now have all the ingredients to define the notion of achievability, that
is our main concern: given a universe of component types, we want to know
whether it is possible to deploy at least one component of a given component
type T in a given state q.

Definition 9 (Achievability problem). The achievability problem has as input
a universe U of component types, a component type T , and a target state q.
It returns as output true if there exists a deployment run α1 . . . αm such that
〈U, ∅, ∅, ∅〉 α1−→ C1 α2−→ · · · αm−−→ Cm and Cm[z] = 〈T , q〉, for some component z in
Cm. Otherwise, it returns false.

Example 5. Consider the achievability problem for the universe of component
types wordpress, apache2, and mysql in Figure 3, and the target expressed by
wordpress in its running state. In this case the problem returns true because there
exists, for instance, the deployment run obtained by adding
stateChange(z1, installed, running) at the end of the sequence of actions in Ex-
ample 4.

Notice that the restriction in this decision problem to one component in a
given state is not limiting. One can easily encode any given final configuration
by adding a dummy provide port enabled only by the required final states and
a dummy component with requirements on all such provides.

4. Decidability and Complexity of Achievability

In this section, we establish our main results concerning the decidability
and complexity of the achievability problem. The results change significantly
depending on the restrictions imposed on the numerical constraints that are
allowed as co-domains of the two D(q) partial functions. We consider here
three cases, which are detailed in the table below:

model co-domain(.P()) co-domain(.R())
Aeolus− {∞} {1}

Aeolus core {∞} {1, 0}
Aeolus N∞ N0

Aeolus (last row) is the same model of Definition 1, while Aeolus− is a re-
striction of it where only the default numerical constraints can be used: provide
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ports always serve an unlimited amount of bindings, and require ports cannot
conflict with other active ports, nor require a minimum number of bindings
strictly higher than 1. Aeolus core, instead, is similar to Aeolus− but with the
added possibility of expressing conflicts.

In the following we will show that: achievability is undecidable in Aeolus; it
is decidable, but not primitive recursive (i.e., Ackermann-hard) in Aeolus core;
it is decidable and polynomial in Aeolus−.

4.1. Achievability is undecidable in Aeolus

The proof that achievability is undecidable is by reduction from the reach-
ability problem in 2 Counter Machines (2CMs) [14], a well-known Turing-
complete computational model.

A 2CM is a machine with two registers R1 and R2 holding arbitrary large
natural numbers and a program P consisting of a finite sequence of numbered
instructions of the two following types:

• j : Inc(Ri): increments Ri and goes to the instruction j + 1;

• j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1
and goes to the instruction j + 1, otherwise jumps to the l instruction.

A state of the machine is given by a tuple (i, v1, v2) where i indicates the
next instruction to execute (the program counter) and v1 and v2 are the values
contained in the two registers, respectively.

Notation. In the following we use the notation (i, v1, v2) → (i′, v′1, v
′
2) to say

that the state of the machine changes from (i, v1, v2) to (i′, v′1, v
′
2) as effect of

the execution of the i-th instruction.

It is not restrictive to assume that the initial configuration of the machine
is (1, 0, 0). In 2CMs, the problem of checking whether a given l-th instruction
is reachable from the initial configuration is undecidable.

We model a 2CM as follows. We use a component to simulate the execution
of the program instructions. The contents vi of the register Ri is modelled by vi
components in a particular state ri. Increment instructions add one component
in this state ri, while decrement instructions move one component in state ri to
a different state. The state ri activates a provide port onei , so the simulation
of a test for zero has simply to check the absence in the environment of active
onei ports.

The component types used to model 2CMs in Aeolus are depicted in Figure 6.
Namely, we consider four component types: TP to simulate the execution of the
program instructions, TR1

and TR2
for the two registers and TB used to guarantee

that the components involved in the simulation cannot be deleted.
In TP we assume one state qj for each instruction j. If the j-th instruction

is j : Inc(Ri) (see the state qj in Figure 6), a protocol with three intermediary
states is executed that completes by entering the state qj+1, representing the
next instruction to execute. This protocol has the effect to force a component
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Figure 6: Modeling 2 counter machines (2CMs) in the Aeolus model.

of type TRi to execute a complementary protocol that completes by entering
the state ri, thus representing the increment by one of the register Ri. A
description of this protocol is reported in the proof of Proposition 1. If the
m-th instruction is m : DecJump(Ri, l) (see the state qm in Figure 6), two state
changes are possible from the state qm. The first one starts a protocol similar
to the previous one, whose effect here is to force one component of type TRi to
exit from the state ri, thus representing the decrement by one of the register Ri.
The second one traverses a state that requires the absence in the configuration
of active onei provide port, thus checking that the content of Ri is zero, and
then enters state ql.

In our model, when a component z is not used to satisfy requirements, it
could be removed by executing the del(z) action. The cancellation of a com-
ponent of type TRi could then erroneously change register contents during the
simulation. To avoid that, we force the connection of each component of type
TRi

with a corresponding instance of a component of type TB . These types of
components reciprocally connect through the ports c and d as soon as they move
from their initial state q0. Such connections remain active during the entire sim-
ulation, ensuring that components will not be deleted by mistake. Notice that
it is necessary to add the capacity constraint 1 to the provide ports c and d, in
order to have an exact one-to-one correspondence between the components of
type TRi

and those of type TB .
As a final remark, notice that the first state q1 of the component type TP

has a requirement on the absence in the environment of an active provide port
e, port which is activated by all the states in TP . This guarantees that at most
one component of type TP can be in a state different from q0. Moreover, we
also have to avoid that such component is removed by a del action: this can
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be guaranteed by using the same pairing technique with a component of type
TB described above. It is sufficient to impose that all the states of TP , but q0,
activate a provide port on c with numerical constraint 1, and a require port on
d, as shown in Figure 6.

We are now ready to formally prove our undecidability result. In the follow-
ing we assume given a 2CM program P and use C#〈T ,q〉 to denote the number of

components of type T in state q in the configuration C.

Definition 10. Let (i, v1, v2) be a state of a 2CM. We define

C0 = 〈{TP , TR1
, TR2

, TB}, ∅, ∅, ∅〉
[[(i, v1, v2)]] = { C | C is a correct conf. with universe {TP , TR1 , TR2 , TB},

C#〈TP ,qi〉 = 1, C#〈TR1
,r1〉 = v1, and C#〈TR2

,r2〉 = v2 }

In the following we call program step a sequence of reconfigurations that,
beyond other actions, includes state changes of the component TP until entering
a state qj (corresponding to an instruction of the program P ). Formally, it is a

non empty sequence of reconfigurations C1 α1−→ C2 α2−→ · · · αm−1−−−−→ Cm such that:

• there exists an index j of a program instruction2 for which Cm#
〈TP ,qj〉 = 1

while Cm−1#〈TP ,qj〉 = 0;

• for every 1 < i < m there exists no index j of a program instruction for
which Ci#〈TP ,qj〉 = 1 while Ci−1#〈TP ,qj〉 = 0.

Notice that in our modeling of 2CMs there exists also infinite sequences of
reconfigurations that do not contain program steps: in these cases they include
infinitely many actions that are irrelevant for the simulation (like creation or
destruction of components, or bindings and unbindings) and only finitely many
state changes of components of type TP that are not sufficient to reach a new
qj state.

We first observe that the deployment run composed by the actions new(z1 :
TP ),new(z2 : TB), bind(c, z2, z1), bind(d, z1, z2), and the multi stage change ac-
tion {stateChange(z1, q0, q1), stateChange(z2, q0, q

′)} guarantees the possibility
to reach, from the initial empty configuration C0, a configuration corresponding
to the initial state of the 2CM, i.e., a configuration in [[(1, 0, 0)]]. Moreover, ev-
ery program step from C0 reaches a configuration in [[(1, 0, 0)]]. In fact, it is not
possible for components of type TRi

to enter their state ri if components of type
TP perform only the state change action from q0 to q1.

Fact 1. There exists a deployment run from C0 to a configuration in [[(1, 0, 0)]].
Moreover, for every program step from C0 to a configuration C′, we have that
C′ ∈ [[(1, 0, 0)]].

2Notice that 0 is not a correct index as we have assumed that the program P starts from
instruction 1.
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The proof of undecidability is based on two distinct propositions, a first one
about completeness of the simulation (i.e., each computational step of the 2CM
can be mimicked by a deployment run), and a second one about soundness
(i.e., each program step of a configuration C ∈ [[(j, v1, v2)]] corresponds to a step
(j, v1, v2)→ (j′, v′1, v

′
2) of the 2CM).

Proposition 1. Let (j, v1, v2) be a state of the 2CM and let C ∈ [[(j, v1, v2)]]. If
(j, v1, v2)→ (j′, v′1, v

′
2) then there exists a deployment run from C to a configu-

ration C′ ∈ [[(j′, v′1, v
′
2)]].

Proof. It is sufficient to perform an analysis of the three possible computational
steps of the 2CM: increment, decrement and test for zero. We detail only the
increment case (the other cases are treated similarly). If the j-th instruction is
an increment on Ri then in C the component of type TP is in state qj . This
means that an action can be executed to move it in the state that activates the
oni provide port (see Figure 6). This permits to create a new pair of components
of type TRi

and TB , bind them on their ports c and d, and then move the former
in the state requiring oni (notice that a multiple state change is needed to satisfy
the mutual requirements between the two new components). The deployment
run can then be extended by moving the new component of type TRi

in the
state that activates the provide port inci , moving the component of type TP
in state qj+1 (with two state changes) and finally the new component of type
TRi

in its state ri. The reached configuration C′ belongs to [[(j′, v′1, v
′
2)]] because

C′#〈TRi
,ri〉 = C#〈TRi

,ri〉 + 1 and in this case j′ = j + 1.

We now move to the proof of the soundness result.

Proposition 2. Let (j, v1, v2) be a state of the 2CM and let C ∈ [[(j, v1, v2)]].
If there exists a program step from C that reaches a configuration C′ then C′ ∈
[[(j′, v′1, v

′
2)]] and (j, v1, v2)→ (j′, v′1, v

′
2).

Proof. We perform an analysis of the reconfiguration actions executed during
the program step. There are three kinds of actions: state changes of the com-
ponent of type TP moving from state qj to qj′ , state changes inside one of the
components TRi and other actions. The other actions can be creation or de-
struction of resources, creation or deletion of bindings (that do not alter the
configuration correctness), and multi state changes of new pairs of components
of type TRi

and TB . All these actions are irrelevant as their modifications on
the configuration have no impact on the properties checked by the definition
of [[(j′, v′1, v

′
2)]]. It is now sufficient to perform a case analysis on the three pos-

sible kinds of state changes from state qj to qj′ in the component of type TP :
increment, decrement, and test for zero.

In the “test for zero” case, we have that the j-instruction is of the kind
DecJump(Ri, j

′). Moreover, in the configuration (j, v1, v2) we have vi = 0
because during the program step no component of type TR1

or TR2
can per-

form state changes (this would require the activation of either the port oni

or the port offi) and the component of type TP traverses a state that checks
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the absence of active onei ports (this implies C#〈TRi
,ri〉 = 0). Hence, we have

(j, v1, v2)→ (j′, v1, v2) and C′ ∈ [[(j′, v1, v2)]].
In the other two cases, it is sufficient to check that the execution of a protocol

like the one described in the proof of Proposition 1 is executed by the component
of type TP and one component of type TRi .

We can finally state the main undecidability result:

Theorem 1. The achievability problem is undecidable in the Aeolus model.

Proof. Let M be a 2CM with program P , and let U = {TP , TR1 , TR2 , TB} be
the set of the corresponding component types defined as in Figure 6.

We have that (1, 0, 0)→∗ (j, v1, v2) if and only if there exists a deployment
run from C0 to a configuration C ∈ [[(j, v1, v2)]]. The only if part follows from
Fact 1 and the Proposition 1, while the if part follows from Fact 1 and the
Proposition 2. Hence we have that the j-instruction is reachable in M if and
only if the achievability problem is satisfied for the universe U , the component
type TP and the state qj .

The undecidability of achievability thus follows from the undecidability of
reachability for 2CMs.

4.2. Achievability is decidable in Aeolus core

We demonstrate decidability of the achievability problem by resorting to the
theory of Well-Structured Transition Systems (WSTS) [15, 16].

A reflexive and transitive relation is called quasi-ordering. A well-quasi-
ordering (wqo) is a quasi-ordering (X,≤) such that, for every infinite sequence
x1, x2, x3, · · · , there exist i < j with xi ≤ xj . Given a quasi-order ≤ over X,
an upward-closed set is a subset I ⊆ X such that the following holds: ∀x, y ∈
X : (x ∈ I ∧ x ≤ y) ⇒ y ∈ I. Given x ∈ X, its upward closure is ↑ x = {y ∈
X | x ≤ y}. This notion can be extended to sets in the obvious way: given a
set Y ⊆ X we define its upward closure as ↑ Y =

⋃
y∈Y ↑ y. A finite basis of an

upward-closed set I is a finite set B such that I =
⋃
x∈B ↑ x.

Definition 11. A WSTS is a transition system (S,→,�) where � is a wqo
on S which is compatible with →, i.e., for every s1 � s′1 such that s1 → s2,
there exists s′1 →∗ s′2 such that s2 � s′2 (→∗ is the reflexive and transitive
closure of →). Given a state s ∈ S, Pred(s) is the set {s′ ∈ S | s′ → s}
of immediate predecessors of s. Pred is extended to sets in the obvious way:
Pred(S) =

⋃
s∈S Pred(s). A WSTS has effective pred-basis if there exists an

algorithm that, given s ∈ S, returns a finite basis of ↑ Pred(↑ s).

The following proposition is a special case of Proposition 3.5 in [16].

Proposition 3. Let (S,→,�) be a finitely branching WSTS with decidable �
and effective pred-basis. Let I be any upward-closed subset of S and let Pred∗(I)
be the set {s′ ∈ S | s′ →∗ s} of predecessors of states in I. A finite basis of
Pred∗(I) is computable.
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In the remainder of this section, we assume a given universe U of component
types; so we can consider that the set of distinct component type and state pairs
〈T , q〉 is finite. Let k be its cardinality. We will resort to the theory of WSTS
by considering an abstract model of configurations in which bindings are not
taken into account.

Definition 12 (Abstract Configuration). An abstract configuration B is a finite
multiset of pairs 〈T , q〉 where T is a component type and q is a corresponding
state. We use Conf to denote the set of abstract configurations.

A concretization of an abstract configuration is simply a correct configura-
tion that for every component type and state pair 〈T , q〉 has as many instances
of component T in state q as pairs 〈T , q〉 in the abstract configuration.

Definition 13 (Concretization). Given an abstract configuration B we say that
a correct configuration C = 〈U,Z, S,B〉 is one concretization of B if there exists a
bijection f from the multiset B to Z s.t. ∀〈T , q〉 ∈ B we have that S(f(〈T , q〉)) =
〈T , q〉. We denote with γ(B) the set of concretizations of B. We say that an
abstract configuration B is correct if it has at least one concretization (formally
γ(B) 6= ∅).

An interesting property of an abstract configuration is that from one of its
concretizations it is possible to reach via bind and unbind actions all the other
concretizations (up to instance renaming). This is because it is always possible
to switch one binding from one provide port to another one by adding a binding
to the new port and then removing the old binding.

Property 1. Given an abstract configuration B and configurations C1, C2 ∈
γ(B) there exists α1, · · · , αn sequence of binding and unbinding actions s.t.

C1 α1−→ · · · αn−−→ C ≡ C2.

We now move to the definition of our quasi-ordering on abstract configu-
rations. In order to be able to exploit the WSTS techniques in our context,
we need to consider a quasi-ordering which is compatible with the notion of
correctness, i.e., given a correct abstract configuration, all the greater config-
urations must be correct as well. For this reason, we cannot adopt the usual
multiset inclusion ordering. In fact, the addition of one component to a correct
configuration could introduce a conflict. If the type-state pair of the added
component was absent in the configuration, the conflict might be with an al-
ready present component of a different type-state. If the type-state pair was
present in a single copy, the new conflict might be with that component if the
considered type-state pair activates one provide and one conflict port on the
same interface. This sort of self-conflict is revealed when there are at least two
instances, as one component cannot be in conflict with itself (by definition of
correctness). If the type-state pair was already present in at least two copies,
no new conflicts can be added otherwise such conflicts were already present in
the configuration (thus contradicting its correctness).

In the light of the above observation, we define an ordering on configurations
that corresponds to the product of three orderings: the identity on the set of
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type-state pairs that are absent, the identity on the pairs that occurs in one
instance, and the multiset inclusion for the projections on the remaining type-
state pairs.

Definition 14 (≤). Given a pair 〈T , q〉 and an abstract configuration B, let
#B(〈T , q〉) be the number of occurrences in B of the pair 〈T , q〉. Given two
abstract configurations B1,B2 we write B1 ≤ B2 if for every component type T
and state q we have that #B1(〈T , q〉) = #B2(〈T , q〉) when #B1(〈T , q〉) ∈ {0, 1}
or #B2(〈T , q〉) ∈ {0, 1}, and #B1(〈T , q〉) ≤ #B2(〈T , q〉) otherwise.

As discussed above, this ordering is compatible with correctness.

Property 2. If an abstract configuration B is correct than all the configurations
B′ such that B ≤ B′ are also correct.

Another interesting property of the ≤ quasi-ordering is that from one con-
cretization of an abstract configuration, it is always possible to reconfigure it to
reach a concretization of a smaller abstract configuration. In this case it is pos-
sible to first add from the starting configuration the bindings that are present in
the final configuration. Then the extra components present in the starting con-
figuration can be deleted because not needed to guarantee correctness (they are
instances of components that remain available in at least two copies). Finally
the remaining extra bindings can be removed.

Property 3. Given two abstract configurations B1,B2 s.t. B1 ≤ B2, C1 ∈ γ(B1),

and C2 ∈ γ(B2) we have that there exists a deployment run C2 α1−→ · · · αn−−→ C ≡
C1.

We have that ≤ is a wqo on Conf because, as we consider finitely many
component type-state pairs, the three distinct orderings that compose ≤ are
themselves wqo.

Lemma 1. ≤ is a wqo over Conf .

Proof. The proof is based on a representation of abstract configurations as 3-ples
of tuples: namely, given B ∈ Conf we represent it as the triple 〈a, b, c〉 where
a is used to represent the component type-state pairs with cardinality 0 in B,
b represents those with cardinality 1, and c describes all the other pairs. We
assume a total ordering on the set (of cardinality k) of the possible type-state
pairs. The three elements a, b and c are vectors of arity k such that a[i] = 1
(resp. b[i] = 1) if the i-th component type-state pair has cardinality 0 (resp. 1)
in B and a[i] = 0 (resp. b[i] = 0) otherwise, while c[i] contains the cardinality of
the i-th pair in B if it is greater or equal to 2 and c[i] = 0 otherwise. Consider
now two abstract configurations B1,B2 ∈ Conf and the corresponding triple
representations 〈a1, b1, c1〉 and 〈a2, b2, c2〉. We have that B1 ≤ B2 iff a1 = a2,
b1 = b2 and c1 ≤k c2 (where ≤k is the extension of the standard ordering on
natural numbers to vectors of length k).

The equality on bit vectors of length k (a and b are indeed of length k)
is a wqo as there are only finitely many such vectors (namely, 2k). Dickson’s
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lemma [17] states that a product of wqo is a wqo, thus ≤k is a wqo too. We can
conclude that the ordering on the triples is a wqo by applying again Dickson’s
lemma.

We now define a transition system on abstract reconfigurations and prove it
is a WSTS with respect to the ordering defined above.

Definition 15 (Abstract reconfigurations). We write B −→ B′ if there exists

C α−→ C′ for some C ∈ γ(B) and C′ ∈ γ(B′).

Lemma 2. The transition system (Conf ,−→,≤) is a WSTS.

Proof. The ≤ is a wqo for Conf by Lemma 1. To prove the thesis we need to
prove that ≤ is compatible with −→ (i.e., if B1 ≤ B2 and B1 −→ B′1 then B2 −→∗ B′2
for some B′2 s.t. B′1 ≤ B′2). This is straightforward since we have B2 −→∗ B1 (by
Property 3), B1 −→ B′1 (by hypothesis), and B′1 ≤ B′1 (by reflexivity of ≤).

The following lemma is rather technical and it will be used to prove that
(Conf ,−→,≤) has effective pred-basis. Intuitively it will allow us to consider,
in the computation of the predecessors, only finitely many different (multiple)
state change actions.

Lemma 3. Let k be the number of distinct component type-state pairs. If B1 −→
B2 then there exists B′1 −→ B′2 such that B′1 ≤ B1, B′2 ≤ B2 and |B′2| ≤ 2k + 2k2.

Proof. If |B2| ≤ 2k+2k2 the thesis trivially holds. Consider now |B2| > 2k+2k2

and a transition C1 α−→ C2 such that C1 ∈ γ(B1) and C2 ∈ γ(B2). We now show
that is possible to remove one component from C1 while keeping the possibility
to perform an action leading to a configuration corresponding to C2 without the
component removed form C1. We consider two subcases.
Case 1. There are three components z1, z2 and z3 having the same component
type and internal state that do not perform a state change in the action α.
Without loss of generality we can assume that z3 does not appear in α (this is not
restrictive because at most two components that do not perform a state change
can occur in an action). We can now consider the configuration C′1 obtained
by C1 after removing z3 (if there are bindings connected to provide ports of

z3, these can be rebound to ports of z1 or z2). Consider now C′1
α−→ C′2 and

the corresponding abstract configurations B′1 and B′2. We have that B′1 −→ B′2,
B′1 ≤ B1, B′2 ≤ B2 and |B′2| < |B2|. If |B′2| ≤ 2k + 2k2 the thesis is proved,
otherwise we repeat this deletion of components.
Case 2. There are no three components of the same type-state that do not
perform a state change. Since |B2| > 2k + 2k2 we have that α is a multiple
state change involving strictly more than 2k2 components (otherwise there are
strictly more than 2k components that do not perform state changes, thus at
least three of them are of the same type-state). This ensures the existence of
three components z1, z2 and z3 of the same type that perform the same state
change from q to q′. As in the previous case we consider the configuration
C′1 obtained by C1 after removing z3 and α′ the state change similar to α but
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without the state change of z3. Consider now C′1
α′−→ C′2 and the corresponding

abstract configurations B′1 and B′2. As above, B′1 ≤ B1, B′2 ≤ B2 and |B′2| < |B2|.
If |B′2| ≤ 2k + 2k2 the thesis is proved, otherwise we repeat the deletion of
components.

We are now in place to prove that (Conf ,−→,≤) has effective pred-basis.

Lemma 4. The transition system (Conf ,−→,≤) has effective pred-basis.

Proof. We first observe that given an abstract configuration the set of its con-
cretizations up to configuration equivalence is finite, and that given a configu-
ration C the set of preceding configurations C′ such that C′ α−→ C is also finite
(and effectively computable). Consider now an abstract configuration B. We
now show how to compute a finite basis for ↑ Pred(↑ B) by considering the
preceding configurations of a finite set of corresponding concrete configurations.
First of all we consider the finite set of abstract configurations composed by B, if
|B| > 2k+2k2, or all the configurations B′ such that B ≤ B′ and |B′| ≤ 2k+2k2,
otherwise. Then we consider the (finite) set of concretizations of all such ab-
stract configurations. Finally we compute the (finite) set of the preceding con-
figurations of all such concretizations. The finite basis is obtained by taking the
set of abstract configurations corresponding to the latter: this is finite and it is
a basis for ↑ Pred(↑ B) as a consequence of Lemma 3.

We are finally ready to prove our decidability result.

Theorem 2. The achievability problem in Aeolus core is decidable.

Proof. Let k be the number of distinct component type-state pairs according
to the considered universe of component types. We first observe that if there
exists a correct configuration containing a component of type T in state q then
it is possible to obtain via some binding, unbinding, and delete actions another
correct configuration with k or less components. Hence, given a component type
T and a state q, the number of target configurations that need to be considered
is finite. Moreover, given a configuration C′ ∈ γ(B′) there exists a deployment
run from C ∈ γ(B) to C′ iff B ∈ Pred∗(↑ B′).

To solve the achievability problem it is therefore possible to consider only
the (finite set of) abstractions of the target configurations. For each of them,
say B′, by Proposition 3, Lemma 2, and Lemma 4 we know that a finite basis
for Pred∗(↑ B′) can be computed. It is sufficient to check whether the initial
empty configuration is in such basis.

In this section we have considered just the problem of reaching a target
configuration starting from an initial empty configuration. The proof presented
holds however also for the more general problem of finding if the target configu-
ration can be reached by an initial (possibly non empty) configuration. Indeed,
in this case, it is sufficient to check whether at least one of the abstract configu-
rations in Pred∗(↑ B′) contains a configuration that is ≤ w.r.t. the abstraction
of the initial configuration.
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Figure 7: Example of a component type transformation η.

4.3. Achievability is Ackermann-hard in Aeolus core

We now prove that the achievability problem in Aeolus core is Ackermann-
hard by reduction from the coverability problem in reset Petri nets, a problem
which is indeed known to be Ackermann-hard [18].

We start with some background on reset Petri nets.
A reset Petri net RN is a tuple 〈P, T, ~m0〉 such that P is a finite set of

places, T is a finite set of transitions, and ~m0 is a marking, i.e., a mapping from
P to N that defines the initial number of tokens in each place of the net. A
transition t ∈ T is defined by a mapping •t (preset) from P to N, a mapping t•

(postset), and by a set of reset arcs t ↓⊆ P . A configuration is a marking ~m.
Transition t is enabled at marking ~m iff •t(p) ≤ ~m(p) for each p ∈ P . Firing

t at ~m leads to a new marking ~m′ defined as ~m′(p) = ~m(p) −• t(p) + t•(p) if

p 6∈ t ↓, and ~m′(p) = 0 otherwise; we denote this marking transformation with

~m 7→ ~m′. A marking ~m is reachable from ~m0 if ~m0 7→∗ ~m, i.e., it is possible to
produce ~m after firing finitely many times transitions in T . Given a reset net
〈P, T, ~m0〉 and a marking ~m, the coverability problem consists in checking for

the existence of a reachable marking ~m′ such that ~m ≤ ~m′, i.e. ~m(p) ≤ ~m′(p)
for every p ∈ P . In [18] it is proved that the coverability problem for reset nets
is Ackermann-hard.

Before entering into the details of our modelling of reset Petri nets, we
observe that given a component type T it is always possible to modify it in such
a way that its instances are persistent and unique. The uniqueness constraint
can be enforced by allowing all the states of the component type to provide a
new port with which they are in conflict. To avoid the component deletion it
is sufficient to impose its reciprocal dependence with a new type of component.
When this dependence is established the components cannot be deleted without
violating it. In Figure 7 we show an example of how a component type having
two states can be modified in order to reach our goal. A new auxiliary initial
state q′0 is created. The new port e ensures that the instances of type T in
a state different from q′0 are unique. The require port f provided by a new
component type Taux forbids the deletion of the instances of type T , if they are
not in state q′0. We assume that the ports e and f are fresh. We can therefore
consider, without loss of generality, components that are unique and persistent.
Given a component type T we denote this component type transformation with
η(T ).

We now consider a given reset Petri net RN = 〈P, T, ~m0〉 and discuss how
to encode it in Aeolus core component types. We will use three types of com-
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Figure 8: Token and counter component types.

ponents: one modelling the tokens, one for the transitions and one for defining
a counter. The components for the transitions and the counter are unique and
persistent, while those for the tokens cannot be unique because the number of
tokens in a Petri net can be unbounded. The simplest component type, denoted
with Tp, is the one used to model a token in a given place p ∈ P . Namely, one
token in a place p is encoded as one instance of Tp in the on state. There could
be more than one of these components deployed simultaneously representing
multiple tokens in a place. In Figure 8a we represent the component type Tp.
The initial state is the off state. The token could be created following a protocol
consisting of requiring the port ap and then providing the port bp. Symmetri-
cally, a token can be removed by providing the port cp and then requiring the
port dp. Even if multiple instances of the token component can be deployed
simultaneously, only one of them at a time can initiate the protocol to change
its state. This is guaranteed by the conflict on the port z, which is provided by
all the states of the state change protocols. The component provides the port p
when it is in the on state.

In order to model the transitions without having an exponential blow up of
the size of the encoding we need a mechanism to count up to a fixed number.
Indeed, a transition can consume and produce a given number of tokens from
and to several places. To count a number up to n we will use instances of
the component types TC1

, · · · , TCdlog(n)e ; the type TCi
will be used to represent

the i-th less significant bit of the binary representation of the counter that,
for our purposes, needs just to support the increment and reset operations. In
Figure 8b we represent one of the bits implementing the counter. The initial
state is 0. To increment the bit it is necessary to provide and require in sequence
the upi and up

′
i ports, while to reset it the reseti and reset

′
i ports. If the bit is

in state 1 the increment will trigger the increment of the next bit (except for
the component representing the most significant bit that will never need to do
that). The instance of TCi

can be used to count how many tokens are consumed
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or produced by checking if the right number is reached via the ports counteri(0)
and counteri(1). We transform the component types TC1 , · · · , TCdlog(n)e using
the η transformation to ensure uniqueness and persistence of its instances.

The transitions in T can be represented with a single component interacting
with token and counter components. This component, represented in Figure 9a,
during a so-called initialization phase, performs state changes until reaching a
state q. The initialization phase is used to generate the representation of the
initial marking ~m0. From the state q it can nondeterministically select one
transition t to fire, by entering a corresponding qt state. The subsequent state
changes can be divided in three phases: consumption, production, and reset.
These phases respectively model the consumption of tokens from the places in
the preset of the transition t, the production of tokens in the places in the
postset of t, and the complete elimination of the tokens in the reset places of t.
Notice that, as the transition t to be fired is selected nondeterministically, the
corresponding deployment run could block due to the unavailability of instances
of token components required during the consumption phase. As we will discuss
later, these blocking deployment runs are not problematic.

We now describe in details the three consumption, production and reset
phases, and then comment the initialization phase. In the consumption phase,
for every place p in the preset of the transition, the counter is first reset providing
the reseti and requiring the reset′i ports for all the counter bits. Then a cycle
starts incrementing the counter, by providing and requiring the ports up1 and
up′1, and consuming a token, by providing and requiring the ports cp and dp.
The cycle ends when all the bits of the counter represent in binary the right
number of tokens that need to be consumed from p. If instead at least one bit
is wrong the cycle restarts. In Figure 9b we depict the part of the component
type modelling the consumption of n tokens from the place p.

The production phase is similar to the consumption phase. For every kind of
token that needs to be produced, the counter components are used to count the
actual number of instances. The production of a single token follows a protocol
similar to the one used for their consumption with the only difference that the
ports ap and bp are required and provided in sequence, instead of providing and
requiring cp and dp.

Reset arcs are instead modelled with a single state conflicting with the tokens
in places that must be reset. For instance in Figure 9c we depicted the part of
the component modelling the reset of a place p: the conflict on the port p forces
the deletion of all the instances of component type Tp in the on state. At the
end of the reset phase, the component has a transition to return in its state q.

The initialization phase is like a production phase in which the tokens of ~m0

are produced; at the end of the initialization phase the state q is entered.
We will denote with TT the component type explained above.

Definition 16 (Reset Petri net encoding in Aeolus core). Given a reset Petri
net RN = (P, T,m0) if n is the largest number of tokens that can be consumed
or produced by a transition in T , the encoding of RN in Aeolus core is the set
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of component types:

ΓRN = {Tp | p ∈ P} ∪ {η(TCi) | i ∈ [1..dlog(n)e]} ∪ {η(TT )}

Notice that the components of type Tp are not guaranteed to be persistent,
so they can be deleted even when they are in the on state. This corresponds to
a nondeterministic elimination of one token from the place p. As we will discuss
later, this token elimination in our net simulation is not problematic because
it is not necessary to faithfully reproduce the net behaviour, but it is sufficient
to preserve coverability (i.e., the possibility to generate at least a predefined
number of tokens in some given places).

Before moving to the proof of the correspondence between the reset Petri
net RN and its encoding ΓRN , we observe that the size of the component types
ΓRN is polynomial w.r.t. the size of the reset Petri net. This is due to the fact
that the counter and place components have a constant amount of states and
ports while the component for the transitions has a number of states that grows
linearly with respect to the number of places involved in the transitions.

We now introduce the notation C0 for denoting the empty initial configu-
ration of our encoding, and [[~m]] to characterize configurations corresponding to
the net marking ~m.

Definition 17. Let RN = (P, T,m0) be a reset Petri net and ~m one of its
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markings. We define:

C0 = 〈ΓRN , ∅, ∅, ∅〉
[[~m]] = { C | C is a correct configuration with universe ΓRN ,

C#〈TT ,q〉 = 1, ∀p ∈ P.C#〈Tp ,on〉 = ~m(p) }

We call net step a sequence of reconfigurations on components instances
of the universe ΓRN that, beyond other actions, includes state changes of the
component TT until entering the state q. Formally, it is a non empty sequence

of reconfigurations C1 α1−→ C2 α2−→ · · · αm−1−−−−→ Cm such that Cm#
〈TT ,q〉 = 1, while

Ci#〈TT ,q〉 = 0, for every 1 < i < m.

We first observe that the deployment run that creates an instance of TT and
then performs the state changes in the initialization phase until entering the
state q guarantees the possibility to reach a configuration in [[ ~m0]]. Moreover,
every net step from the initial empty configuration reaches a configuration in
[[~m]] where ~m ≤ ~m0. Notice that we need to consider markings [[~m]] smaller than
[[ ~m0]] because token components moved in the on state during the initialization
could be nondeterministically deleted.

Fact 2. There exists a deployment run from C0 to a configuration in [[ ~m0]].
Moreover, for every net step from C0 to a configuration C′, we have that C′ ∈ [[~m]]
and ~m ≤ ~m0.

The proof of correspondence between a reset Petri net RN and its encoding
ΓRN is based on two distinct propositions, a first one about completeness of the
simulation (i.e., each firing of a net transition can be mimicked by a deployment
run), and a second one about soundness (i.e., each net step of a configuration
corresponds to the firing of a net transition).

Proposition 4. Let RN = (P, T,m0) be a reset Petri net, ~m one of its mark-

ings, and C a configuration in [[~m]]. If ~m 7→ ~m′ then there exists a deployment

run from C to a configuration C′ ∈ [[ ~m′]].

Proof. It is sufficient to observe that if ~m 7→ ~m′ then there exists a transition
t ∈ T that, by consuming and producing tokens and resetting places, transforms
~m in ~m′. This transition can be selected in a deployment from C that starts by
changing the state of TT form q to qt. Then the corresponding consumption,
production and reset phases can be executed to reach a configuration in [[ ~m′]].

We now move to the proof of the soundness result by showing that, if there
exists a net step from a configuration in [[~m]] to a configuration in [[ ~m′]], then there

exists a marking ~m′′ ≥ ~m′ such that ~m 7→ ~m′′. We need to consider a greater
marking in the net because, as already observed, token components could be
deleted during the deployment run and a perfect correspondence between the
reset Petri net and its simulation is not guaranteed.
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Proposition 5. Let RN = (P, T,m0) be a reset Petri net, ~m one of its mark-
ings, and C a configuration in [[~m]] having a net step to C′. Then, there exists a

marking ~m′ such that C′ ∈ [[ ~m′]] and a marking ~m′′ ≥ ~m′ such that ~m 7→ ~m′′.

Proof. We first observe that the final configuration C′ of a net step contains the
TT component in the q state; thus there exists [[ ~m′]] s.t. C′ ∈ [[ ~m′]].

The net step from C ∈ [[~m]] to C′ ∈ [[ ~m′]] includes the state changes, on the
instance of component type TT , corresponding to the consumption, production
and reset phases for some transition t in T . The execution of the consumption
phase guarantees that •t ≤ ~m thus t can fire in ~m: let ~m 7→ ~m′′ be the effect
of firing such transition. We have that ~m′′ ≥ ~m′ because ~m′′ is obtained from
~m by performing the same consumption, production and reset executed during
the net step from C ∈ [[~m]] to C′ ∈ [[ ~m′]]. Notice that during this net step some
token component in the on state could be nondeterministically deleted, but this
has no impact on the property ~m′′ ≥ ~m′ because its effect is simply to remove
more instances of active token components w.r.t. those removed during the
consumption phase.

Notice that besides the net step from C to C′ considered in the above Propo-
sition, there are deployment runs starting from C that do not correspond to net
steps. For instance, there could be an infinite sequence of creations and dele-
tions of components or, more interesting, a non habilitated transition t could
be tried. In this case the deployment run could block because the consumption
phase cannot be completed. These additional deployment runs are not prob-
lematic as our encoding needs to preserve the possibility to reach specific target
configurations (i.e., those that contain at least a given amount of instances of
token components in the on state), and additional deployment runs that do not
reach such configurations are irrelevant.

We are finally ready to prove Ackermann-hardness of the achievability prob-
lem for Aeolus core.

Theorem 3. The achievability problem for Aeolus core is Ackermann-hard.

Proof. Consider a reset Petri net RN = 〈P, T, ~m0〉 and a target marking ~m. The
problem of checking whether ~m can be covered in RN is Ackermann-hard [18].
We first construct a new reset Petri net RN ′ = 〈P ] {p′}, T ] {t′}′, ~m0〉 with
an additional place p′ and a transition t′ such that •t′ = m and t′• = {p′}. It
is immediate to see that ~m can be covered in RN iff at least one token can be
placed in p′ in RN ′. Moreover this transformation increases the size of the Petri
net by a constant. We now consider the set of component types ΓRN ′ , i.e., the
encoding of RN ′ in Aeolus core. We have already observed that the size of ΓRN ′
is polynomial w.r.t. the size of the reset net RN ′. We complete the proof by
showing that a token can be placed in p′ in RN ′ iff the component type-state
pair 〈TT , qp′〉 is achievable with the universe of component types ΓRN ′ , where
qp′ is the state of TT that provides the port bp′ , necessary to move in the on
state a component of type Tp′ .
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The “only if” part follows from Fact 2 and Proposition 4, that guarantee the
existence of a deployment run reaching a configuration C ∈ [[~m]] with m(p′) > 0.
As in C there is at least one instance of type Tp′ in the on state, at least one
configuration is traversed with the instance TT in the qp′ state.

The proof of the “if” part proceeds as follows. The achievability of the pair
〈TT , qp′〉 guarantees the existence of a deployment run C0 α1−→ C1 α2−→ · · · αn−−→ Cn
where Cn contains one instance of TT in the qp′ state. Such computation can
be extended in such a way that one instance of Tp′ reaches the on state and
the TT component enters in the state q. Let C be the reached configuration. As
the TT component is in the state q, we have that C ∈ [[~m]] for some marking ~m.
Moreover, m(p′) > 0 because an instance of Tp′ is in the on state. Fact 2 and

Proposition 5 guarantees the reachability in the net RN ′ of a marking ~m′ such
that ~m ≤ ~m′, thus guaranteeing m′(p′) > 0.

4.4. Achievability is polynomial in Aeolus−

The achievability problem becomes polynomial in case no capacity con-
straints are specified on require and provide port, and no conflicts are allowed
(i.e., the value 0 on require ports is forbidden). We prove this by presenting a
decision algorithm for the achievability problem in Aeolus−.

The underlying idea is to perform an abstract forward exploration of all
reachable configurations. Since conflicts cannot be specified the addition to
a configuration of new components cannot forbid the execution of previously
possible actions. Moreover, since in Aeolus− provide ports have capacity∞ and
require ports have numerical constraint 1, the correctness of a configuration can
be checked simply by verifying that the set of active require ports is a subset of
the set of active provide ports.

In the light of the second observation, and knowing that the sets of active
require and provide ports are functions of the internal state of the components,
we abstractly represent configurations simply as sets of pairs 〈T , q〉 indicating
the type and the state of the components in the configuration. This way, sym-
bolic configurations abstract away from the exact number of instances of each
kind of component, and from their current bindings.

We consider symbolic runs representing the evolutions of abstract configura-
tions. Thanks to the first observation we can restrict ourselves to consider only
evolutions where the set of available pairs 〈T , q〉 does not decrease. Namely, we
perform a symbolic forward exploration starting from an abstract configuration
containing all the pairs 〈T ′, T ′.init〉 representing components in their initial
state. Then we extend the abstract configuration by adding step-by-step new
pairs 〈T ′, q′〉.

Algorithm 1 checks achievability by relying on two auxiliary data struc-
tures: absConf is the set of pairs 〈T ′, q′〉 indicating the type and state of the
components in the current abstract configuration, and provPort is the set of
provide ports active in such a configuration. The algorithm incrementally ex-
tends absConf until it is no longer possible to add new pairs. Termination of the
algorithm is guaranteed because there are only finitely many type-state pairs in
a universe of component types.
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Algorithm 1 Verifying achievability in Aeolus−

function Achievability(U , T , q)
absConf := {〈T ′, T ′.init〉 | T ′ ∈ U}
provPort :=

⋃
〈T ′,q′〉∈absConf {dom(T ′.P(q′))}

repeat
new := {〈T ′, q′〉 | 〈T ′, q′′〉 ∈ absConf , (q′′, q′) ∈ T ′.trans} \ absConf
newPort :=

⋃
〈T ′,q′〉∈new{dom(T ′.P(q′))}

while ∃〈T ′, q′〉 ∈ new . dom(T ′.R(q′)) 6⊆ provPort ∪ newPort do
new := new \ {〈T ′, q′〉}
newPort :=

⋃
〈T ′,q′〉∈new{dom(T ′.P(q′))}

end while
absConf := absConf ∪ new
provPort := provPort ∪ newPort

until new = ∅
if 〈T , q〉 ∈ absConf then return true
else return false
end if

end function

At each iteration, the potential new pairs are initially computed by checking
the automata transitions, and then they are stored in the set new . Not all those
states could be actually reached as one needs to check whether their require ports
are included in the available provide ports provPort or in the ports activated
by the new states. This is done by a one-by-one elimination of pairs 〈T ′, q′〉
from new when their requirements are unsatisfiable. During elimination, we use
newPort to keep track of the provide ports which are activated by the component
states currently in new .

When the final set absConf is computed, achievability for the component
type T and state q can be simply checked by verifying whether 〈T , q〉 is in
absConf .

We are now ready to prove our polynomiality result for the Aeolus− model.

Theorem 4. Let U be a set of component types of the Aeolus− model. Given
the component type T and the state q, the achievability problem for U , T , and
q can be checked in polynomial time (with respect to the size of the descriptions
of the components in U).

Proof. We first prove completeness and soundness of the Algorithm 1, i.e., if a
pair 〈T , q〉 is achievable then it will be included in absConf at the end of the
algorithm, and if 〈T , q〉 is added to absConf then there exists a deployment run
to deploy one instance of T in the q state.

Completeness is proved as follows. The symbolic representation of the ini-
tial configuration 〈U, ∅, ∅, ∅〉 is included in the initial set absConf . Consider

now a reconfiguration C α−→ C′. If the symbolic representation of C is included in
absConf at the beginning of an iteration of the repeat, then the symbolic rep-
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resentation of C′ will be surely included in absConf at the end of such iteration.
This because the newly reached states in C′ will be also in the new set at the
end of the while. Therefore, if there exists a deployment run able to achieve a
component of type T in the state q, then the algorithm will eventually include
the pair 〈T , q〉 in absConf .

The soundness is proved as follows. Let absConf i be the set absConf at the
end of the i-th iteration of the repeat, and let absConf 0 be the set containing
only the pairs 〈T ′, T ′.init〉. By induction on i, we prove that there exists a
deployment run that includes at least one instance for every type-state pair in
absConf i. For the base case i = 0, this trivially holds (it is sufficient to consider
a deployment run that creates at least one instance for each component type).
In the induction case we consider absConf i, and by induction hypothesis we

assume the existence of a deployment run C0 α1−→ · · · αn−−→ C that generates at
least one instance for the type-state pairs in absConf i. We show the existence
of a deployment run for the pairs in absConf i+1. Consider the new pairs 〈T ′, q′〉
added in absConf i+1 and let P be the multiset of pairs necessary to generate
such new pairs, i.e.,

P = {{〈T ′, q′′〉 | (q′′, q′) is the transition used to add 〈T ′, q′〉 to absConf }}

Consider now a deployment run obtained by repeating the actions α1, · · · , αn of
the deployment run C0 α1−→ · · · αn−−→ C until the reached configuration contains at
least one instance for the pairs in absConf i plus one additional instance for each
occurrence of the pairs in the multiset P. This deployment run can be extended
with state changes of these additional instances to reach the new 〈T ′, q′〉 pairs.

We now show that the complexity of the algorithm is polynomial w.r.t. the
size of the description of the universe of component types U . Polynomiality is
guaranteed by the fact that both the repeat and the while cycles perform a
number of iterations smaller than the number of different pairs 〈T ′, q′〉 in the
universe U .

5. Related work

To the best of our knowledge Aeolus is the first model that is designed on
purpose to formally addresses the specific needs of software component deploy-
ment in the cloud. It was first introduced in [1] and further developed within
the ANR project Aeolus “Mastering the Complexity of the Cloud” [19, 20]. Dif-
ferently from the definition of the language presented here, in [1] an additional
kind of requirements—called weak requirements—was present. Whereas the re-
quirements presented in this paper (formerly known as strong requirements)
need to be enforced every step, weak requirements are verified only at the end
of a deployment run and thus need to be satisfied only in the final configuration.
We decided to drop the notion of weak requirements for two reasons: firstly, we
noticed that they were not very used in practice; secondly, their behaviour can
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easily be simulated with strong requirements, so there was no real gain in terms
of model expressivity.3

This paper improves the complexity result about achievability in the Aeolus
core model, which was first proven decidable in [2]. In that paper, reconfig-
urability (the generalization of achievability with any initial configuration, also
the non empty one) was proved to be ExpSpace-hard by reduction from the
coverability problem in standard Petri nets; here we have considered reset Petri
nets thus proving that the problem is furthermore Ackermann-hard.

5.1. Formal models

We now compare the Aeolus approach to related formal models that have
been proposed in slightly different contexts.

Automata have been adopted long ago in the context of component-oriented
development frameworks. One of the most influential model are interface au-
tomata [21], where automata are used to represent the component behaviour
in terms of input, output, and internal actions. Interface automata support
automatic compatibility check and refinement verification: a component refines
another if its interface has weaker input assumptions and stronger output guar-
antees. Differently from that approach, we are not interested in component
compatibility or refinement, and we do not require complementary behaviour of
components. We simply check in the current configuration whether all required
functionalities are provided by currently deployed components. The automata
in Aeolus do not represent the internal behaviour of components, but the effect
on the component of an external deployment or reconfiguration actions.

Aeolus reconfiguration actions show interesting similarities with transitions
in Petri nets [22], a very popular model already presented in the previous sec-
tions and born from the attempt to extend automata with concurrency. At first
sight one might encode our model in Petri nets, representing Aeolus compo-
nent states as places, each deployed component as a token in the corresponding
place, and reconfiguration actions as transitions that cancel and produce to-
kens. Achievability in Aeolus would then correspond to coverability in Petri
nets. But there are several important differences. Multiple state change actions
can atomically change the state of an unbounded number of components, while
in Petri net each transition consumes a predefined number of tokens. More im-
portantly, we have proved that achievability can be solved in polynomial time
for the Aeolus− fragment and that it is undecidable for the Aeolus model, while
in Petri nets coverability is an ExpSpace problem [23].

3In order to impose requirements only on the final configuration one can duplicate every
state q of the components by adding a new corresponding state q′. The state q′ will then
provide and require the same ports of q, and can be reached from q via a transition. Intuitively,
q′ states should be the ones that the components reach at the end of the plan. A weak
requirement of state q in this case is modelled as a requirement of state q′. To impose that at
the end of the deployment run only states q′ are present it is enough to add to every q state
a provide port that is in conflict with the target state of the desired component.
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Several process calculi extend/modify the π-calculus [24] in order to deal
with software components. The Piccola calculus [25] extends the asynchronous
π-calculus [24] with forms, first-class extensible namespaces, useful to model
component interfaces and bindings. Calculi like KELL [26] and HOMER [27]
extends a core π-calculus with hierarchical locations, local actions, higher-order
communication, programmable membranes, and dynamic binding. More re-
cently, MECo [28] has extended this approach by proposing also explicit com-
ponent interfaces and channels to realize tunnelling effects traversing the hier-
archical location boundaries. On the one hand, all these proposals differ from
Aeolus in that they focus on the modelling of component interactions and com-
munication, while we focus on their interdependencies during system deploy-
ment and reconfiguration. On the other hand, we plan to take inspiration from
these calculi in order to extend our model with boundaries and administrative
domains.

We have already briefly discussed in the introduction the Fractal compo-
nent [7], and the related cloud middleware FraSCAti [8]. In terms of the un-
derlying formal model, we observe that Fractal does provide an object-oriented
API to manage the life-cycle of components which, in spirit, is close to what
Aeolus aims to do with component automata. However, the OO API approach
is more limited when it comes to the ability to reason on component activa-
tion: in Aeolus we can, within limits due to the problem complexity, reason
on and automate component activation; in Fractal an external reasoner will
have to stop at API invocation, without knowledge of what a specific method
implementation will do. Also, in Aeolus component states are not limited to
active/inactive, i.e., each component type can define its own life-cycle in detail.

A declarative approach similar to Aeolus for modelling individual compo-
nents of a system, together with their possible configuration states, is also in-
troduced in the position paper [29]. However, the lack of a formal semantics
for the approach makes impossible to analyse the complexity of the deployment
problem in their setting. Moreover, as observed by the authors, their approach
allows administrators to write erroneous models presenting deadlocks or live-
locks that are difficult to detect and forbid the reaching of the desired target
configuration.

5.2. Tools

The complementary tools Zephyrus and Metis, available at [30], are directly
related to the Aeolus model. Zephyrus [31] tackles the problem of computing
a valid system configuration (according to the Aeolus model), starting from an
existing configuration, a universe of available component types, and a formal
specification that captures user desiderata for the target system. Furthermore,
Zephyrus also takes into account limited machine resources, such as CPU, mem-
ory, bandwidth, etc. The computation is done via translation to a set of integer
constraints, plus a dedicated algorithm to compute bindings, and the approach
makes it is possible to add an objective function that can be minimized or
maximized to optimize the resulting configuration.
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Metis [32, 33] tackles instead the problem of quickly computing a plan that
migrates a valid Aeolus configuration into a different one (possibly synthesized
by Zephyrus). The authors consider a model similar to Aeolus− without the
possibility of using multi-state changes and propose an algorithm to compute a
deployment run to reach a given target state in a specific component. The algo-
rithm has been proven to be sound, complete, and polynomial in time w.r.t. the
size of the encoding of the components in the universe.

In the same area of Zephyrus and Metis we find various tools, coming from
both industry and academia.

In [9] the ConfSolve tool is presented by showing how constraint solving
techniques can be used to propose an optimal allocation of virtual machines to
servers, and of applications to virtual machines. An object-oriented declarative
language is used to describe the entities (e.g., machines and services), the con-
straints, and the optimisation criteria. A final configuration is then computed
by translating the declarative specification into a constraint optimisation prob-
lem which is then solved by using a constraint solver. Similarly to Zephyrus, but
differently from Metis, ConfSolve does not consider the problem of synthesising
a low-level plan to reach the final configuration.

Off-the shelf planning solvers are exploited in [34, 35] to generate automat-
ically the actions to reconfigure a system. To use these tools, however, all
the deployment actions with theirs preconditions and effects need to be prop-
erly specified. This hinders the usability of these kinds of tools. Indeed, to
use them, system administrators are forced to translate their requirements and
specifications into a formalism similar to the one used by the Planning Domain
Definition Language (i.e., the de facto standard language for classical planners).
Aeolus does not relieve administrators from the need of expressing the dynamic
behavior of components, but allows to do so more succinctly, and in a formalism
that is independent from low-level planning tools.

Two recent efforts, Juju and Engage, are similar to Zephyrus, but they both
avoid the problem of dealing with conflicts. In Juju [6], each service is deployed
on a single machine (or, more recently, in a virtual container). This avoids
the issue of component incompatibilities, but does so at the price of potentially
wasting resources. Engage [36] relies on a solver to plan deployments, but offers
no support for conflicts in the specification language: one can only indicate that
a service can be realized by exactly one out of a list of components. Furthermore,
neither Juju nor Engage—or any other tool that we are aware of—allows to
declare capacity or replication constraints, which are essential non functional
constraints for any non-trivial, scalable application.

6. Conclusions

The Aeolus formalism is a component model designed specifically to capture
most common deployment scenarii for distributed software applications in the
cloud. It allows to study formally the operations that are needed to deploy
complex applications on modern computing infrastructure.
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In this work, we have provided precise complexity results for several variants
of the Aeolus component model. We have shown that it is possible to generate a
deployment plan in polynomial time for the fragment Aeolus− that corresponds
to the limited industrial tools currently in use.

Adding support for defining conflicts among components corresponds to us-
ing the fragment Aeolus core. We have shown that, within such fragment, it is
still possible to automatically generate a plan, at the price of a very high worst
case complexity, as the problem becomes Ackermann-hard.

As for the generation of deployment plans in the full generality of the Aeolus
model, we have presented an undecidability result, which provides a clear limit
to what automated tools can do.

We plan to investigate realistic restrictions on the Aeolus model for which
efficient reconfigurability algorithms could still be devised. For instance, one
can consider imposing an upper limit on the number of resources that can be
allocated during a deployment run, or investigate the impact of restricting the
shape or size of the internal state machine of the components.

It will also be interesting to extend the Aeolus model to take into account
nested components or administrative domains and explore the impact of such
extensions on the complexity of the generation of deployment plans.

From a practical point of view, we started to create a repository of software
components with their Aeolus metadata. In particular, our industrial partner
Mandriva is currently enriching the description of the packages used in their
industrial products to automatically deploy them using Aeolus technologies.
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Chapter 11
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Deployment of Cloud

Applications

This chapter contains the full text of the article
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Applications� [50].
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ABSTRACT
Complex networked applications are assembled by connect-
ing software components distributed across multiple ma-
chines. Building and deploying such systems is a challenging
problem which requires a significant amount of expertise:
the system architect must ensure that all component depen-
dencies are satisfied, avoid conflicting components, and add
the right amount of component replicas to account for qual-
ity of service and fault-tolerance. In a cloud environment,
one also needs to minimize the virtual resources provisioned
upfront, to reduce the cost of operation. Once the full archi-
tecture is designed, it is necessary to correctly orchestrate
the deployment phase, to ensure all components are started
and connected in the right order.

We present a toolchain that automates the assembly and
deployment of such complex distributed applications. Given
as input a high-level specification of the desired system,
the set of available components together with their require-
ments, and the maximal amount of virtual resources to be
committed, it synthesizes the full architecture of the sys-
tem, placing components in an optimal manner using the
minimal number of available machines, and automatically
deploys the complete system in a cloud environment.
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1. INTRODUCTION
In contrast to classic, monolithic software that runs lo-

cally on a single machine, large distributed systems are built
from many running services executing on (possibly hetero-
geneous) virtual machines (or locations) and collaborating
to provide the expected functionality to final users.

The system architect must choose which services to use
and how to configure them, knowing that services may de-
pend on, and/or be in conflict with, each other; consider
fault tolerance and quality of service issues, and provide
enough instances of each service; design the physical archi-
tecture on which to run the system, trying to keep its cost
reasonable with nonetheless enough locations with enough
resources (e.g. RAM, disk space, bandwidth) to allow the in-
stallation and the good execution of the services they host;
choose which implementation of each service to install on
which location, knowing that implementations (usually in
the form of packages) have dependencies and conflicts too.
Once all this planning is done, the deployment phase must
provision the required virtual machines, install the right
packages on each of them, and finally start and intercon-
nect services in the right order.

This is a daunting task, not unlike building a puzzle—each
running service, package, and machine being a piece—where
one only knows the overall expected functionality.

To reduce the complexity of this process, many industrial
initiatives develop tools [32, 5] that allow to select, configure,
and push on the Cloud some well defined services. However,
these tools are only useful once the puzzle is solved, i.e. when
the right services and packages have been selected, the loca-
tions on which they must be deployed have been chosen, and
the way of configuring them in a manner that satisfies all the
requirements has been found. Solving this puzzle currently
requires a significant amount of human expertise, so that in
practice large software stacks are often managed using cus-
tom scripts and manual techniques, which are error-prone
and fragile [23].

In this article, we present a toolchain developed in the
framework of the Aeolus project [6] that provides a generic,
automatic and sound alternative to these scripts and tech-
niques. The toolchain is composed of two tools:



Zephyrus automatically generates an abstract represen-
tation (or configuration) of the target system according to
a concise specification of the expected functionalities. It
takes into account the set of available services, which can
serve as building blocks, with their requirements, replication
policies, and resource consumption characteristics; informa-
tion concerning the implementation of the services (e.g. that
the Apache service is provided by the www-servers/apache

package on Gentoo Linux, by the apache2 package on De-

bian, etc.); and the maximum amount of (virtual) machines
available, together with their characteristics. It is also able
to minimize the amount of needed resources.
Armonic takes the full system configuration produced by

Zephyrus and deploys it, by provisioning the required vir-
tual machines on a cloud computing platform (such as Open-
Stack), installing the needed packages on each machine; it
configures the different services to establish the required con-
nections; and finally starts the services in the right order,
relying on precise metadata that describe the internal state
machines and runtime dependencies of each service.

This toolchain decouples system design from system de-
ployment. It builds upon the sound formal foundations of
the Aeolus component model [9], which describes each avail-
able service as a component type, using ports tagged with an
arity to encode requirements, provides, conflicts and repli-
cation policy, as well as an internal state machine to capture
component life-cycles.
Zephyrus uses a stateless version of the Aeolus model, ex-

tended to take into account locations, repositories, packages,
and resources, as detailed in [7]; packages and repositories
are encoded following the now standard approach originated
from [21]. The specifications accepted by Zephyrus are given
in a rigorous syntax whose semantics defines when a config-
uration satisfies a specification. Based on this formalization,
Zephyrus can be proven correct and complete: it will always
find a configuration that is optimal w.r.t. the chosen crite-
rion if one exists. Furthermore, the generated configuration
is guaranteed to provide the expected functionalities, and
satisfies the constraints defined by the replication policies,
as well as the dependencies and conflicts between services.
Armonic then takes over and uses the information about

the internal state machine of the components to determine
a correct service activation sequence, under the assump-
tion that the dependency relation among services is acyclic,
which is usually the case.

Paper structure. Section 2 presents the toolchain through
a realistic running example. Section 3 discusses the inter-
nals of the various tools and presents the theoretical results
establishing soundness, completeness and complexity of the
architecture synthesis phase. Section 4 reports on experi-
mentation with the toolchain, as well as its adoption in an
industrial context at Kyriba Corporation. Before conclud-
ing, Section 5 discusses related work.

2. WALKTHROUGH
In this section we describe Zephyrus and Armonic by show-

ing them at work on an example that is simple enough to
be fully presented, and yet realistic as it corresponds to a
common use case of application deployment in the cloud.
Zephyrus takes several inputs:

1. a description of all the existing components and their
constraints, which come in various formats due to their
different origins (e.g. package database, architectural
choices, machine physical resources, etc.); this is called
a universe.

2. a description of the current system configuration (ex-
isting machines, which services are currently deployed
where, etc.)

3. a high level specification of the desired system. As
part of the specification, architects can include objec-
tive functions that they would like to optimize for, such
as the desire of minimizing the number of virtual ma-
chines that will be used for the deployment (and hence
the system cost).

2.1 Use case: deploying a WordPress farm
The task we want to perform is deploying the popular

Wordpress blog platform on a private OpenStack cloud. In
addition to being realistic, this use case is often used as a
“benchmark” to showcase the characteristics of cloud provi-
sioning platforms. Wordpress is written in PHP and as such
is executed within Web server software like Apache or nginx.
Additionally, Wordpress needs a connection to a MySQL in-
stance, in order to store user data. Simple Wordpress de-
ployments can therefore be obtained on a single machine
where both Wordpress and MySQL get installed.

“Serious” Wordpress deployments, however—that sustain
high load and are fault tolerant—are more complex and rely
on some form of load balancing. One possibility is to balance
load at the DNS level using servers like Bind: multiple DNS
requests to resolve the website name will result in different
IPs from a given pool of machines, on each of which a sep-
arate Wordpress instance is running. Alternatively one can
use as website entry point an HTTP reverse proxy capable
of load balancing (and caching, for added benefit) such as
Varnish. Either way, Wordpress instances will need to be
configured to contact the same MySQL database, to avoid
delivering inconsistent results to users. Also, having redun-
dancy and balancing at the front-end level, one usually ex-
pects to have them also at the DBMS level. One way to
achieve that is to use a MySQL cluster, and configure the
Wordpress instances with multiple entry points to it.

Constraints. Several design constraints should be taken into
account when designing such a system. Some constraints
come from package providers and cannot be easily changed.
For instance, Wordpress, Varnish, etc. usually come from
software distribution packages and have their own dependen-
cies and conflicts which must be respected on each machine
when installing the software.

On the other hand, “house” requirements are defined by
system architects to capture some ad-hoc policy. For this
use case, we assume given the following requirements:

• at least 3 replicas of Wordpress behind Varnish or, al-
ternatively, at least 7 replicas with DNS-based load
balancing (since DNS-based load balancing is not capa-
ble of caching, the expected load on individual Word-
press instances is higher);

• at least 2 different entry points to the MySQL cluster;

• each MySQL instance shouldn’t serve the needs of more
than 3 Wordpress instances;



Figure 1: Zephyrus used to design a scalable, fault-tolerant Wordpress deployment

• no more than 1 DNS server deployed in the adminis-
trative domain;

• different Wordpress (and MySQL) instances are de-
ployed at different locations.1

Similar constraints might exist on machine resources, e.g.
we expect Varnish to consume 2Gb of RAM and we don’t
want to deploy it to a smaller machine, especially if in com-
bination with other RAM-consuming services. Note that
“house” requirements are not intrinsically related to the soft-
ware components we are using, but are rather an encoding
of explicit architectural choices.

2.2 Architecture synthesis
Figure 1 shows the application of our toolchain to the

design of a complex Wordpress deployment like the one we
have discussed.

On the left of the black arrow is a schematic representation
of Zephyrus’ input, on the right its output. Available ser-
vices are depicted in the figure using a graphical syntax in-
spired by the Aeolus model [9], each one with its own require-
ments, conflicts, and (house) replication policy. Component
requirements are exposed as required ports that should be
connected, via bindings, to matching provided ports offered
by other service instances, respecting port replication con-
straints: an upper bound (or∞) on the amount of incoming
bindings for provided ports; a lower bound on the amount of
outgoing bindings to different service instances for required
ports. For example, the fact that the HTTP load balancer
requires 3 Wordpress replicas is indicated by the ≥ 3 anno-
tation on its wordpress backend required port, and the fact
that the DNS load balancer is incompatible with other DNS
services is indicated by the dns conflict port.

Note that our ports result in a very flexible notion of de-
pendency, with choice: any requirement can be satisfied by
any component providing the right port. For instance, if we
require the port wordpress frontend, we allow Zephyrus to
choose which of DNS load balancer or HTTP load balancer is
the best to use. To our knowledge, Zephyrus is the only tool
to manage such flexibility in dependencies.

1It is technically possible to co-locate multiple, say, MySQL
instances on the same machine, but it would be pointless to
do so when we are seeking fault tolerance and load balancing.

Services and implementations. Zephyrus takes as input a
description of the available service types, and an implemen-
tation relation that maps each service to the set of packages
implementing it.2 These two parts of the universe are given
as input to Zephyrus as a JSON file that in our running
example looks like this:

{ "component_types": [
{ "name" : "DNS-load-balancer",
"provide" : [["@wordpress-frontend"], ["@dns"]],
"require" : [["@wordpress-backend", 7]],
"conflict": ["@dns"],
"consume" : [["ram", 128]] },

{ "name" : "HTTP-load-balancer",
"provide" : [["@wordpress-frontend"]],
"require" : [["@wordpress-backend", 3]],
"consume" : [["ram", 2048]] },

{ "name" : "Wordpress",
"provide" : [["@wordpress-backend"]],
"require" : [["@sql", 2]],
"consume" : [["ram", 512]] },

{ "name" : "MySQL",
"provide" : [["@sql", 3]],
"consume" : [["ram", 512]] } ],

"implementation": [
[ "DNS-load-balancer", ["bind9"] ],
[ "HTTP-load-balancer", ["varnish"] ],
[ "Wordpress", ["wordpress"] ],
[ "MySQL", ["mysql-server"] ] ] }

The component_types section describes the available com-
ponent types with their ports, as well as their non func-
tional requirements like memory or bandwidth. Port names
are distinguished from components or packages by a simple
syntactic convention: ports start with @. The implemen-

tation section maps services to the software packages that
should be installed to realize them on actual machines.

Package repositories. Unlike other tools, Zephyrus is fully
aware of available package repositories, with their dependen-
cies and conflicts, and uses such information to ensure that
package-level conflicts and dependencies are respected on all
machines. It is possible to associate different package repos-

2In the example we have kept things simple, but Zephyrus
is capable of handling complex situations where the same
service can be implemented by different packages on different
machines, according to the locally installed OS.



Table 1 Specification Syntax

S ::= true | e op e Specification
| S and S | S or S
| S => S | not S

e ::= n | #` | n× e Expression
| e + e | e− e

` ::= k | t | p Elements
| (Jφ){Jr : Sl}

Sl ::= true | el op el Local Specification
| Sl and Sl | Sl or Sl
| Sl => Sl | not Sl

el ::= n | #`l | n× el Local Expression
| el + el | el − el

`l ::= k | t | p Local Elements
Jφ ::= | o op n; Jφ Resource Constraint
Jr ::= | r | r ∨ Jr Repository Constraint
op ::= ≤ | = | ≥ Operators

itories to different locations, allowing to handle deployment
of heterogeneous systems. The size of a repository may be
huge (the Debian Squeeze repository contains ≈30’000 pack-
ages), so Zephyrus uses coinst [8] to abstract packages into
a set of much smaller equivalence classes, and yet sufficient
to capture all package incompatibilities.

Available (virtual) machines. Another essential part of
Zephyrus input is the description of the initial configuration,
i.e. the set of available machines with information on their
resources: memory, package repository, existing services and
packages. In our example, we start with an initial configura-
tion consisting of 6 bare locations with 2Gb of RAM. Such
configuration is fed to Zephyrus in JSON format, e.g.:

{ "locations" : [
{ "name" : "loc1",
"repository" : "debian-squeeze",
"provide_resources" : [["ram", 2048]] },

{ "name" : "loc2",
"repository" : "debian-squeeze",
"provide_resources" : [["ram", 2048]] },

[...] }

Target system specification. Zephyrus accepts a specifica-
tion of the desired target system. Specifications are defined
according the abstract syntax presented in Table 1.

A specification S is a set of basic constraints e op e, com-
bined using the usual logical connectors. These basic con-
straints specify how many elements (packages, component
types, etc) should be in the generated configuration, using
terms of the form #` that correspond to the number of in-
stances of element ` in the system. For instance, one might
state that we want at least 3 instances of the component
type apache: “#apache ≥ 3”, where #apache represents the
number of apache instances in the configuration.

Moreover, it is possible to express constraints on loca-
tions. Locations can be specified in our syntax with the
term (Jφ){Jr : Sl} where Jφ is the constraint on the re-
source available on that machine; Jr is the set of repositories
that can be installed on that machine (‘ ’ standing for any
repository); and Sl is a constraint specifying the contents
of the machine (basically, Sl is S without locations). For
instance, we can specify that no location with less than 2Gb

of RAM and redhat installed should have a MySQL running:
“#(mem < 2G){redhat: #MySQL ≥ 1} = 0”.

For our running example we need exactly one Wordpress
frontend (i.e., exactly one service offering a wordpress-frontend

port), and that no machine is deployed with more than one
instance of either MySQL/Wordpress services on it.

(#@wordpress-frontend = 1)
and #(_){_ : #MySQL > 1} = 0
and #(_){_ : #Wordpress > 1} = 0

Note that no constraint is imposed on the co-location of
different services on the same machine.

Optimization criteria. In Zephyrus, one may request a so-
lution that is optimal w.r.t. a specific objective function.
Currently, Zephyrus supports two built-in optimization cri-
teria, namely compact and conservative, which respectively
minimize the number of components and locations used, or
their difference with respect to the initial configuration.

Running Zephyrus. We are now ready to ask Zephyrus to
compute the final configuration:

$ zephyrus -u univ.json -opt compact \
-ic conf.json -spec sp.spec \
-repo debian-squeeze ds.coinst

In addition to the obvious parameters (universe, optimiza-
tion function, configuration, specification), we pass an extra
one: the -repo option tells Zephyrus that all the informa-
tion about the packages contained in the repository named
debian-squeeze is available in the file ds.coinst.

The actual output of Zephyrus contains a complete de-
scription of the system to be deployed; it is too long to be
listed here in full, so we only highlight some excerpts of it.
The format is the same as for configurations, and starts with
the description of the locations:

{ "locations": [
{ "name": "loc1",
"provide_resources": [ [ "ram", 2048 ] ],
"repository": "debian-squeeze",
"packages_installed": [ "wordpress" ] },

{ "name": "loc2",
"provide_resources": [ [ "ram", 2048 ] ],
"repository": "debian-squeeze",
"packages_installed": ["mysql-server",
"wordpress" ] } [...]

We see that each location is associated to a list of packages
that should be installed there. Only the root packages are
listed, and Zephyrus has already checked that they can be
co-installed, satisfying dependencies and conflicts.

The second part of the output is the list of service in-
stances present in the system, mapped to their locations:

"components": [
{ "name": "Wordpress-1",
"type": "Wordpress",
"location": "loc1" },

{ "name": "Wordpress-2",
"type": "Wordpress",
"location": "loc2" },

{ "name": "MySQL-1", "type": "MySQL",
"location": "loc2" }, [...]

Finally, the third part of the output lists the bindings that
connect (ports of) service instances together:



Figure 2: Screenshot of Armonic web interface.

"bindings": [
{ "port": "@wordpress-backend",
"requirer": "HTTP-load-balancer-1",
"provider": "Wordpress-1" },

{ "port": "@wordpress-backend",
"requirer": "HTTP-load-balancer-1",
"provider": "Wordpress-2" },

{ "port": "@sql",
"requirer": "Wordpress-1",
"provider": "MySQL-1" } [...]

The configuration corresponding to Zephyrus output is
depicted on the right of Figure 1, where shaded boxes denote
locations; we omit installed packages for the sake of read-
ability. All choices there—load balancer, mapping between
services and machines, bindings, etc.—have been made by
Zephyrus. Note how services have been co-located where
possible, minimizing the number of used machines: only 4
out of the 6 available machines have been used: the proposed
solution is optimal w.r.t. the desired metric.

2.3 Configuration deployment
Once we have the configuration generated by Zephyrus as

output, we are left with the task of turning it into a running
system. While Zephyrus output is agnostic as to the final
deployment tool, we have developed our own tool—called
Armonic—to work closely in conjunction with Zephyrus.

Starting from the configuration generated by Zephyrus,
Armonic first provisions the needed virtual machines (VMs)
on a target private OpenStack cloud, creating new instances
as needed. The resource information (CPU, storage, mem-
ory) contained in Zephyrus output are used by Armonic to
choose appropriately-sized VMs (AKA “flavors”).

After provisioning, Armonic takes care of configuring VMs
using an agent-orchestrator architecture: each VM comes
with an agent which receives configuration instructions from
a central orchestrator. During VM configuration, Armonic
installs on each VMs the packages dictated by Zephyrus;
tunes service configuration files to implement bindings (e.g.
to “connect” a Wordpress to a MySQL, Armonic will patch
a Wordpress configuration file to point to a given VM IP
address and port); and starts services in the right order as
it goes. In our example, a Wordpress instance is deployed
at location loc1. However, a MySQL database must be
available before the deployment of Wordpress in order to
properly start the service. To address this, Armonic devises

a deployment plan, using bindings to determine a suitable
deployment ordering, and follows it during component de-
ployment. In the example Armonic will deploy Mysql right
away (as it has no further component dependencies), then
Wordpress, and finally the load balancer.

The Armonic orchestrator is equipped with a web inter-
face, shown in Figure 2 at work on the deployment of a
simplified version (using a single MySQL database, instead
of a cluster) of the configuration of Figure 1. To deploy
an application, users can simply feed Zephyrus output into
the Armonic web interface and then monitor live the state
of deployment. In Figure 2 the deployment is almost fin-
ished: all components are deployed and connected, except
the last Wordpress instance and the load balancer which are
shown grayed-out, as they are only partially deployed. The
deployment of this use case takes about 7 minutes, including
building and booting virtual machines, package installation,
and service configuration.

3. TOOLCHAIN INTERNALS

3.1 Minimizing input
Figure 3 presents a simple schema of the architecture of

Zephyrus, which is basically structured into five blocks. The
input phase of Zephyrus collects all the data provided by the
user.

For each location, we take into account not only the avail-
able services, but also all the possible ways to deploy them
(i.e. packages that must be installed to realize them, to-
gether with their dependencies): this can amount to han-
dle tens of thousands of packages for each location, and a
näıve approach would simply be unfeasible. We believe this
is one of the fundamental reasons why competing tools do
not represent package relationships explicitly or completely,
with the consequence of potentially producing configurations
which are not deployable due to package incompatibilities
unknown to the tool. We compare this aspect of Zephyrus

with alternative approaches in Section 5.
To render the problem tractable, Zephyrus performs sev-

eral simplification passes on the input data that greatly re-
duce its size: the universe is trimmed by removing all ser-
vices that are not in the transitive closure of the services
present in the initial configuration or the request; package



Figure 3: Overall architecture of Zephyrus

repositories are pruned by keeping only packages that im-
plement services which were not removed by the previous
simplification phase; lower and upper bounds on the needed
resources and components are computed, and only the min-
imum estimated number of available locations is kept. All
these operations are safe, as we can prove that they do not
exclude any correct solution.

A second important simplification is achieved by using
a slightly modified version of the coinst tool [8], which re-
duces by several orders of magnitude the data present in soft-
ware package repositories, like those offered by the Debian
or RedHat distributions, while retaining all the coinstallabil-
ity information needed to determine if a set of packages can
or cannot installed together. We refer the interested reader
to [8] for precise figures and detailed proofs; we just recall
here that this simplification is safe, and preserves all correct
solutions.

3.2 Constraint generation
The second phase of Zephyrus translates the (trimmed)

input into a set of constraints over non-negative integers.
These constraints use different variables for the number of
instances to create on each of the locations for each of the
types in the universe, and also variables representing the
packages that must be installed on each location. The con-
straints impose that the instances respect the definition of
their type in the universe, the way how instances are im-
plemented by packages, the (compacted) dependencies and
conflicts between packages, and the problem specification.

The most interesting of these constraints ensure that it is
possible to create the bindings between all instances accord-
ing to the capacity constraints. These constraints distin-
guish our approach from others [13, 12, 14], they are neces-
sary due to the flexible dependencies we have on ports. Con-
straints are constructed using auxiliary variables B(p, tr, tp)
for the number of bindings on port p between requesting
instances of type tr and providing instances of type tp.

On the example of Section 2.2, these particular constraints
for the bindings on port sql look like this:

B(sql, wp, mysql) ≤ #mysql ∗ 3 (1)

B(sql, wp, mysql) ≥ #wp ∗ 2 (2)

B(sql, wp, mysql) ≤ #wp ∗ #mysql (3)

Here, (1) expresses that the number of bindings on port sql
between instances of the two types is at most the number
of instances of the providing type mysql times 3 (since any
component of that type can bind to at most 3 instances),
(2) that the number of bindings on port sql is at least the
number of instances of the requesting type wp times 2 (the

number of binding each component of type wp requires), and
finally (3) states that the number of bindings is at most the
number of pairs of instances of type wp with instances of type
sql. This last restriction expresses that no two bindings may
exist between the same pair of instances.

The ability to capture as simple integer constraints the
existence of a complete architecture corresponding to a spec-
ification is the cornerstone of our approach. It allows us to
deal with the many facets of a system design as a whole, and
thus ensures the completeness of our tool and the optimality
of the generated configuration. In particular, if the output of
Zephyrus indicates that several services are to be installed
on the same machine, we know that no conflict between the
packages that realize them will arise on actual machines.

3.3 External solvers
The generated constraints, as well as the optimization

function, are expressed using the MiniZinc constraint mod-
elling language [24, 22]. This allows us to employ any of
the many existing constraint solvers that support MiniZinc.
Zephyrus can currently use GeCode [29] (an efficient open
source solver) or several of the solvers provided in the G12
suite [30]. The tool exploits this flexibility by implementing
a solver portfolio approach [2, 3] that reduces execution time
by running several solvers in parallel, and stops as soon as
one of the solvers finds a solution.

3.4 Configuration generation
When the external solver finds a solution for the generated

constraint, the next part of Zephyrus proceeds to transform
that solution, which is a simple mapping from variables to
integers, into an actual configuration. The two main chal-
lenges of that generation are: i) to reuse as many existing
parts of the initial configuration as possible in order to min-
imize the impact on the existing system; and ii) to correctly
generate bindings between the instances taking into account
that any two instances can be bound on a given port at most
once. The algorithms employed in this generation phase are
presented in detail in [7].

Once the configuration has been generated, it can be writ-
ten to a file in two different formats: either (a) the same
JSON format used for the input configuration, which pre-
cisely describes all the configuration features and is used by
Armonic as input; or (b) the dot format that encodes the
configuration into a graph that can be viewed using the dot

program to visualize the synthesized architecture.
If no configuration satisfies the given input constraints,

Zephyrus will exit with an error message and produce no
output files.

3.5 Synthesis soundness and completeness
An important property of Zephyrus is that all its parts

have been formalized. In particular, the translation into
constraints and the generation of the configuration, two very
complex and important pieces of Zephyrus, have been pre-
cisely described and proven correct in [7], where the follow-
ing results have been shown for Zephyrus:

Theorem 1 (Soundness). The configuration generated by
Zephyrus is correct w.r.t. the input universe and specifica-
tion.

Theorem 2 (Completeness). If there exists a configura-
tion that validates the input universe and specification, then
Zephyrus will successfully generate a correct configuration.



Figure 4: Armonic representation of Mysql and Word-
press component types.

Theorem 3 (Optimality). The configuration generated by
Zephyrus is optimal w.r.t. the input optimization function.

3.6 Deployment planning

Virtual machine selection. In this paper, Armonic uses
the popular OpenStack platform to provision virtual ma-
chines, starting from the locations entries found in Zephyrus

output to determine machine names and resources (com-
pute, storage, and memory capacity). In order to map re-
sources to the available VM“flavors”, a correspondence table
is defined between provide_resources and Openstack fla-
vors, for instance:

[["ram", 2048]] -> m1.small

Using this table, Armonic can create VMs using the Open-
stack API, e.g.:

nova boot --flavor m1.small --image debian-squeeze loc1

Component life-cycle. Armonic associates each component
type to an acyclic state diagram that captures the compo-
nent life-cycle. As an example, Figure 4 shows the life-cycles
for the Worpdress and Mysql component types that we have
used in the walkthrough of Section 2.

Different states may require and provide different ports.
For instance, MySQL’s active state provides a port @sql,
denoting that such port can be depended upon only when
that state in the MySQL life-cycle has been reached. Given
that Wordpress’ configured (and subsequent) state(s) re-
quire that port, Wordpress cannot enter such state before
MySQL has entered its active state.

Determining deployment order. Section 2.3 briefly intro-
duces the need of a component deployment plan. Com-
puting such a plan can be quite challenging (even unde-
cidable [9]), depending on the expressivity of component
constraints. Hence, Armonic makes several simplifying as-
sumptions to keep the problem tractable.

First, Armonic currently assumes that all VMs are“empty”,
with no services initially deployed on them. This assumption
simplifies deployment of services because it ignores reconfig-
uration needs. Second, we suppose there is only one path to
reach a given state, while Armonic life-cycle representation
allows for multiple paths. Finally, we suppose that there
are no circular dependencies between components. We are
working on an improved planning algorithm which will ad-

dress these limitations [18] and also allow for optimizations
such as maximally parallel component deployment.

3.7 Service configuration
To connect components according to Zephyrus bindings,

Armonic has to generate service configuration files and may
have to create resources. For instance, connecting MySQL to
Wordpress consists of creating a MySQL database and user
with the appropriate permissions, and making a Wordpress
configuration file point to the right IP address, port, DB
name, and user name.

To automate this process, Armonic allows to attach addi-
tional information to provide and require ports. Thus, the
provide port @sql of MySQL exposes three required vari-
ables, a database name, a user name, and a user password.
The require port @sql of Wordpress exposes these variables
with predefined values. Since the component MySQL is the
provider of the bindings @sql which has Wordpress as re-
quirer, Armonic uses this information to bind requirer and
provider configuration variables. In this case, Armonic will
call the provide port @sql of MySQL with values of require
port @sql of Wordpress. This action will create the database
and the MySQL user. These values will then be used by the
Armonic agent to patch the Wordpress configuration file.

4. EXPERIMENTATION
The complete toolchain presented in this paper is available

as free software, released under the GPL license. Zephyrus

amounts to about 10.000 lines of OCaml [20] and is avail-
able at https://github.com/aeolus-project/zephyrus/;
Armonic is about 5.000 lines of Python, plus glue code for
component life-cycles written in shell script or Augeas [28],
and is available at https://github.com/armonic/armonic.
We have experimented the complete toolchain in both arti-
ficial and industrial settings; in this section we present some
of our findings. As the figures for Armonic are dominated
by the deployment time used by system-level tools (package
managers, service startup, etc.), and also because we have
already briefly presented them at the end of Section 2.3, we
focus here on Zephyrus.

4.1 Synthesis efficiency
Given that the architecture synthesis part of our toolchain

implemented by Zephyrus has a daunting complexity in the-
ory one may ask whether this part could be a bottleneck of
our approach. In order to answer this question we have con-
ducted several architecture synthesis benchmarks on both
realistic and extreme use cases. The ones we illustrate here
are variants of the WordPress example described in Sec-
tion 2. There are, however, three important changes needed
to properly benchmark it:

• The use case is parameterized to scale it up and to
demonstrate how Zephyrus handles problems which
require more and more components and locations: (i)
the first parameter is the minimum replication con-
straint on the wordpress backend port (required by
the load balancer); (ii) the second parameter is the
minimum replication constraint on the sql port (re-
quired by WordPress components).

• The resources associated to available locations are in-
spired by Amazon’s EC2 VM offering. We took what



Figure 5: WordPress synthesis benchmarks, for
increasing values of the replication constraints on
wordpress backends (x-axis) and mysql (y-axis)

Amazon calls “old” (previous generation) general pur-
pose machines. So there are four types of locations
available, corresponding (by cost and capacity) to Ama-
zon instance types: m1.small, m1.medium, m1.large

and m1.xlarge. We have provided Zephyrus with a
finite, but large enough number of machines (250 for
each instance type).

• We use a single package repository associated to each
machine, and a single package implementing all the
available component types. This simplification does
not affect the test results, as all component types in
this benchmark are co-installable anyhow.

We have used a portfolio of solvers, as discussed in Sec-
tion 3.3, consisting of the following 3 solvers: Gecode [29],
the standard finite domain constraint solver from the G12
suite [30], and the G12/CPX (Constraint Programming with
eXplanations) solver from the G12 suite. As these solvers
are optimized for different goals, each of them works better
in some situations and worse in others. It is very difficult to
guess beforehand which solver is more adapted to a specific
constraint problem instance. The portfolio approach per-
mits us to work around this obstacle by trying these three
approaches at the same time.

We have varied the two use case parameters from 1 to 16.
Execution times are obtained as average of 5 runs on a com-
modity desktop machine (Intel i7 3.40 GHz, 8 GB of RAM).
The diagram in Figure 5 shows that a vast majority of cases
are solved very quickly in less than one minute. Only the
larger ones can take more than 20 minutes, e.g. the (14,16)

case, which is the highest peak in the chart. To put this
worst-case solving time into perspective, please note that
the largest use case ((16,16)) consists of 103 components,
interconnected by 272 bindings, and distributed over 86 ma-
chines. This surpasses by a significant margin the size of
most professional WordPress deployments.

4.2 Application to continuous integration
Zephyrus has been deployed in a large industrial use case

at Kyriba Corporation3, a large software editor providing
Software-as-a-Service treasury management solutions. In

3http://www.kyriba.com/

Figure 6: local qualification process at Kyriba

Figure 7: remote qualification process at Kyriba

the following we offer a return on that experience, validating
the usefulness of the proposed approach in an industrial set-
ting. This use case highlights the importance of considering
all system design constraints together and the benefits of
statically detecting when they are not satisfiable—in which
case Zephyrus will exit with an error. It also shows the flexi-
bility of our toolchain, by relying on a (in-house) deployment
back-end other than Armonic for the actual deployment.

Kyriba solution is a complex software platform composed
of more than 150 components deployed on multi-tier archi-
tectures, with many different versions running at the same
time. Maintaining the consistency of the system as a whole
is a major undertaking. To address this challenge, Kyriba
has invested in completely automating the build, integra-
tion, and deployment processes.

Kyriba distinguishes two software qualification processes:
a local one run by individual developers on their machines;
and another, more thorough one run on a remote contin-
uous integration (CI) service. Heavy, exhaustive tests are
performed remotely, whereas individual developers only run
a subset of available tests on their machines.

Successful completion of the local qualification process,
detailed in Figure 6, is required in order to be able to com-
mit code changes to the source version control system. After
each commit the process depicted in Figure 7 is triggered:
first CI runs the same process that has been run on develop-
ers machine; automatic deployment is then performed on the
cloud infrastructure with the latest component version, and
more extensive tests—UI, deep functional scenarios, stress
tests—are executed.

4.2.1 A Case for automation
Kyriba follows the continuous integration recommenda-

tions [10] and implements acceptance and stress tests. These
tests are very time consuming: while local tests take less
than 4 minutes to complete, global ones might take 4–8
hours. Furthermore, as Kyriba solution is an assembly of
multiple components, integration tests involve many inter-
dependent components that should all be deployed before
testing. When deploying on a single machine, maintaining



consistency (e.g. version alignment) is rather easy and can
be enforced using package dependencies; when components
are distributed as services on multiple physical/virtual ma-
chines, consistency is harder to maintain.

In the past, test deployment was done using custom tools
involving a manual setup, and component/protocol incom-
patibilities were only detected at runtime. Short feedback
loops discipline helps developers with error diagnostic re-
lated to small code changes [16], so Kyriba has been looking
for a tool that could anticipate error detection.
Zephyrus turned out to be a perfect fit for this need, as

a deployment validation tool for both the local and remote
qualification processes. Zephyrus is now used in distributed
component consistency validation and deployment config-
uration scenarios. Zephyrus helps to get feedback before
launching local deployments tests and has led to a signif-
icant reduction of the number of failures occurring during
automated deployment in comparison to the previous, more
manual, test setup.

4.2.2 Zephyrus adoption

For developers. Developers define relationships between
components in partial Zephyrus files when they create pack-
ages for their project. These files are then merged with
Zephyrus files containing the full infrastucture description
provided by engineering operations team before being pro-
cessed by the solver.

Two kinds of such relationships need to be defined:

• Dependencies between packages with specific version
requirements, e.g. the application 1.0 requires a web
server of version at least 3.2.4 to be installed on the
same machine to run properly;

• Service binding relationship with API level require-
ment, e.g. the application 1.0 requires a service API
version 1 exposed by another application on some ma-
chine, not necessarily where the application is deployed.

Developers can declare these requirements using ports spec-
ified in the Zephyrus universe definition:

{ "component_types": [
{ "name" : "fa-accounting-engine-0.1",
"provide": [["@fa-accounting-engine-v1", ["
FiniteProvide", 1]]],
"require": [["@graphite-v3", 1]] } ],

"implementation": [
[ "fa-accounting-engine-0.1",
[["debian-kyriba",
"kyriba-fa-accounting-engine (= 0.1)"]] ] ] }

The component type kyriba-fa-accounting-engine provides
a “fa-accounting-engine-v1” service with API level 1 and re-
quires a “graphite-v3” service. In the implementation sec-
tion, the component_type is linked to the concrete package
implementation kyriba-fa-accounting-engine (= 0.1). This
partial universe definition is merged with the full universe
description (containing the definitions of all Kyriba compo-
nents) and the default specification in order to verify that
at least one final configuration exists. This ensures that no
dependency problem can arise during deployment.

Figure 8: local qualification process with Zephyrus

Figure 9: global qualification process with Zephyrus

Developers may also override the default specification

with their own specification to validate different deployment
scenarios during the local qualification process.

The local qualification process is modified by adding a
Zephyrus validation stage before (local) deployment, see
Figure 8. Using Zephyrus metadata developers simply de-
clare component interfaces and the way they are exposed.
Moreover, using Zephyrus, developers know beforehand if
the components they are working on can be deployed to-
gether with other components.

For continuous integration and deployment environment.
Similarly to the local one, the global qualification process
has been instrumented with an extra Zephyrus validation
stage as illustrated in Figure 9.
Zephyrus automatically checks application consistency be-

fore actually engaging in a deployment process. If the solver
finds a solution, the related configuration is used by infras-
tructure management scripts based on the Fabric library4

in order to orchestrate an integration test deployment on
the cloud infrastructure (such as the Amazon Elastic Cloud
Computing service). The newly created platform is then
checked against all acceptance, stress and UI test cases.

To upgrade the production platform. Zephyrus is also
used to plan platform upgrades on the infrastructure cur-
rently in production. According to the software road map,
product managers define the component versions needed to
be shipped to production for a milestone release. All those
values are set in Zephyrus files, and based on the current
production deployment, Zephyrus computes an output file
containing the different application packages that should be
installed with the related configuration parameters that need
to be set for application binding. This guideline file is then
used by engineering teams to write orchestration scripts and
pinpoint manual upgrade tasks.

4.2.3 Outcome
Summing up, Kyriba’s experience with Zephyrus is that,

instead of managing deployment scenarios manually using
spreadsheets and flat documents, with ad hoc semantics
leading to complex, time-consuming and error-prone deploy-
ments, Zephyrus brings precise semantics and simplifies the

4http://www.fabfile.org



automation of software qualification processes. Zephyrus

provides static validation before actually performing expen-
sive and very long dynamic validation at runtime. As most
“compiler-like” tools, Zephyrus improves engineering quality
and reduces building cost with less failures at deployment,
integration test stage and platform upgrade.

5. RELATED WORK
The problem of managing networks of interconnected ma-

chines has attracted significant attention in the area of sys-
tem administration. Many popular system management tools
exist to that end: CFEngine [4], Puppet [17], MCollec-
tive [27], and Chef [26] are just a few among the most popu-
lar ones. Despite their differences, such tools allow to declare
the components that should be installed on each machine,
together with their configuration files. Then, they employ
various mechanisms to deploy components accordingly. The
burden of specifying where components should be deployed,
and how to interconnect them is left to the sysadmin, let
alone the difficult problem of optimal resource allocation.
As an extra complication, system management tools stop at
the package management abstraction, and therefore have no
way of knowing in advance whether deployment will succeed
or not. If the sysadmin requests to install two incompati-
ble web servers on the same machine, the incompatibility
will only be discovered by the package manager at deploy
time, when one of the two services fails to get installed (or
started). At that point, it is up to the admin to go back
to the planning stage and work around the incompatibil-
ity. In our approach all package relationships are known to
Zephyrus which can therefore plan around component in-
compatibilities.

System management tools can be used as an alternative
to Armonic, though. Once optimal resource allocation is
done by Zephyrus, the actual deployment can be delegated
to them, now with the guarantee that no deployment error
due to incompatibilities will arise; an interesting candidate
could be [31].

CloudFoundry [32] specifically targets application deploy-
ment in the “cloud”, but suffers from the same limitations
as described above. ConfSolve [15] improves on the system
management approach: it relies on a constraint solver to
propose an optimal allocation of virtual machines to servers,
and of applications to virtual machines, but it does not han-
dle connections among services, nor capacity or replication
constraints, and is unaware of package incompatibilities.

In Juju [5], each service is deployed on a single machine
(or, more recently, in a virtual container on a machine).
That avoids the issue of component incompatibilities, but
does so at the price of wasting resources. In our Word-
press example Zephyrus proposes a solution that needs 4
machines, whereas Juju would have required 6.

Two recent efforts, Feinerer’s work on UML [12] and En-
gage [14], are more similar to our approach as they both rely
on a solver to plan deployments. Feinerer’s work is based on
the UML component model, which includes conflicts and de-
pendencies with capacity constraints, but uses dependencies
only between components, which greatly restricts the expres-
siveness of the model (choices are not possible). Moreover,
no tool for actually building the computed configuration is
provided. Engage, on the other hand, offers no support for
conflicts in the specification language: one can only indi-
cate that a service can be realized by exactly one out of a

list of components. Neither Feinerer’s work nor Engage, or
any other tool that we are aware of, allows to find a deploy-
ment that uses resources in an optimal way, minimizing the
number of needed (virtual) machines.

Another approach to automated deployment is proposed
in [11], which uses an Architecture Description Language
with user-provided information about relationships among
software services, and implements a decentralized protocol
to perform automatic configuration. This work may also be
used as a backend for Zephyrus.

Finally, we would like to put Zephyrus in perspective. In
our view, automated management of cloud applications is
best realized by a 2-phase approach. In the first phase (ar-
chitecture synthesis) Zephyrus or similar tools are used to
devise an optimal system architecture. Then, in a second
phase (planning), the obtained configuration is compared
with that of the existing system to produce a detailed de-
ployment plan that migrates the existing system to the de-
sired one. To implement planning, the actual state of ser-
vices and their life cycles (e.g. how do they pass from an
inert “installed” state to an “up and running” one? do de-
pendencies and conflicts change in the meantime?), ignored
for the purpose of this paper, become relevant again. Even
though planning has been shown to be undecidable in the
most general case [18], promising progress has been made
on automated planning for restricted cases, like planning in
the presence of complex activation requirements that include
circular dependencies, whereas giving up the possibility of
expressing component conflicts [19].

6. CONCLUSION
We have introduced an automated approach to the design

and deployment of complex distributed applications com-
posed of interconnected services, as typically found in mod-
ern “cloud” environments. The system architect can specify
the components needed to obtain the required functional-
ities, add non-functional constraints—e.g. maximum num-
ber of client components connected to a given service, or
minimum number of replicas—as well as available physical
resources—e.g. memory or bandwidth—and declare compo-
nent incompatibilities. The architect can also choose an op-
timization goal, allowing to specify whether she prefers a
conservative solution that changes the current configuration
as little as possible, or a minimum-cost solution.

The approach is realized by two complementary tools:
Zephyrus will synthesize an optimal architecture, including
precise information about service interconnections. Such an
architecture is then fed to the second tool, Armonic, which
is able to deploy it on state-of-the art cloud infrastructures
such as OpenStack, taking care of all deployment aspects
from machine provisioning to service configuration and ini-
tialization. A major advantage of the proposed approach
w.r.t. the state of the art is that all existing constraints,
including software package-level incompatibilities, are taken
into account to prevent deploy-time errors. We have val-
idated the complete toolchain both theoretically, showing
soundness and completeness of the approach, and practi-
cally by applying it to relevant industrial use cases.

To the best of our knowledge this toolchain is the first
that allows to consistently handle capacity and replication
constraints, conflicts, and service co-location, thus finally
providing an instrument able to handle the stringent require-
ments of cloud applications in the real world.
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ABSTRACT
Context. Software evolution has been an active field of re-
search in recent years, but studies on macro-level software
evolution—i.e., on the evolution of large software collections
over many years—are scarce, despite the increasing popu-
larity of intermediate vendors as a way to deliver software
to final users.

Goal. We want to ease the study of both day-by-day and
long-term Free and Open Source Software (FOSS) evolution
trends at the macro-level, focusing on the Debian distribu-
tion as a proxy of relevant FOSS projects.

Method. We have built Debsources, a software platform
to gather, search, and publish on the Web all the source
code of Debian and measures about it. We have set up
a public Debsources instance at http://sources.debian.

net, integrated it into the Debian infrastructure to receive
live updates of new package releases, and written plugins to
compute popular source code metrics. We have injected all
current and historical Debian releases into it.

Results. The obtained dataset and Web portal provide
both long term-views over the past 20 years of FOSS evolu-
tion and live insights on what is happening at sub-day granu-
larity. By writing simple plugins (∼100 lines of Python each)
and adding them to our Debsources instance we have been
able to easily replicate and extend past empirical analyses
on metrics as diverse as lines of code, number of packages,
and rate of change—and make them perennial. We have
obtained slightly different results than our reference study,
but confirmed the general trends and updated them in light
of 7 extra years of evolution history.

Conclusions. Debsources is a flexible platform to mon-
itor large FOSS collections over long periods of time. Its
main instance and dataset are valuable resources for schol-
ars interested in macro-level software evolution.

∗This work has been partially performed at, and supported
by IRILL http://www.irill.org. Unless noted otherwise,
all URLs and data in the text have been retrieved on March
9, 2014.
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1. INTRODUCTION
For several decades now [21, 18] software evolution has

been an active field of research. Given its natural availability
and openness, numerous empirical studies on software evolu-
tion have targeted Free and Open Source Software (FOSS),
with more than 100 noteworthy papers cited in recent sys-
tematic literature reviews [27, 3]. Despite the abundant
research efforts, few studies have investigated macro-level
software evolution (or “evolution in the large”), i.e., have
considered large software collections as coherent wholes and
observed their evolution, as collections, rather than the evo-
lution of individual software products contained therein.

This lack of studies is not due to a lack of interest in
studying software collections. To begin with, their rele-
vance w.r.t. current practices is hard to dispute: with the
massive popularization of “app stores” and the steady mar-
ket share of package-based software distributions, software
is increasingly delivered to users as part of curated collec-
tions maintained by intermediate software vendors. Addi-
tionally, software collections are also useful to study evolu-
tion at the granularity of individual software products: they
contribute to eliminate (researcher) selection bias, which
is often cited as the main threat to validity in evolution
studies [27]. Finally, well-established software collections
are enjoying remarkably long lives—now spanning several
decades—outliving many of the software products they ship;
software collections therefore offer remarkable opportunities
for gathering long-term historical insights on the practice of
software.

The study of software collections, however, poses specific
challenges for scholars, due to an apparent tendency at grow-
ing ad hoc software ecosystems, made of homegrown tools,
technical conventions, and social norms that might be hard
to take into account when conducting empirical studies. We
believe that the relative scarcity of macro-level evolution



Figure 1: Life-cycle of Debian packages and releases

studies is at least in part due to the lack of suitable min-
ing tools, storage infrastructures, and ready-to-use datasets
about noteworthy software collections. With the present
work we aim at contributing to fill these gaps.

Contributions. We focus on Debian,1 one of the most re-
puted and oldest (founded in 1993) FOSS distributions, of-
ten credited as the largest organized collection of FOSS,
and a popular data source for empirical software engineering
studies (e.g., [28, 10, 1, 9]). Our aim is to ease the study
of macro-level FOSS evolution patterns, using the assump-
tion that Debian is a representative sample of relevant FOSS
projects. More specifically, we want to support both long-
term evolution studies—looking back as far as possible—as
well as studies of present, day-by-day evolution patterns of
software currently shipped by Debian.

To that end we have built Debsources, a software platform
to gather, search, and publish on the Web the source code
of Debian and measures about it. We have set up a Deb-
sources instance at http://sources.debian.net, integrated
it into the Debian infrastructure to receive live updates of
new packages, and injected all current and historical Debian
releases into it. To assess the usefulness of the platform we
have used the obtained dataset to replicate the major stud-
ies on macro-level software evolution [24, 10] which, as it
happens, targeted Debian too.

Debsources has made the data gathering process very easy.
Thanks to its extensible design we just had to write a few
short Python plugins to compute classical software metrics,
trigger an update, and wait a few days to obtain the dataset.
As a consequence of us doing so, the dataset needed to repli-
cate the original studies is now live and perennial. Each
Debian package release gets immediately processed by our
plugins and the obtained results augment the dataset pub-
licly available at our Debsources instance, which has quickly
gained popularity in the Debian community.

Debsources is Free Software2 released under the AGPL3
license. It can be deployed elsewhere to serve similar needs.

To conduct the replication study we have queried the ob-
tained dataset and charted the most interesting facts. Over-
all, we have been able to: (1) confirm the general trends
observed in [24, 10], (2) extend them to take into account
the subsequent 7 years of Debian evolution history, and (3)
shed some light into some of the hypotheses made at the
time, thanks to the more fine-grained knowledge of source
files (and in particular of their checksums) that Debsources

1http://www.debian.org
2http://anonscm.debian.org/gitweb/?p=qa/
debsources.git

allows. We have also found some discrepancies; for the
most part they seem due to the original study considering a
smaller subset of the Debian archive than we did.

Paper structure. Section 2 gives an overview of the life cy-
cle of Debian packages and releases. Section 3 details the ar-
chitecture of Debsources, while Section 4 presents our data
gathering process and the resulting dataset. Section 5 dis-
cusses the results of the replication study. Before conclud-
ing, Section 6 compares Debsources with related work.

Data availability. The software, dataset, and results dis-
cussed in this paper are available, in greater detail, at
http://data.mancoosi.org/papers/esem2014/.

2. DEBIAN MINING FUNDAMENTALS
Debian [14] is a large and complex project. In this section

we present the main notions needed for mining Debian as a
collection of FOSS projects, in source code format.

The life-cycles of Debian packages and releases are de-
picted in Figure 1. As a distribution, Debian is essentially an
intermediary between upstream authors—who release soft-
ware as source code tarballs or equivalent—and final users
that install the corresponding binary packages using package
management tools like apt-get [5].

Debian package maintainers are in charge of the integra-
tion work that transforms upstream tarballs into packages.
They usually work on source packages, which are bundles
made of upstream tarballs (e.g., proj_x.y.z.orig.tar.gz),
Debian-specific patches (*.diff.gz), and machine readable
metadata (*.dsc). The metadata of all source packages cor-
responding to a Debian release are aggregated into metadata
index files called Sources. A sample source package entry

Package: emacs19
Priority: standard
Section: editors
Version: 19.34 -19.1
Binary: emacs19 , emacs19 -el
Maintainer: Mark W. Eichin <eichin@[...]>
Architecture: any
[...]
Directory: dists/hamm/main/source/editors
Files :
75c1[...]1db5 649 emacs19_19 .34 -19.1. dsc
f715[...]84d0 10875510 emacs19_19 .34. orig.tar.gz
647d[...]1ad8 15233 emacs19_19 .34 -19.1. diff.gz

Figure 2: sample Debian source package metadata



Table 1: Debian release information; * denotes, here
and in the remainder, unreleased suites.

cur. release cycle
ver. name alias date (days) archived
1.1 buzz 17/06/1996 n/a yes
1.2 rex 12/12/1996 178 yes
1.3 bo 05/06/1997 175 yes
2.0 hamm 24/07/1998 414 yes
2.1 slink 09/03/1999 228 yes
2.2 potato 15/08/2000 525 yes
3.0 woody 19/07/2002 703 yes
3.1 sarge 06/06/2005 1053 yes
4.0 etch 08/04/2007 671 yes
5.0 lenny 15/02/2009 679 yes
6.0 squeeze oldstable 06/02/2011 721 no
7 wheezy stable 04/05/2013 818 no
8 jessie* testing tbd tbd no
n/a sid* unstable n/a n/a no

from an ancient Sources file is shown in Figure 2. Similar
indexes, called Packages, exist for binary packages.

Several metadata fields are worth noting. Source pack-
ages are versioned by concatenating the upstream version,
a “-” sign, and a Debian-specific version. Source packages
are also organized in two-level sections: packages only con-
taining software considered free by Debian belong to the
top-level (and implicit) section main; other packages are ei-
ther in the contrib or non-free top-level sections, resulting
in complete sections like Section: non-free/games. Each
source package gets compiled to one or several binary pack-
ages, defining the granularity at which users can install soft-
ware. In Figure 2, Emacs 19 corresponds to two distinct
binary packages, one for the editor itself and another one
for its Elisp modules.

When ready, the maintainer uploads both source and bi-
nary packages to the development release (or “suite”) called
unstable (a.k.a. sid). Since Debian supports many hardware
architectures, a network of build daemons (buildd) fetch in-
coming source packages from unstable, build them for all
supported architectures, and upload the resulting binary
packages back to unstable.

After a semi-automatic software qualification process
called migration [28], which might take several days or weeks,
packages flow to the testing suite. At the end of each de-
velopment cycle migrations are stopped, testing is polished,
and eventually released as the new Debian stable release.

Packages are distributed to users via an ad-hoc content
delivery network made of hundreds of mirrors around the
world. Each mirror contains all “live” suites, i.e., the suites
discussed thus far plus the former stable release (oldstable).
When a new stable is released, oldstable gets stashed away to
a different archive—http://archive.debian.org—which is
separately mirrored and contains all historical releases.

For reference, Table 1 summarizes information about De-
bian suites to date, their codenames, and which suites are
currently archived. We note in passing that the average de-
velopment cycle of Debian stable releases is 560 days (resp.
774 over the past 12 years, since woody) with a standard
deviation of 270 days (resp. 133 days).

3. ARCHITECTURE
In this paper we focus on two distinct aspects of Deb-

sources. On the one hand Debsources is a software platform

Figure 3: Debsources architecture

that can be deployed to gather data about the evolution
of Debian and all Debian-like distributions—we present this
aspect in this section. On the other hand we have set up
a specific Debsources instance and used it to gather a large
dataset about Debian evolution history—we discuss this as-
pect in the next section.

The architecture of Debsources and its data flow are de-
picted in Figure 3. On the back end, Debsources inputs are
the mirror network (for live suites) and archive.debian.org

(for archived ones). Live suites can be mirrored running pe-
riodically (e.g., via cron) the dedicated debmirror tool,3

which understands the Debian archive structure. Note that
the archive format supported by debmirror is shared across
all Debian-based distributions (or derivatives), e.g. Ubuntu,
allowing to use Debsources on them. Archived suites require
a more low-level mirroring approach (e.g., using rsync) due
to the fact that the Debian archive structure has changed in
incompatible ways over time.

For Debian live suites it is possible to receive “push” noti-
fications of mirror updates—which usually happen 4 times
a day—and use them to trigger debmirror runs, minimizing
the update lag. To that end one needs to get in touch with
a Debian mirror operator and ask for specific arrangements.
Archived suite can only be mirrored in “pull” style, but they
only change at each stable release, on average every 2 years.
If needed, Debsources can be told to mirror only specific
suites, for both live and archived suites.

After each mirror update, the Debsources updater is run.
Its update logic is a simple sequence of 3 phases:

1. extraction and indexing of new packages;

2. garbage collection of disappeared packages, provided
that a customizable grace period has also elapsed;

3. update of overall statistics about known packages.

Debsources storage is composed of 3 parts: the local mir-
ror, the source packages—extracted to individual directories
using the standard Debian tool dpkg-source—and a Post-
gres DB, whose schema is given in Figure 4. Note that
throughout the paper, unless otherwise specified, we use
“package” to mean “source package”. The DB contains in-
formation about package metadata, suites, and individual
source files.
3http://packages.debian.org/sid/debmirror



  suites_info 
 name  varchar  PK   
 version  varchar     
 release_date  date     
 sticky  boolean     

  package_names 
 id  serial  PK   
 name  varchar     

  packages 
 id  serial  PK   
 version  varchar     
 name_id  int    FK 
 area  varchar     
 sticky  boolean     

  checksums* 
 id  serial  PK   
 package_id  int     
 file_id  int    FK 
 sha256  varchar       files 

 id  serial  PK   
 package_id  int    FK 
 path  bytea       ctags* 

 id  serial  PK   
 package_id  int    FK 
 tag  varchar     
 file_id  int    FK 
 line  int     
 kind  varchar     
 language  lang_ctags     

  metrics 
 id  serial  PK   
 package_id  int    FK 
 metric  metric_type     
 value_  int     

  sloccounts* 
 id  serial  PK   
 package_id  int    FK 
 language  lang_sloc     
 count  int     

  suites 
 id  serial  PK   
 package_id  int    FK 
 suite  varchar     

Figure 4: Debsources DB schema (excerpt); * de-
notes tables pertaining to plugins

A plugin system is available and accounts for Debsources
flexibility. Each time the updater touches a package in the
data storage (e.g., by adding or removing it), it sends a no-
tification to all enabled plugins. Plugins can further process
packages, including their metadata and all of their source
code, and update the DB accordingly. Plugins can declare
and use their own tables (see the starred tables in Figure 4)
or use general purpose plugin tables such as metrics. In
essence Debsources does the heavy lifting of maintaining a
general purpose storage for Debian source code, enabling
plugin authors to focus on data extraction.

To assess the usefulness of this design we have developed
plugins to compute popular source code metrics: disk usage
(mostly as a plugin example for developers), physical source
lines of code (SLOC) using sloccount [29], user-defined
“symbols” (functions, classes, types, etc.) using Exuberant
Ctags,4 and SHA256 checksums of all source files—arguably
not a metric per se, but useful to detect duplicates and re-
fine other metrics on that basis. Note that simpler metrics
like the number of source files do not need specific plugins,
because Debsources already tracks individual files.

We are quite pleased with the little effort needed to imple-
ment the plugins: if we exclude boilerplate code, the most
complex plugin (ctags) is ∼100 lines of Python code, most
of which needed to parse ctags files. All plugins described
above are part of the standard Debsources distribution.

On the front end, Debsources offers several interfaces. For
final users, the Debsources web app implements a HTML
+ JavaScript interface with features like browsing, syntax
highlighting, code annotations (via URL parameters), DB
searches on metadata, and regular expression searches on
the code via Debian Code Search [26]. The same features
are exposed to developers via a JSON API. Additionally,
scholars interested in aggregate queries can directly access
the low-level Debsources DB using (Postgres) SQL.

4. DATASET
Debsources is not meant to be a centralized single-instance

platform: multiple instances of it can be deployed and tuned
to serve different distributions or data gathering needs. On

4http://ctags.sourceforge.net/

Table 2: table sizes in the sources.d.n dataset
table rows

suites info 16
package names 28,454
packages 81,582
suites 119,078
metrics* (i.e., disk usage) 81,582
sloccounts* 290,961
checksums* 33,495,057
ctags* 317,853,685

the other hand there is also value in having notable Deb-
sources instances and using them to maintain large datasets
about the evolution of Debian. In this section we present one
such instance—http://sources.debian.net or, for short,
sources.d.n—and its dataset.
sources.d.n is publicly accessible and meant to track all

Debian suites, both live and archived. It can be queried via
the web UI and JSON API. For security reasons no public
access to the underlying DB is possible, but DB dumps are
available on demand. Anyone can recreate an equivalent
Debsources instance by following the very same process we
have used to build sources.d.n, namely:

1. deploy Debsources

2. configure it to mirror a nearby Debian mirror; optional:
get in touch with mirror admins to receive push update
notifications—we have obtained this for sources.d.n

3. trigger an initial update run using update-debsources

4. mirror archive.debian.org with rsync

5. inject all archived suites using suite-archive add

The process is I/O-bound and the time needed to complete
it depends mostly on I/O write speed. For reference, it took
us ∼5 days to inject archived suites + 8 days for the live
ones = ∼2 weeks—using 7.2 kRPM disks in RAID5, which is
arguably a quite slow setup by today standards and certainly
not one optimized for write speed. The resulting disk usage
is as follows: 150 GB for the local mirror (100 GB used by
live suites) + 610 GB for extracted packages + 75 GB for
the DB (45 GB used by indexes on large tables) = ∼840 GB,
which is quite tolerable for server-grade deployments.
sources.d.n is configured with all the plugins discussed

in Section 3: disk usage, sloccount, ctags, and checksums.
We haven’t thoroughly benchmarked the injection process,
but a significant part of the processing time (∼40–50%) is
used to compute and insert ctags in the DB.

Some figures about the major tables in sources.d.n DB
are reported in Table 2. The 16 injected suites include all
live suites (including small suites not discussed here like
-backports and -updates) and all archived suites, with the
exception of Debian 1.1 buzz and 1.2 rex. The exception
is because those releases did not have Sources indexes, nor
.dsc files for all packages. Supporting their absence is not
difficult, but requires an additional abstraction layer that is
not implemented in Debsources yet. Previous studies [10,
24] have ignored the same releases, presumably for the same
reasons.

The dataset contains ∼30,000 differently named packages,
occurring in ∼80,000 distinct 〈name,version〉 pairs, for an



Table 3: Debian release sizes

suite pkgs
files
(k)

du
(GB)

sloc
(M)

ctags

(M)

sloc/

pkg

(k)
hamm 1,373 348.4 4.1 35.1 3.9 25.6
slink 1,880 484.6 6.0 52.2 5.9 27.7
potato 2,962 686.0 8.6 69.1 7.1 23.3
woody 5,583 1394.5 18.2 143.3 16.6 25.7
sarge 9,050 2394.0 34.1 216.3 22.9 23.9
etch 10,550 2879.7 45.0 281.9 29.0 26.7
lenny 12,517 3713.9 61.8 351.0 36.5 28.0
squeeze 14,965 4913.2 89.2 462.5 30.8 30.9
wheezy 17,570 6588.1 125.8 609.2 45.2 34.7
jessie* 19,983 8017.1 157.8 786.7 83.0 39.4
sid* 21,232 9872.2 188.5 972.6 106.5 45.8

average of 2.86 versions per package. The number of map-
pings between (versioned) packages and suites, ∼120,000,
is significantly higher than the number of packages due to
packages occurring in multiple releases.

We index and checksum ∼30 M source files, a whopping
∼320 M ctags, and ∼300,000 〈language,package〉 pairs for
an average of 3.56 different programming languages occur-
ring in each (versioned) package. These are just preliminary
observations that can be made on the basis of simple row
counts; we will refine them in the next section.

5. MACRO-LEVEL EVOLUTION
Using the sources.d.n dataset we can replicate the find-

ings of the former major study on macro-level software evo-
lution [10] (reference study, or ref. study in the following).
We present in this section our experiences in doing so. In
addition to the general usefulness of conducting replication
studies—independent claim verification, method compari-
son, etc.—replicating today (2014) that study (2009) is par-
ticularly useful, because we now have data about 7 extra
years (+77%, up to a total of 16 years) of evolution history
since the last release considered at the time (Debian etch,
2007), allowing to re-assess claims valid back then.

5.1 Total size
The total sizes of all considered suites are given in Table 3

and plotted over time in Figure 5. Using the sources.d.n

dataset it has been easy to compute extra metrics (n. of
source code files, disk usage, and ctags) in addition to those
already computed in ref. study (n. of packages and SLOC).

When comparing with ref. study it is clear that we have
considered more packages in each release: 300 more for
hamm, up to 400 more for etch. A first potential reason5

is that they might have restricted their analysis to the main
section of the Debian archive, whereas we have considered all
sections. Strictly speaking contrib and non-free are not part
of Debian, but they are maintained by Debian people us-
ing Debian resources; given that several claims in software
evolution pertain to maintenance sustainability, we think
it’s more appropriate to include all sections. To verify this
hypothesis we have recomputed sizes using main only ob-
taining package counts closer to, but still higher than, those

5the URL at which the complete dataset of ref. study was
available is currently broken (HTTP 404) and not available
from the Internet Archive. Therefore where discrepancies
exist between our findings and theirs, we have only been
able to speculate about the possible causes.

Figure 5: Debian release sizes over time

of ref. study: our dataset seems to be marginally larger—by
17 packages in hamm, 27 in slink, up to 107 in etch.

Long-term evolution trends do not seem to be affected by
these differences though. Before etch (last release considered
in ref. study) both SLOC and package counts grow linearly
with time and super-linearly with releases. Interestingly,
post-etch the growth rate has increased and is now super-
linear w.r.t. time for SLOC, disk usage, and number of files;
it is still linear in the number of packages though.

SLOC, disk usage, and file count metrics follow very sim-
ilar patterns, confirming previous studies on metric corre-
lation [13, 12]. Package count and ctags exhibit different
patterns. The former metric, not considered in [12], might
be interpreted as distribution-level refactoring, used to tame
the growing complexity in the underlying upstream software,
as postulated by Lehman [18]. The latter metric (ctags) ex-
hibits a weird decrease in squeeze and a seemingly low value
still in wheezy. As of now we have no good explanation for
this fact; further investigation is needed.

5.2 Package size
We have studied the frequency distribution of package

sizes (in SLOC) for all suites in the dataset. In Figure 6
we show the distributions for the two releases considered in
our reference study (hamm and woody) plus the last two
stable releases. Recent history confirms the observations of
the ref. study: larger packages are getting larger and larger,
with now 2 packages (the Linux kernel and the Chromium
browser) past the 10 millions SLOC mark in the last stable
release. At the same time more and more small packages
enter the distribution over time, with about 50% of wheezy
packages below 3,900 SLOC.

What has changed since ref. study is the relative stabil-
ity, back then, of the average package size—see Table 3.
Post-etch the average package size has gone up gradually
but considerably, from 26 kSLOC (etch) up to 34.7 kSLOC
(+33%) in wheezy. It appears that the increase in the num-
ber of small packages added to the distribution is no longer
enough to compensate the growth in size of large packages.
A possible explanation is the emergence of more strict cri-
teria in accepting new packages in Debian, with the effect
of filtering out “non mature”, and usually small, software.
A more far-fetched explanation, if we take Debian as a rep-



(a) hamm (b) woody (c) squeeze (d) wheezy

Figure 6: frequency (y-axis) distribution of package sizes (in SLOC, x-axis)

resentative sample of mature FOSS projects, is an increase
in code contributions to large, well-established projects, at
the detriment of scattered contributions over many smaller
projects.

Note that data for jessie and sid, in general, should be
taken with a pinch of salt, because they are under active de-
velopment. In the specific case of average package sizes, we
observe that those suites might temporarily contain multiple
versions of very large packages such as Linux and Chromium.
That might skew the averages considerably w.r.t. stable re-
leases, where only one release per software is allowed.

Also in the case of package sizes we have obtained slightly
different numbers than the reference study—in particular we
observe slightly higher fluctuations in the averages—but the
general picture is confirmed.

5.3 Package maintenance
Using the sources.d.n dataset we can study package

changes across releases (“package maintenance”, in the word-
ing of ref. study) by considering in turn pairs of suites, us-
ing one of them as reference, and classifying packages in the
other as: common (appearing in both suites no matter the
version), removed (present in the reference but not in the
other), or new (vice versa). We can furthermore identify
unchanged packages (⊆ common) as those appearing with
the same version in the two suites. We have done this clas-
sification for all pairs of subsequent suites. A significant
excerpt of the results is given in the upper part of Table 4.

Once again we obtain similar, but not identical results
w.r.t. the reference study, which only gives common and
unchanged measurements for hamm and etch. Restricting
to main closes the gap almost entirely. The small number
of packages that persisted unchanged from hamm to etch
(148) shrank even further in jessie but is still non-zero—
16 years later!—and seems to be stabilizing at around 80.
Looking into those packages we find legacy, but still perfectly
functional tools like netcat.

It is important to note that—even though this point is not
immediately clear in ref. study—unchanged packages are not
packages that have not been touched at all across releases,
but only packages whose upstream version (e.g., 1.2.3) has
not changed. Their Debian version might have changed,
and in fact redoing the analysis using the complete pack-
age versions (e.g., 1.2.3-4) we find that unchanged packages
w.r.t. hamm drop to 0 already at woody, “only” 3 releases
later. This suggests that long lasting unchanged packages
might have been abandoned upstream, but are still main-
tained in Debian via package patches, without going through

the burden of replacing upstream maintainers.
To put things in perspective we have also computed the

average package life, defined as the period of time between
the release of the first suite in which a package appears as
new (w.r.t. the previous release) and that of the first suite
in which it is removed (ditto). The result is 944 days, only
20% higher than the average release duration since woody.
In spite of a few long lasting unchanged entries, software in
Debian seem to have a fairly high turnover.

We have also briefly looked into the percentage of common
and unchanged packages w.r.t. the previous release: both
values increase slightly post-etch, but now show a remark-
able stability around 87% (common) and 43% (unchanged)—
the ratio of change appears to be stable across releases.

An acknowledged limitation of our reference study is that,
using only version information, one cannot assess the size
of upstream changes: they can find out that a package in
different suites went through (at least) one new upstream
release, but not if that means that a single file has been
changed, or rather if a large number of files have been. With
file and checksum information from the sources.d.n data
set we can be more precise.

In the lower part of Table 4 we compare each stable re-
lease with the preceding one (all pairs comparisons have
been omitted due to space constraints). For each com-
parison we give the total amount of modified packages (⊆
common \ unchanged), and the average percentage of files
affected by the change w.r.t. the previous release. The lat-
ter ratio has been computed by comparing the sets of file
checksums in the two versions: if a checksum from the pre-
vious release disappears in the new one we count that as one
“file” change; the same goes for newly appearing checksums.
One can certainly be more precise than this, for instance by
computing the size of actual package diff-s, but that re-
quires a dataset that includes the actual content of source
files. Checksum comparison, like other fingerprinting tech-
niques, is an interesting trade-off which arguably remains in
the realm of pure metadata analyses.

The absolute number of modified packages appears to
grow with the release size over time. Sarge is an exception
to that rule, showing an anomalous high number of modified
packages, but sarge is peculiar also in its very long develop-
ment cycle, almost twice the average release duration. This
suggests that the number of modified packages is also corre-
lated with release duration. On the other hand, the average
amount of modified files shows a remarkable stability post-
etch, at around 60%, with larger fluctuations around that
value in early releases. The percentage might seem high,



Table 4: changes between Debian releases: ‘c’ for common, ‘u’ for unchanged, and ’m’ for modified packages
to

from slink potato woody sarge etch lenny squeeze wheezy jessie* sid*
hamm 1324c

842u
1198c
463u

1079c
270u

958c
175u

864c
148u

782c
124u

719c
100u

670c
81u

648c
75u

663c
75u

slink 1657c
742u

1455c
384u

1281c
252u

1155c
210u

1037c
172u

941c
136u

881c
113u

852c
105u

872c
105u

potato 2456c
935u

2118c
551u

1881c
436u

1683c
352u

1497c
271u

1399c
220u

1359c
210u

1387c
211u

woody 4588c
1688u

3953c
1156u

3497c
908u

3021c
633u

2787c
520u

2680c
486u

2752c
494u

sarge 7671c
3832u

6828c
2597u

5903c
1717u

5353c
1369u

5102c
1240u

5259c
1272u

etch 9230c
4578u

8041c
2906u

7216c
2205u

6881c
1948u

7088c
2000u

lenny 10836c
5272u

9631c
3676u

9181c
3153u

9457c
3249u

squeeze 13117c
6812u

12464c
5425u

12902c
5622u

wheezy 16543c
10132u

17042c
10519u

jessie* 19795c
19593u

from previous suite to
slink potato woody sarge etch lenny squeeze wheezy

modified pkgs 556m 1305m 3127m 4462m 2879m 3287m 4129m 4453m
changed files per pkg 54.6% 64.4% 65.3% 67.5% 58.9% 59.8% 60.4% 57.2%

but note that unchanged packages (i.e., 0% changes) are
excluded from the count and that Debian release cycles are
quite long for active upstream projects. Further by-hand in-
vestigation on selected projects have confirmed that active
projects do indeed change that much over similar periods.
These results seem to hint at a polarization in the evolution
of individual FOSS projects, between active projects that
evolve steadily and dormant, possibly feature-complete ones
that cease evolving while still remaining useful.

5.4 Programming languages
The evolution of programming languages over time is also

easy to study using sources.d.n. We show the most popular
(in terms of SLOC) languages per release in Table 5 and their
evolution over time, in both absolute and relative terms, in
Figure 7. (Complete data for all suites and languages is
available at http://sources.debian.net/stats/.)

This time we got significantly different numbers w.r.t. the
reference study, while still confirming most of their conclu-
sions. We wonder if an additional reason for discrepancies
here might be the exclusion of Makefile, SQL, and XML
from their analysis, given that sloccount excludes them by
default, unless --addlangall is used. For reference, there
are 5.4 MSLOC of makefile and 2.7 MSLOC of SQL in
wheezy, cumulatively ∼1% of the total, unlikely to affect
general trends. XML is a more significant omission though,
as it is the 4th most popular language in wheezy. It is de-
batable whether XML should be considered a programming
language, but its popularity hints at its usage for expressing
program logic in declarative ways. For this reason we do not
think it should be disregarded.

C is invariably the most popular language and its growth,
in absolute terms, is steady; in relative terms its growth is
not as fast as other languages, and most notably C++. Post-
squeeze however the ratio at which C was losing ground to
C++ slows down and almost entirely stops. (The increase

Figure 7: most popular (top-5) programming lan-
guages in Debian over time



Table 5: most popular (top-10) programming languages in Debian releases (Msloc)
release ansic cpp java xml sh python perl lisp asm fortran
hamm 26.2 (74.7%) 2.3 (6.5%) 0.1 (0.2%) 0.0 (0.0%) 0.8 (2.2%) 0.1 (0.3%) 0.5 (1.4%) 2.3 (6.6%) 0.4 (1.1%) 0.7 (2.0%)
slink 39.8 (76.3%) 3.5 (6.7%) 0.1 (0.3%) 0.0 (0.0%) 1.3 (2.5%) 0.2 (0.4%) 0.8 (1.5%) 2.5 (4.7%) 0.6 (1.2%) 1.0 (2.0%)
potato 47.8 (69.2%) 6.3 (9.2%) 0.3 (0.4%) 0.1 (0.2%) 2.9 (4.2%) 0.4 (0.5%) 1.3 (1.9%) 3.4 (4.9%) 0.6 (0.8%) 1.4 (2.1%)
woody 92.8 (64.8%) 16.1 (11.2%) 1.4 (1.0%) 2.0 (1.4%) 8.9 (6.2%) 1.5 (1.1%) 3.0 (2.1%) 5.1 (3.6%) 2.6 (1.8%) 2.3 (1.6%)
sarge 114.6 (53.0%) 34.3 (15.8%) 4.0 (1.8%) 5.6 (2.6%) 20.6 (9.5%) 4.4 (2.0%) 6.1 (2.8%) 6.9 (3.2%) 2.8 (1.3%) 2.9 (1.3%)
etch 140.8 (49.9%) 47.2 (16.7%) 6.1 (2.2%) 9.9 (3.5%) 30.6 (10.9%) 6.5 (2.3%) 8.0 (2.8%) 7.2 (2.5%) 4.4 (1.6%) 2.0 (0.7%)
lenny 158.9 (45.3%) 66.3 (18.9%) 18.1 (5.2%) 17.4 (5.0%) 32.4 (9.2%) 10.1 (2.9%) 9.2 (2.6%) 8.1 (2.3%) 4.1 (1.2%) 2.2 (0.6%)
squeeze 194.2 (42.0%) 96.0 (20.8%) 26.8 (5.8%) 27.4 (5.9%) 36.5 (7.9%) 15.3 (3.3%) 12.2 (2.6%) 9.5 (2.1%) 4.7 (1.0%) 2.5 (0.5%)
wheezy 253.1 (41.5%) 130.9 (21.5%) 42.8 (7.0%) 34.0 (5.6%) 39.3 (6.5%) 22.9 (3.8%) 16.1 (2.6%) 8.6 (1.4%) 7.8 (1.3%) 8.1 (1.3%)
jessie* 353.2 (44.9%) 158.6 (20.2%) 50.5 (6.4%) 45.5 (5.8%) 44.3 (5.6%) 30.1 (3.8%) 18.9 (2.4%) 11.2 (1.4%) 10.7 (1.4%) 9.1 (1.2%)

in C’s popularity in jessie should probably be disregarded,
due to the multiple version issue already discussed.)

Another interesting post-etch phenomenon is the decrease
of shell script popularity, together with the consolidation of
Perl decline. During the same period Python increases its
popularity and is now the 5th most popular language. This
suggests that Python is replacing Perl and shell script as a
more maintainable glue code language.

Two other post-etch trends are worth noting: Lisp has
almost halved its popularity and the under-representation of
Java, hypothesized in ref. study, is now gone. Even though
far behind C++, Java is the 3rd most popular language in
recent releases, with a significant margin over the 4th, and
has more than tripled its popularity since etch.

5.5 File size
Finally, we have computed the average file size (in SLOC)

per language, and analyzed its evolution across releases. In
this case the sources.d.n dataset is at loss w.r.t. our ref-
erence study, because the SLOC plugin currently does not
compute the number of files per language (which needs pass-
ing --filecount to sloccount), but only SLOC counts. To
compute average file sizes we have therefore divided per-
language totals by the number of per-language files, com-
puting the latter by only looking at file extensions. To do so
we have adopted the same conventions used by sloccount

for preliminary language classification, but we haven’t been
able to further re-classify files as sloccount does, for in-
stance on the basis of shebang lines like #!/bin/sh. This
can be seen as a drawback of a metadata-only dataset, but
is in fact a simple limitation of the current SLOC plugin im-
plementation: instead of using a single table to collect per-
language totals, the plugin should declare two, and use the
extra one to map individual files entries to their languages
as detected by sloccount. Fixing this is on our roadmap.

On the bright side, this difference opens the opportunity
to methodological comparisons. Our results are shown in Ta-
ble 6. Ref. study only lists average files sizes for 5 languages.
Limited to those languages we note that the absolute num-
bers for C and Lisp are remarkably similar, suggesting that
file extension detection is very accurate for those languages.
Significant differences are visible for C++, where we found
higher averages, probably due to the fact that the amount
of C++ files is being underestimated by only looking at file
extensions, likely due to extensions shared with C. Finally,
we found much higher averages for shell (up to 4x), but that
is more easily explained. Most shell scripts tend not to have
file extensions, and have therefore been excluded from our
count. Scripts that do have an extension are required by

the Debian Policy to reside outside the execution $PATH. As
a consequence, shipped .sh files tend to be shell libraries,
used by relatively uncommon large applications written in
shell script.

Despite the differences in absolute numbers we can con-
firm the continued stability of C, Lisp, Perl, and Java av-
erage sizes, basically unchanged over almost 20 years. The
stability of C, considering its continued growth in absolute
terms, is remarkable. The growth of shell script averages,
already observed in ref. study, has inverted its trend and is
now decreasing since etch, likely due to the already observed
increase of Python popularity—whose average file size is in-
creasing as well. A plausible general pattern for average file
size growth is to increase while the corresponding language
is still growing in popularity, to eventually stabilize and re-
main so for a long while.

5.6 Threats to validity
We haven’t replicated the (binary) package dependency

analysis part of ref. study. We cannot replicate it exactly
because currently Debsources does not retrieve Packages in-
dexes and we consider out of scope for it to do so. On the
other hand we can easily add a plugin to parse debian/con-

trol files, and extract dependencies from there. That will
have the advantage of separating maintainer-defined depen-
dencies from automatically generated ones, which arguably
have a smaller impact on package maintainability.

The sources.d.n data set, due to the reasons discussed
in Section 4, does not include the first 2 years of Debian
release history. This has no impact on the replication study,
given that our reference study didn’t consider them either.
But it would still be interesting to add those years to our
dataset, in order to peek into the early years of organized
FOSS collections. Additionally, due to a regression in dpkg-

source,6 we have not extracted all packages from archived
suite. We have patched dpkg-source to overcome the limita-
tion, but we are still missing a total of 12 (small) packages
from archive.debian.org. We do not expect such a tiny
amount to significantly impact our results.

Both sloccount and Exuberant Ctags are starting to show
their age and suffer from a lack of active maintenance. Dur-
ing the development of Debsources we have reported var-
ious bugs against them, all related to the lack of support
for “recent” languages; for instance, Scala and JavaScript
are currently completely ignored by sloccount. This does
not threaten the validity of the replication study, because
ref. study relies on sloccount too, but it is starting to be-
come problematic for dataset accuracy. The specific case of

6http://bugs.debian.org/740883



Table 6: average file size (in SLOC) per language (top-12, from left to right), based on file extension
suite ansic cpp java xml sh python perl lisp asm fortran cs php
hamm 239 239 100 - 499 102 232 435 92 133 56 57
slink 251 198 99 747 572 119 254 403 124 121 125 44
potato 252 226 81 363 859 136 261 414 131 144 83 136
woody 255 303 89 230 1411 137 255 434 245 154 163 121
sarge 237 305 103 171 1729 148 278 423 195 166 93 138
etch 237 315 112 194 1875 151 269 383 229 167 119 179
lenny 232 297 109 201 1539 154 262 415 199 171 127 168
squeeze 219 302 112 225 1236 152 238 433 194 182 123 164
wheezy 222 321 115 220 1074 153 228 419 217 224 132 161
jessie 230 302 117 233 1064 165 258 439 182 218 136 146

JavaScript is particularly worrisome, due to its increasing
popularity for server-side Node.js applications.

6. RELATED WORK
The scarcity of macro-level software evolution studies is

one of the main motivations for this work. To the best of
our knowledge, Barahona et al. [10] and its preliminary ver-
sion [24] are the main studies in the field. We have replicated
their findings and compared them with ours in Section 5.

Other works have studied the size and composition of spe-
cific releases of large FOSS distributions such as Red Hat
7.1 [29], Debian Potato [9], and Debian Sarge [2]. Our
work improves over those by adding the time axis, which
is fundamental in software evolution. An inconvenient of
our approach is the reliance on a Debian-like archive struc-
ture. This is undoubtedly a limiting factor, but we believe
it should be put in perspective considering that Debsources
supports all Debian-based distributions, which account for
about 40% of all active GNU/Linux distributions and in-
clude the most popular ones (e.g., Ubuntu) [6].

The Ultimate Debian Database (UDD) [20] has assembled
a large dataset about Debian and some of its derivatives, and
is a popular target for mining studies [30]. UDD too lacks
the time axis—with the sole exception of a history table
used to store time series which, contrary to what happens
in Debsources, cannot be recreated from local storage.

Numerous studies [27, 3] have investigated the evolution
of individual high-profile FOSS projects (e.g., [8, 17]) and ad
hoc sets of them (e.g., [23, 16]). Their scope is different than
ours but there are synergies to be found: when investigating
individual projects over long periods of time, Debsources
provides a uniform interface to retrieve upstream releases
as shipped by Debian; when investigating sets of projects,
relying on collections like Debian can contribute to reduce
project selection bias. In this respect, Debsources main limi-
tation is granularity: it offers coherent snapshots of software
releases, but not version control system (VCS) snapshots as
suggested by Mockus [19]. Many studies in the literature,
however, do not use VCSs [27].

Various studies have mined FOSS projects to detect code
clones, either to enforce good engineering practices or to
detect license violations, e.g., [25, 11]. When the checksum
plugin is enabled, Debsources is capable of file-level clone
detection and points web app users to clones. Ctags-based
search can also be exploited to identify “similar” files on
the basis of the symbols they define. Other fingerprinting
techniques can be added by developing suitable plugins.

Boa [7] is a DSL and an infrastructure to mine large-scale
collections of FOSS projects like SourceForge and GitHub.
Boa’s dataset is larger than Debsources (it contains Source-

Forge) and also more fine grained, reaching down to the
VCS level, but does not correspond to curated software col-
lections like FOSS distributions. That has both pros (it
allows to peek into unsuccessful or abandoned projects) and
cons: contained projects are less likely to be representative
of what was popular at the time and the time horizon is
more limited than with distributions as old as Debian.

FLOSSmole [15] is a collaborative collection of datasets
collected by mining FOSS projects. Many datasets in there
are about Debian but no one is, by far, as extensive as
sources.d.n. We are considering submitting periodic snap-
shots to FLOSSmole, but the DB size makes it non-trivial.

7. CONCLUSION
We have introduced Debsources, an extensible software

platform to gather data about the evolution of large FOSS
collections, focusing on the source code of Debian and De-
bian like distributions. Scholars can use Debsources to ob-
serve decades-long evolution patterns (by injecting historical
releases), as well as monitor day-by-day changes (following
the evolution of live suites). To validate Debsources flexi-
bility, we have used it to gather the largest dataset to date
about Debian evolution, made it publicly available, and used
it to replicate former major studies on macro-level software
evolution [24, 10]. In spite of differences in absolute results,
we have been able to confirm the general evolution trends
observed back then, extend them to take into account the
subsequent 7 years of history, and shed light into hypotheses
made back then thanks to the fine-grained, file-level knowl-
edge that Debsources allows.

Even though the bottom lines are the same, it is disturb-
ing that we have not been able to either obtain identical re-
sults, or definitely ascertain the origin of the discrepancies.
Empirical software engineering should be reproducible [22]
and to that end we need more publicly accessible datasets
that researchers can start from. When consistently used in
conjunction with FOSS platforms, that should be enough to
improve over the status quo.

More generally, the reproducibility issue and some of the
difficulties we have encountered (e.g., the non backward
compatible changes in Debian archive format and the dpkg-

source regression) are instances of the more general“bit rot”
problem described by Cerf [4]—who is worried about the
long-term preservation of digital information, and rightfully
so. We think that datasets like sources.d.n can help on
both the reproducibility and information preservation front.

Several Debsources extensions are in the working. On the
one hand we want to refine our ability to compute differ-
ences across releases and investigate how far we can go with
fingerprinting techniques before having to compute all pairs



diff-s. On the other hand we want to attack the ambitious
goal of injecting into sources.d.n releases of as much De-
bian derivatives as possible, scaling up considerably the size
of the ecosystem we are able to study at present. We think it
is feasible to do so without switching to a version control sys-
tem as data storage (which would bring its own non-trivial
decisions about the adopted branching structure), but im-
plementing instead file-level deduplication using checksums.
Deduplication will also dramatically reduce the amount of
resources needed to study the history of Debian develop-
ment, for instance by injecting Debian sid snapshots at the
desired granularity from http://snapshot.debian.org.

The largest Debsources instance to date (http://sources.
debian.net) has already filled a niche in the Debian infras-
tructure and quickly gathered popularity due to its code
browsing and search functionalities. What is more interest-
ing from a scientific point of view is Debsources ability to
turn one-shot evolution studies into live, perennial monitors
of evolution traits that scholars have identified as worth of
attention. We look forward to others joining us in develop-
ing Debsources plugins that allow to make more and more
evolution studies perennial.
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[9] J. M. González-Barahona, M. O. Perez, P. de las
Heras Quirós, J. C. González, and V. M. Olivera.
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1 Introduction

Software is increasingly being distributed to final users by the means of soft-
ware collections and deployed using package management tools. Some software
collections are very tightly curated and integrated, like Free and Open Source
Software (FOSS) distributions, others much more loosely so, like so called
“app stores”. The study of software evolution [19, 16] can no longer ignore
software collections as relevant subjects of macro-level studies [11, 3], i.e., evo-
lution studies conducted at the granularity of component releases rather than
individual commits.

The study of software collections however poses specific challenges to schol-
ars due to a common tendency at creating ad hoc software ecosystems made of
homegrown tools, technical conventions, and social norms that might be hard
to take into account when conducting empirical studies.

The Debsources platform [3] has been developed to counter those chal-
lenges in the specific case of Debian1—a general purpose FOSS operating sys-
tem for desktop and server computers, which is one of the most reputed and
oldest (est. 1993) distributions, often credited as the largest curated collection
of FOSS components. Thanks to the free availability of both its source code
and associated metadata, its conspicuous size, and its standardized package
layout [13], Debian has become a popular subject of empirical software engi-
neering studies [4] (see, among many others, [25, 11, 1]).

Debsources allows to gather, index, search, and publish on the Web the
entire source code of Debian and metadata extracted from it. The most notable
instance of Debsources is publicly available at http://sources.debian.net

and indexes all currently active Debian releases, with several updates per day,
as well as historical Debian releases going back almost 20 years.

Contributions In this paper we present the Debsources Dataset, a polished
version of the data underpinning http://sources.debian.net suitable for a
wide range of large-scale analyses on FOSS components released by Debian.
The dataset is composed of two parts that can be used together or indepen-
dently:

1. Source code. The dataset includes the source code of 10 Debian stable
releases published over the past 2 decades, corresponding to 82 thousand
packages for more than 30 million source code files. To reduce storage size,
source code files have been deduplicated and organized in a manner that
facilitates and speeds up empirical studies. The result of deduplication is
15 million unique files, requiring ≈ 320GB of disk space. After compression
with xz the source code part of the dataset shrinks down to ≈ 90GB.

2. Metadata. Rich metadata regarding all shipped source code are also part
of the dataset. Release metadata link together the 10 Debian releases, the
packages that compose each of them, and the source code files that form

1 https://www.debian.org
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each package. In addition to release information, the dataset also contains
the following content-oriented metadata:
– per-file size metrics including file size in bytes, number of lines (using

wc), source lines of code (SLOC) divided by language, computed using
both sloccount,2 and cloc;3

– checksums: cryptographic hashes SHA1 and SHA256, as well as locality-
sensitive TLSH [18] hashes of all files;

– MIME media type of each file, as detected by file4;
– location, name, and type of developer-defined symbols (functions, data

types, classes, methods, etc.) obtained indexing all source code with
Exuberant Ctags;5

– applicable FOSS license for individual files, as detected by both ninka [8]
and fossology [9].

Source code is shipped as a set of tarballs, metadata as a PostgreSQL6 database
dump.

Exploitation ideas The Debsources Dataset is a valuable resource for scholars
interested in studying either the composition or the long-term evolution of
FOSS. Here are a few ideas—some already realized, some still up for grabs—
on how to exploit the dataset:

– Conduct or replicate long-term, macro-level evolution studies of FOSS. We
show an example of this in Section 5.
Several followup research questions remains unanswered, e.g.: does the use
of different programming languages evolve in similar ways along the his-
tory of development? 20 years are enough to observe the raise and fall of
programming languages and try to spot interesting adoption patterns. Us-
ing the Debsources Dataset those studies can be done both in aggregate
ways (e.g., how many software projects are written in a given language
over time?) and at per-project level (e.g., do all software projects written
in a given language follow similar evolution patterns?).

– Study the structure and evolution of license use in FOSS, at different gran-
ularities: file, package, distribution. We address some of these in Section 5,
but a lot remains to be done, most notably in the area of licensing of
software components as aggregate wholes.

– Investigate code reuse and cloning along the whole history of all software
packages contained in the dataset. Reuse without modification is trivial to
track thanks to SHA1 and SHA256 checksums. Reuse with modification can
be supported using ctags and/or TLSH hashes as fingerprinting techniques
to track (modified) code copies, or by directly parsing the actual source
code available in the dataset.

2 http://www.dwheeler.com/sloccount/
3 https://github.com/AlDanial/cloc
4 http://www.darwinsys.com/file/
5 http://ctags.sourceforge.net/
6 http://www.postgresql.org
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– The availability of source code can be further leveraged to support several
kinds of static analysis studies. By focusing on source code files written in
a specific programming language (e.g., C, C++), researchers can study the
evolution over time of bugs that are detectable with a given static analysis
tool (e.g., Coccinelle, Coverity).
On the more practical side, the source code in the dataset also forms an
interesting benchmark for code search at a scale. Multi-language, license-
aware, automatic code completion backed by the Debsources Dataset would
make for a very fun and useful toy for many developers.

– In comparison with other sub-fields, release engineering [2] is still relatively
unexplored in empirical software engineering. The Debsources Dataset al-
lows to follow the evolution of package-level structures along 20 years of
Debian, and to mix-and-match with release metadata, metrics, and actual
source code. Some open research questions in this area are: when and how
software projects get split into multiple packages? does package organiza-
tion change over time? does that affect release schedules? how do packages
migrate from one development release to another? etc.

Paper structure Section 2 explains how the Debsources Dataset has been as-
sembled. Section 3 describes the data schema and gives some statistics about
its content. Section 4 shows how to get started using the dataset. Sections 5
presents a case study on how the dataset can be used to conduct a long-term,
macro-level evolution study of FOSS from several angles using Debian as a
proxy. Section 6 discusses the limitations of the dataset. Before concluding,
Section 7 points to related work.

Dataset availability The Debsources Dataset is Open Data. The metadata
part of the dataset is available under the terms of the Creative Commons
Attribution-ShareAlike (CC BY-SA) license, version 4.0; the source code part
of the dataset is available under the terms of the applicable FOSS licenses.
The dataset is available for download from Zenodo7 at https://zenodo.org/
record/61089, with DOI reference 10.5281/zenodo.61089.

2 Data gathering

The Debsources Dataset has been assembled by mirroring and extracting De-
bian source releases, organizing extracted source code to remove duplicates,
running analysis tools over the obtained files, and injecting their results in a
PostgreSQL database.

Given that both all Debian releases and the analysis tools we have used are
freely available as FOSS, the dataset can be recreated from scratch following
the blueprint given below. Be warned though that (re-)creating the dataset
takes a significant amount of resources, both in terms of processing time and

7 https://zenodo.org/
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required disk space; details are given below. Also note that to simply use the
Debsources Dataset you do not need to go through the process below, which
is documented here for information and reproducibility purposes only. The
dataset is ready to use as-is; see Section 4 for a quick start guide.

2.1 Blueprint

Database structure

0. As a preliminary step we have created the database structure. This can
be achieved by replaying in a freshly created database the schema creation
SQL statements that can be found in the Debsources Dataset database
dump. The database content has then been filled as we went during the
process described below.

Mirror current and historical Debian releases

1. Current releases. We have used debmirror8 to retrieve all current Debian
releases from a nearby mirror.9 Binary packages can be ignored, and one
can easily tune debmirror to only download source packages.

2. Historical releases. We have used rsync [23] to mirror http://archive.

debian.org. This step is required to retrieve historical Debian releases
that are no longer available from the regular mirror network.

3. Releases metadata. To load into the database release information we have
used various sources of information. Each Debian release comes with a
set of Sources files describing which packages/versions compose the re-
lease as well as other package metadata. We have parsed those files using
the python-debian library10 and stored the extracted information in the
database.
For the static information about each release (release name, date, etc.) we
started from the list of Debian releases on Wikipedia,11 double-checked
with official Debian release announcements, and stored the obtained infor-
mation in the database.

Source code extraction and deduplication

4. Extract packages. Debian source packages are formed by one or more tar-
balls and/or patch sets, along with a .dsc manifest file. We have looked
for all such manifest files and extracted their content using dpkg-source

-x package version.dsc (dpkg-source is a Debian tool that can be found
in the dpkg-dev package). Doing so merges upstream tarballs together

8 https://packages.debian.org/sid/debmirror
9 A list of Debian mirrors organized by geographical location is available at https://www.

debian.org/mirror/list.
10 https://packages.debian.org/sid/python-debian
11 https://en.wikipedia.org/wiki/List_of_Debian_releases
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and apply Debian-specific patches in the process. Thanks to the unicity of
package 〈name, version〉 pairs, all packages can be extracted in the same
directory; each one will be extracted in a separate sub-directory without
conflicts.

5. Deduplicate files. Due to the presence of multiple versions of the same
software, many source code files are exact copies of others. By deduplicating
identical files we have cut down both disk usage and the number of files to
process for any kind of batch analysis by a factor 2. To this end:
– We have listed all regular files (e.g., with find -type f). This step

excludes symbolic links, which can also result in processing multiple
times the same files.

– For each regular file, we have computed its SHA1 checksum and stored
it in the database.

– For each unique SHA1, we have created a file XX/YY/SHA1, whose con-
tent is identical to the original file and where XXYY are the first 4 char-
acters of the checksum.

– Mirror deduplicated files to preserve extensions. Some file analysis tools
require file extensions to properly identify the file language, type, or
format. For example, without a .c extension many C files will not be
recognized as such by default by neither cloc nor sloccount. To facil-
itate the analysis with such tools we have created a directory tree with
the same structure of the deduplicated tree above, but having exten-
sionful symlinks as its leaves. Each symlink is named XX/YY/SHA1.ext

and points to XX/YY/SHA in the deduplicated tree.

Compute content metadata

6. Extension-agnostic metadata. For each unique SHA1, we have retrieved
the corresponding unique file and computed its size, media type (using
the Unix command file), number of lines (using the Unix command wc),
SHA256, and TLSH checksums.

7. Extension-sensitive metadata. For each unique 〈SHA1, extension〉 pair, we
have ran cloc,12 sloccount,13 and exuberant ctags14 on the correspond-
ing extensionful symlink. Note that all these operations can also be per-
formed in batch on several files at once. For instance, one can execute ctags
--recurse on the outermost 00 SHA1 directory, to process all files whose
SHA1 starts with 00 at once. The trade-off here is between the output size
of each tool invocation and the number of invocations.

All obtained metadata have been stored in the database.

Compute license information

8. License detection. We ran fossology and ninka on all unique files and
stored the output of both license detection tools in the database.

12 https://github.com/AlDanial/cloc
13 http://www.dwheeler.com/sloccount/
14 http://ctags.sourceforge.net/
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2.2 Required resources

The dataset (re-)creation process is I/O-bound and might require up to 1.5TB
of working disk space during processing.

About 200GB are needed to store the (compressed) source mirror of both
current and historical Debian releases. After extraction, but before deduplica-
tion, 800GB of additional disk space are required to store the bulk of the
extracted source code. Deduplication and release metadata extraction can
then be run, resulting in extra 400GB between the new files and the work-
ing database. At this point the 1TB of disk space occupied by compressed and
uncompressed source code can be freed.

Processing the deduplicated source code to compute checksums, SLOCs
using sloccount, ctags, and disk usage took us about 10 days on a single
server-grade machine with rather slow (by today standards) 7.2kRPM spin-
ning disks. Computing SHA256, TLSH, media types, and SLOCs using cloc

required approximately 1 week using an Apple Mac Pro and a Promise RAID.
The process of running fossology and ninka on all source files took approx-
imately 25 days on a virtual machine using the Western Canada Research
Grid.15

In total, a realistic estimate for recreating from scratch the Debsources
Dataset on a single machine equipped with fast SSD drives is in between 4
and 5 weeks; a couple of weeks more with spinning disks.

3 Bird’s eye view

The Debsources Dataset comes in two major parts: a set of tar files containing
the source code and a PostgreSQL database dump with metadata about source
code files and their relationship to Debian packages and releases.

3.1 Source code

The first part of the Debsources Dataset is a set of tarballs containing the dedu-
plicated source code files. They were divided into 16 tarball (each one weighting
5–6GB) to facilitate distribution. Each tarball, named debsources.X.tar.xz

(where X is an hexadecimal digit: 0–9, a–f), includes all source code files
whose SHA1 start with X. The files contained in these tarballs are further
divided (or “sharded”) in sub-directories based on the first 4 characters of
their SHA1. For example, a file whose SHA1 is deadbeef[...] will have path
de/ad/deadbeef[...] and can be found in tarball number d.

As discussed in Section 2, the additional tarball debsources-ext.tar.xz
contains file extension information as a set of symlinks to the actual source
code files.

15 https://www.westgrid.ca/
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Table 1 Various versions of the xournal package in Debian, all containing a file named
src/xo-interface.h with the same SHA1 checksum.

Release Package Version SHA1 of src/xo-interface.h

lenny xournal 0.4.2.1-0.1 e09a07941a3c92140c994fcdda7f74bce1af4ca3
squeeze xournal 0.4.5-2 e09a07941a3c92140c994fcdda7f74bce1af4ca3
wheezy xournal 0.4.6~pre20110721-1 e09a07941a3c92140c994fcdda7f74bce1af4ca3
jessie xournal 1:0.4.8-1 e09a07941a3c92140c994fcdda7f74bce1af4ca3

Consider file src/xo-interface.h, which can be found in four different
versions of the xournal package in Debian. Its metadata are depicted in Ta-
ble 1. After extraction (see Section 4) source code can be found in two top-level
directories: debsources and debsources.ext. The first one contains the ac-
tual source code, the second extensionful symlinks to them. In our example
we will have the following on-disk layout (names ending in ‘/’ represent direc-
tories, and ‘->’ a symlink and its destination):

debsources/

...

debsources/e0/

debsources/e0/9a/

debsources/e0/9a/e09a07941a3c92140c994fcdda7f74bce1af4ca3

...

debsources.ext/

...

debsources.ext/e0/

debsources.ext/e0/9a/

debsources.ext/e0/9a/e09a07941a3c92140c994fcdda7f74bce1af4ca3.h ->

../../../sources/e0/9a/e09a07941a3c92140c994fcdda7f74bce1af4ca3

...

Even though files are renamed to match their SHA1 checksums, the di-
rectory structure of individual packages is not lost. Full original paths are
available as part of the metadata database described next. As a preview, the
following SQL query can be used to reconstruct the paths at which a file
with the SHA1 of our example can be found in the dataset, together with the
corresponding package names and versions:

SELECT release_id as release,

package_name as package, package_version as version,

encode(path, 'escape') as path

FROM releases

NATURAL JOIN package_info

NATURAL JOIN paths

NATURAL JOIN path_info

NATURAL JOIN files

WHERE sha1='e09a07941a3c92140c994fcdda7f74bce1af4ca3'

When run the query will return the following tuples:

release package version path
lenny xournal 0.4.2.1-0.1 src/xo-interface.h
squeeze xournal 0.4.5-2 src/xo-interface.h
wheezy xournal 0.4.6~pre20110721-1 src/xo-interface.h
jessie xournal 1:0.4.8-1 src/xo-interface.h
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 ctags 

 ctags_id  serial  PK 
 file_id  integer  FK 
 tag  character varying 
 line  integer 
 kind  character varying 

 files 

 file_id  serial  PK 
 sha256  character(64) 
 sha1  character(40) 
 tlsh  character(70) 
 filesize  bigint 

ctags_file_id_fkey

 licenses 

 license_id  serial  PK 
 file_id  integer  FK 
 oracle  license_oracles 
 license  character varying 

licenses_file_id_fkey

 metric_info 

 metric_info_id  metric_types  PK 
 metric_name  character varying 
 tool  character varying 
 command  character varying 
 comment  character varying 

 metrics 

 metric_id  serial  PK 
 file_id  integer  FK 
 metric_info_id  metric_types  FK 
 int_value  integer 
 st_value  character varying 

metrics_file_id_fkey

metrics_metric_info_id_fkey

 package_info 

 package_id  serial  PK 
 package_version  character varying 
 package_name  character varying 
 area  character(8) 
 vcs_type  vcs_types 
 vcs_url  character varying 
 vcs_browser  character varying 
 sticky  boolean 

 path_info 

 path_info_id  serial  PK 
 path  bytea 
 ext  character varying 

 paths 

 path_id  serial  PK 
 package_id  integer  FK 
 path_info_id  integer  FK 
 file_id  integer  FK 

paths_file_id_fkey

paths_package_id_fkey

paths_path_info_id_fkey

 release_info 

 release_id  character varying  PK 
 release_date  date 
 version  character varying 

 releases 

 package_id  serial  PK  FK 
 release_id  character varying  PK  FK 

releases_fk_pkg_info

releases_fk_rel_info

Fig. 1 Database schema. Primary key fields are denoted with “PK”, foreign keys “FK”;
arrows indicate referential integrity constraints.

3.2 Metadata

The second part of the dataset is a Postgres database, containing all source
code metadata. The database schema is shown in Fig. 1. A brief description
of each table is given below.

3.2.1 Intrinsic information

The following tables describe releases, packages, files and the relationships
among them:
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Table 2 Tools used to extract file-level metadata.

Tool Version Command
file 5.14 file --mime-type

cloc 1.66 cloc --by-file --follow-links --skip-uniqueness \
--sql-append

sloccount 2.26 sloccount --duplicates --follow --details

wc (coreutils) 8.13 wc -l

– package info: information about Debian source packages contained in the
dataset, such as package names, versions, and associated attributes (e.g.,
project homepage). Package names are generally lowercase variants of the
original (or “upstream”) FOSS project names, e.g., bash, linux (the kernel),
libreoffice, etc. Package versions include both the upstream project version
and the Debian package revision separated by a dash, e.g.: “1.2.3-4”.

– release info: information about the 10 Debian releases in the dataset; name,
version, and release date of each one are included.

– releases: mappings between source packages and Debian releases.
– path info: the full path name of every file in the dataset. The table also

contains, as a separate field, the file extension. Note that, consistently with
the POSIX standard, paths are stored as raw byte sequences; there is no
guarantee that they can be interpreted as valid Unicode characters without
further knowledge of the applicable character encoding. The vast majority
of paths that are encoded in UTF-8 can be parsed at query time using
suitable Postgres functions.

– files: deduplicated files together with their checksums (SHA1, SHA256, and
TLSH) and size (in bytes). This table lists all unique files present in the
dataset.

– paths: ternary mappings between packages, path info, and files. This table
indicates, for a given package and path, the corresponding unique file. For
symbolic links, the file id column will be NULL.

3.2.2 Derived information

The following tables describe information that have been extracted from De-
bian source code following the process described in Section 2.

– licenses: license information. This table maps unique files to the corre-
sponding FOSS licenses as identified by the license detection tools (or “or-
acles”) ninka and fossology.

– metric info: information about the tools used to compute file-level infor-
mation. For reproducibility reasons, this table includes tool name, version,
command line used to run it, and a comment field with additional human-
readable information. Due to how representative of the available file-level
information this table is, its content is given in Table 2.

– metrics: links files to the information extracted from them. Some derived
information are integer-valued (e.g., the output of wc -l), some string-
valued (e.g., file output), some both (cloc and sloccount output both
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Table 3 Size of Debsources Dataset metadata as a Postgres database. The entire database
requires ≈ 40GB of disk space (including indexes, which are not listed below).

Table Disk size Tuples
ctags 23 GB 186.5M
files 5944 MB 15.5M
metrics 3549 MB 46.7M
paths 3259 MB 30.5M
licenses 2976 MB 31.0M
path info 1895 MB 11.7M
package info 14 MB 82113
releases 7248 KB 97471
metric info 32 KB 4
release info 32 KB 10

Table 4 Size of Debsources Dataset source code.

Tarball

Disk usage

(compressed)

Disk usage

(expanded)
debsources.*.tar.xz 89GB (total) 317GB
debsources-ext.tar.xz 422MB 61GB
debsources.dump.xz 3.1GB see Table 3

detected language and number of SLOCs). For this reason this table al-
lows to store an integer (field int value) and/or a string (st value). The
attribute comment in table metrics info documents which field is relevant
for which metric.

– ctags: ctags results for each file. The table contains one entry for each
developer-defined symbols in a given source file, together with the precise
file location at which the symbol was found and the symbol type (function,
data type, method, etc).

3.3 Dataset size

To give an idea of the size of the dataset, Table 3 lists the sizes of all tables in
the database, as both number of tuples and required disk space. If space is at a
premium, some large tables (e.g., ctags) can be deleted without compromising
the referential integrity of the database. Similarly, Table 4 details the required
disk space to locally host the source code part of the Debsources Dataset.

4 Getting started

This section describes the steps necessary to use the Debsources Dataset. The
two parts—source code and metadata—can be used independently, but the
metadata are needed if you want to be able to relate individual source code
files to their context.
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4.1 Metadata

The metadata part of the Debsources Dataset comes as a plain-text SQL
dump of a PostgreSQL database, compressed in xz format. The dump has
been obtained from Postgres 9.4 using pg dump, but it should be compatible
with any version of Postgres ≥ 9.1.

To import the metadata you should first install Postgres, then create a
dedicated database (e.g., debsources), and finally import the dump into it. For
the last two steps you can proceed as follows, acting as a user with suitable
Postgres permissions:

1. createdb debsources

2. xzcat debsources.dump.xz | psql debsources

On a modern high-end laptop equipped with a fast SSD disk, the import
takes about 1.5 hours. The freshly imported database will require about 40
GB of disk space (see Table 3 for details).

4.2 Source code

To decompress the source code you should first create a directory that will
contain all of it and move into that directory. Then:

– (Optional) Expand the tarball with the extension symlinks:
tar xaf /path/to/compressed/dataset/debsources-ext.tar.xz

– Create a sub-directory called debsources and move into it:
1. mkdir debsources

2. cd debsources

– Extract the actual source code. For each of the debsources.X.tar.xz

tarballs, execute:
tar xaf /path/to/compressed/dataset/debsources.X.tar.xz

The result will be a Debsources Dataset directory containing two sub-directories,
debsources for extensionless deduplicated source code files sharded by SHA1,
and debsources.ext with extensionful symbolic links pointing into it, as de-
scribed in Section 3.1.

One advantage of the deduplicated files is that they are file system agnostic
and can be expanded onto any file system. This is not the case for the original
source code files. For example, these two paths net/netfilter/xt tcpmss.c

and net/netfilter/xt TCPMSS.c exist in the Linux kernel. The two paths
point to files with different content, but have file names that differ only in
capitalization. This is supported by file systems such as ext4, but will cause
a file name clash on JFS (case preserving, Mac OS) or NTFS (while the file
system is case sensitive per se, case sensitivity depends on the application
creating the files). The impact of these low-level issue can be significant: there
are more than twenty such cases in the Linux kernel alone. By renaming the
files to their SHA1 we avoid similar issues.
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5 Case study: long-term macro-level evolution

In the following we show how the Debsources Dataset can be used to conduct
a long-term, macro-level evolution analysis of FOSS projects, as they can be
observed through the lens of the Debian distribution. We focus on aspects such
as source code size (under various metrics), programming language popularity,
package size, package maintenance, and software licensing.

The analyses we conduct are both qualitative and quantitative, and in part
replicate and extend previous findings [11, 3]. The research questions we will
address are:

RQ i. How does the size of Debian evolve over time? Looking at various
metrics we will study how and at which rate Debian grows across
releases.

RQ ii. How much Debian changes between releases? By studying package
versions and their content, we can measure the amount of packages
that are updated across Debian releases and to what extent they are.

RQ iii. How has the popularity of programming languages changed over the
last 20 years? By looking at the evolution of SLOCs per language, we
identify which languages are gaining (or losing) traction among FOSS
projects represented in Debian.

RQ iv. Which licenses apply to Debian source code files? We identify which
software licenses are used in Debian at a file-by-file granularity, irre-
spectively of the containing package.

RQ v. Which licenses can be found in Debian source packages? By aggre-
gating file licenses by package we can study the expected license vari-
ability when reusing entire software packages.

RQ vi. How has license use evolved in Debian over time? We explore the
evolution of license use over time by comparing the licensing of files
and packages that belong to different Debian releases.

5.1 Growth over time

The evolution of Debian size over time (RQ i) can be studied under various
metrics. We take into account the following ones: number of packages, number
of source code files, disk usage of (uncompressed) source code, lines of code
(SLOCs), and developer-defined symbols (or “ctags”).

In the Debsources Dataset packages can be found in the package info ta-
ble, that has one row per package. Source code files can be found in table
paths, which in turn points to unique files listed in table files. All file-level
metrics, except ctags, are in table metrics, column int value, distinguished by
metric type (column metric info id).16 File-level metrics can then be grouped
by package following the metrics → files ↔ paths → package info chain of

16 Note that two different SLOC metrics are available in the dataset: as computed by
sloccount and cloc. Each tool has its strength and weaknesses. For this case study we use
sloccount numbers.
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relationships. Ctags are stored in the separate ctags table because, whereas
they can be used as a size/complexity metric for individual source code files,
they primarily act as an index which doesn’t fit the general model of the met-
rics table. Per-packages metrics can be further aggregated by release using
the releases table. Per-release metrics can finally be sorted by time using the
release date field of the release info table.

Table 5 Debian release sizes by various metrics—number of packages, files (and files explic-
itly recognized as source code by sloccount), disk usage of uncompressed source packages,
lines of code, developer-defined symbols (ctags). See also Table 6 for additional statistics
parameters about these measures.

Release Version Packages
Files
(k)

Source
files
(k)

Disk
usage

(GB)

ctags

(M)
SLOCs

(M)
hamm 2.0 1373 348.4 152.5 4.1 4.1 34.9
slink 2.1 1880 484.6 224.4 6.0 6.2 51.9
potato 2.2 2962 686.0 292.6 8.6 7.4 68.8
woody 3.0 5583 1394.5 563.3 18.2 17.2 140.7
sarge 3.1 9050 2394.0 870.6 34.1 24.2 210.1
etch 4.0 10 550 2879.7 1092.7 45.0 30.3 272.1
lenny 5.0 12 517 3713.9 1437.2 61.8 38.3 332.7
squeeze 6.0 14 951 4908.1 1952.2 89.1 52.3 444.4
wheezy 7 17 564 7310.5 2751.4 131.7 69.5 636.8
jessie 8 21 041 8375.0 3404.2 167.0 95.6 784.3
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Fig. 2 Debian release size over time, under various metrics.

Release size The above query plan can easily be translated to SQL queries
and run on the Debsources Dataset. Query results are shown in Table 5, and
plotted in Fig. 2 over time.
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In absolute terms, Debian has scaled to a point where the last stable release
(Jessie) contains more than 21 thousand packages, and almost 800 millions
lines of code. If we look at the metrics evolution over time we notice that the
five considered metrics exhibit similar growth rates. Four of them (ctags, disk
usage, files, and SLOCs) are very highly correlated and grow super-linearly,
with an apparent slow down in the most recent stable release. The other metric
(package count) is more regular and almost perfectly linear.

This discrepancy gives some insights about Debian technical management.
Packages are the units at which software is maintained in Debian: each package
is under the responsibility of a (group of) maintainer(s). A super-linear growth
in the number of packages would need a super-linear growth in the number of
maintainers to be sustainable in the long-term or, alternatively, an increase in
the amount of packages maintained by the same people. While there is some
evidence of the latter [20] on shorter time-frames (about a decade) than the
one considered here (two decades), it also seems that Debian is focusing on
sustainable size increases rather than trying to package every available FOSS
product bearing the risk of stretching its forces too thin.

Table 6 Averages, median, and maximum of various size metrics, over packages and per
release. See Table 5 for totals.

Files
Disk usage

(KB) SLOCs

Release median max median max
median

(K)

avg.

(K)
max
(M)

hamm 65 17.8 780 0.2 4.63 25.4 1.2
slink 64 17.8 782 0.1 4.37 27.6 1.3
potato 58 27.3 732 0.2 3.46 23.2 2.0
woody 60 29.8 784 0.4 3.61 25.2 2.9
sarge 62 68.6 904 0.9 3.74 23.2 4.0
etch 65 27.2 1012 0.4 4.54 25.8 5.6
lenny 66 59.6 1000 0.9 4.41 26.5 5.9
squeeze 69 57.2 960 2.3 4.17 29.7 7.9
wheezy 69 182.4 924 2.8 3.97 36.2 13.9
jessie 67 182.4 808 2.8 3.40 37.3 14.9

Package size Thanks to the mapping between metrics and packages, we can
also study the distribution of package sizes in different Debian releases: it is
plotted in Fig. 3 for selected releases. Averages, medians, and maximums of
selected metrics over packages are given in Table 6.

Increasingly, more and more very large packages are present in Debian: at
the time of Jessie the chromium-browser and linux packages have, respectively,
more than 15M and 12M SLOC. When Hamm was released its biggest package
was xfree86, with “only” 1.2M SLOC. At the same time the per-release aver-
ages of package size are going up, whereas medians are going down. Overall it
appears that: i) smaller and smaller packages are getting added to Debian, ii)
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larger and larger packages are getting added too; with (ii) dominating more
and more the total size of releases. A possible explanation for (i) comes from
the packaging of relatively new software ecosystems that are increasingly re-
leasing very small packages, e.g., Python’s PyPi, R’s CRAN, Node.js’ NPM,
etc. (ii) on the other hand seems due to behemoth software packages such as
Web browsers, that are becoming self-contained work environments that need
to (re)implement more, and more complex, functionalities that were histori-
cally available from separate packages.

Fig. 3 Size of packages per distribution (measured in SLOC, y-axis). Each integer in the
x-axis represents one package. E.g., in Jessie ≈ 7500 packages have sizes less or equal to 1k
SLOC, while ≈ 20 000 packages have sizes less or equal to 100k SLOC.

5.2 Package maintenance

RQ ii is about the amount of changes that Debian users can expect when
upgrading from one stable release to another. As the pairs 〈name, version〉
uniquely identify packages throughout Debian history, and as those pairs are
available in the package info table, we can leverage the Debsources Dataset to
compare the sets of packages shipped by different Debian releases. Furthermore
we can dissect package versions into their upstream and Debian-specific parts
(see Section 3) to related changes in the Debian archive to upstream ones.

The top-half of Table 7 summarizes the amount of changes between pairs
of Debian releases. Common packages are those that appear in both releases,
in the same or different versions. Unchanged packages appear in both releases
with the same “upstream” version, ignoring Debian-specific version changes
(hence: unchanged ⊆ common).

It is interesting to note that 73 packages have remained at the same up-
stream version between Hamm and Jessie, for more than 17 years, whereas
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their Debian revisions have evolved. Among these packages we can find for
instance netcat, a network tool that hasn’t changed upstream for that long,
but seems to be still working just fine in Debian (otherwise it would have
been removed from recent releases). This hints at the fact that long lasting
unchanged packages might have been abandoned upstream, but are still main-
tained in Debian via patches applied by distribution maintainers.

The bottom-half of Table 7 focuses on upgrades from a release n to the
immediately subsequent release n+1, which is the most common (and the only
officially supported) upgrade path in Debian. The table shows the number of
modified packages between consecutive releases (packages which exist in both
releases, but in different upstream versions), as well as the proportion of source
code files updated in these packages. The latter can be computed using the
already discussed mapping between files and packages, together with either
SHA1 or SHA256 checksums, both available in the files table.

The percentage of common and unchanged packages w.r.t. the previous
release oscillates around 87% (common) and 43% (unchanged) with low vari-
ance. This suggests that Debian users experience high stability in terms of
which packages are available across releases (almost 90%), as well as a steady
flow (around 60%) of new upstream releases that are incorporated by Debian
maintainers. The number of changed files per package on the other hand gives
insights into how much new upstream releases touch the actual source code
that form packages. This measure is also pretty stable across all Debian re-
leases, ranging between 54% and 67%. Note however that this does not tell us
how much individual files have been changed, only how many of them have:
bumping copyright year in a file header or rewriting the file from scratch will
still account for one source code file change. More precise evaluations of “how
much” source code has changed can be performed leveraging TLSH hashes,
that are readily available in the Debsources Dataset as well.

5.3 Programming language popularity

To address RQ iii (programming language popularity) we can simply aggregate
per-package first, and per-release then, the SLOC counts available in the met-
rics table as computed by both sloccount and cloc. In either case the field
st value is used to detail the detected programming language. For consistency
with RQ i, in the following we present sloccount results.

The evolution of programming languages in Debian is presented in Table 8
and plotted in Fig. 4 and 5. In both cases we restrict presented results to the
most popular languages, using the Jessie release as a reference. Fig. 4 shows
the evolution of language popularity in absolute SLOCs, while Fig. 5 shows
the proportion over release size measured in SLOC.

Results show that C has always and still is the dominant language in
Debian, since a big part of the core operating system (the Linux kernel, the
GNU suite, etc) is written in C. However, while the absolute amount of C code
has been steadily increasing, its proportion over the total is decreasing since



The Debsources Dataset 19

0

200

400

600

800

07
−

19
98

 (
H

am
m

)

03
−

19
99

 (
S

lin
k)

08
−

20
00

 (
P

ot
at

o)

07
−

20
02

 (
W

oo
dy

)

06
−

20
05

 (
S

ar
ge

)

04
−

20
07

 (
E

tc
h)

02
−

20
09

 (
Le

nn
y)

02
−

20
11

 (
S

qu
ee

ze
)

05
−

20
13

 (
W

he
ez

y)

04
−

20
15

 (
Je

ss
ie

)

Date

S
LO

C
 (

M
)

Language
Other

Python

sh

XML

Java

C++

ansi C

Fig. 4 Evolution of the most popular (top-6 plus other) programming languages in Debian
by total number of SLOC per release.
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Fig. 5 Evolution of the most popular (top-6 plus other) programming languages in Debian
as a proportion of release size in SLOC.

the Slink release (1999). Other languages, and most notably C++, are getting
more and more relevant. The proportion of C code seems to have been stable
for the past 3 releases though, at about 41% of the total.

Without a comprehensive reference base for FOSS source code it is im-
possible to determine how representative these numbers are of out-of-Debian
trends. But the comparison with programming languages trends on other plat-
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Table 8 Most popular programming languages in Debian releases, in MSloc. Numbers
between parentheses represent percentage of total. (Quantities < 0.1 have been omitted and
replaced by ≈ 0.)

Release total ada ansic asm cpp erlang
hamm 35 0.24 (0.68) 27 (77) 0.39 (1.1) 1.9 (5.5) NA (NA)
slink 52 0.26 (0.51) 4.5 (78) 0.64 (1.2) 3.0 (5.7) NA (NA)
potato 69 0.42 (0.61) 49 (7.6) 0.57 (0.83) 5.8 (8.5) 0.21 (0.30)
woody 15 0.58 (0.41) 94 (67) 2.6 (1.9) 15 (1.4) ≈ 0 (≈ 0)
sarge 21 1.1 (0.53) 120 (56) 2.8 (1.3) 33 (16) ≈ 0 (≈ 0)
etch 270 0.76 (0.28) 140 (53) 4.5 (1.6) 46 (17) 0.69 (0.25)
lenny 330 0.85 (0.26) 160 (49) 4.1 (1.2) 64 (19) 0.82 (0.25)
squeeze 440 1.3 (0.29) 210 (46) 4.8 (1.1) 96 (22) 1.3 (0.28)
wheezy 640 1.6 (0.25) 290 (46) 8.2 (1.3) 150 (23) 1.6 (0.25)
jessie 780 1.8 (0.23) 360 (46) 1.5 (1.3) 180 (23) 1.8 (0.23)

Release f90 fortran haskell java lisp
hamm ≈ 0 (≈ 0) 0.70 (2.0) NA (NA) ≈ 0 (0.17) 0.11 (0.32)
slink ≈ 0 (≈ 0) 1.0 (2.0) ≈ 0 (≈ 0) 0.13 (0.25) 2.5 (4.8)
potato ≈ 0 (≈ 0) 1.4 (2.1) ≈ 0 (≈ 0) 0.27 (0.40) 3.4 (4.9)
woody ≈ 0 (≈ 0) 2.3 (1.6) 0.28 (0.20) 1.4 (1.0) 5.1 (3.7)
sarge ≈ 0 (≈ 0) 2.9 (1.4) 0.98 (0.47) 4.0 (1.9) 6.9 (3.3)
etch ≈ 0 (≈ 0) 2.1 (0.76) 0.58 (0.21) 6.1 (2.2) 7.2 (2.6)
lenny 0.29 (≈ 0) 2.3 (0.68) 0.67 (0.20) 18 (5.4) 8.1 (2.4)
squeeze 0.76 (0.17) 2.5 (0.56) 0.93 (0.21) 27 (6.1) 9.7 (2.2)
wheezy 1.1 (0.17) 8.2 (1.3) 1.6 (0.25) 44 (7.0) 8.8 (1.4)
jessie 7.5 (0.95) 9.7 (1.2) 2.0 (0.25) 50 (6.3) 11 (1.4)

Release makefile ml objc pascal perl python
hamm 2.3 (6.7) ≈ 0 (0.26) ≈ 0 (0.16) 0.17 (0.49) ≈ 0 (≈ 0) 0.49 (1.4)
slink 0.15 (0.28) ≈ 0 (0.11) 0.22 (0.43) ≈ 0 (0.10) 0.79 (1.5) 0.20 (0.39)
potato 0.21 (0.31) 0.15 (0.22) 0.41 (0.60) 0.31 (0.45) 1.4 (2.0) 0.36 (0.52)
woody 0.37 (0.26) 0.38 (0.27) 0.55 (0.39) 0.43 (0.31) 3.0 (2.1) 1.5 (1.1)
sarge 0.55 (0.26) 0.76 (0.36) 0.76 (0.36) 1.4 (0.65) 6.3 (3.0) 4.4 (2.1)
etch 0.68 (0.25) 1.3 (0.47) 1.0 (0.37) 1.1 (0.41) 8.1 (3.0) 6.5 (2.4)
lenny 0.75 (0.23) 1.8 (0.55) 1.1 (0.32) 0.87 (0.26) 9.4 (2.8) 1.1 (3.0)
squeeze 0.69 (0.16) 2.6 (0.59) 1.2 (0.27) 3.8 (0.84) 13 (2.9) 16 (3.5)
wheezy 0.66 (0.10) 3.8 (0.59) 1.7 (0.26) 4.4 (0.69) 18 (2.8) 25 (3.9)
jessie 0.72 (≈ 0) 4.1 (0.52) 1.9 (0.25) 5.5 (0.70) 20 (2.5) 35 (4.5)

Release php ruby sh sql tcl yacc
hamm ≈ 0 (≈ 0) ≈ 0 (≈ 0) 0.92 (2.6) ≈ 0 (≈ 0) 0.35 (1.0) 0.19 (0.54)
slink ≈ 0 (≈ 0) ≈ 0 (≈ 0) 1.5 (2.9) ≈ 0 (≈ 0) 0.50 (0.97) 0.25 (0.48)
potato ≈ 0 (≈ 0) ≈ 0 (≈ 0) 3.3 (4.8) ≈ 0 (≈ 0) 0.67 (0.97) 0.32 (0.47)
woody 0.58 (0.41) ≈ 0 (≈ 0) 9.5 (6.8) ≈ 0 (≈ 0) 1.2 (0.86) 0.45 (0.32)
sarge 1.8 (0.87) 0.46 (0.22) 21 (1.2) ≈ 0 (≈ 0) 2.1 (1.0) 0.56 (0.26)
etch 3.0 (1.1) 1.2 (0.45) 31 (12) 0.51 (0.19) 1.7 (0.64) 0.65 (0.24)
lenny 4.0 (1.2) 2.0 (0.61) 33 (9.9) 0.66 (0.20) 1.9 (0.58) 0.67 (0.20)
squeeze 4.7 (1.1) 4.3 (0.96) 38 (8.6) 1.5 (0.34) 2.5 (0.55) 0.81 (0.18)
wheezy 5.8 (0.92) 4.2 (0.66) 42 (6.6) 2.4 (0.38) 2.6 (0.41) 1.0 (0.16)
jessie 8.1 (1.0) 5.2 (0.66) 49 (6.2) 3.9 (0.49) 3.1 (0.40) 1.2 (0.15)

forms (e.g., GitHub [15]) is striking. Whereas GitHub developers seem to be
flocking to JavaScript, Java, Ruby, and PHP, a foundational operating system
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like Debian is still prominently composed of system-level languages like C and
C++.

Table 9 Median file size (in SLOC) per language for the most popular languages.

Release ada ansic asm cpp erlang f90 fortran haskell java lex lisp
hamm 40 69 26 62 - 47 67 - 44 180 130
slink 38 68 43 60 - 11 61 12 36 190 120
potato 40 71 34 57 170 11 73 44 34 170 120
woody 47 86 75 64 42 16 81 36 37 210 140
sarge 47 79 40 66 43 38 89 37 43 180 120
etch 43 80 32 64 210 61 79 57 46 170 120
lenny 42 79 25 61 200 89 78 44 44 180 130
squeeze 45 76 20 62 160 96 76 58 45 190 120
wheezy 47 80 23 66 130 98 110 32 47 190 110
jessie 38 75 21 65 110 79 96 39 47 210 110

Release make ml objc pascal perl php python ruby sh sql tcl yacc
hamm 43 26 150 140 62 ≈ 0 59 ≈ 0 20 19 87 520
slink 42 22 120 12 66 ≈ 0 61 ≈ 0 23 16 92 510
potato 42 32 140 63 63 19 68 31 23 17 97 600
woody 46 35 170 72 61 45 65 31 27 16 80 320
sarge 47 44 160 92 63 39 60 38 35 11 94 320
etch 47 50 150 300 70 46 59 45 38 11 92 320
lenny 44 49 150 230 64 46 58 42 39 11 84 320
squeeze 32 50 140 84 56 44 59 38 37 26 69 320
wheezy 15 48 130 79 58 39 60 36 33 20 72 340
jessie 11 43 110 88 53 37 62 32 34 20 65 350

File size We can drill down to investigate median file sizes (in SLOC) per
language and their evolution over time. Detecting the programming language
of each source file can be done in a number of ways, each one with their
own strengths and weaknesses. Two ways of doing that is delegating language
detection to cloc and sloccount, using the st value column of the metrics
table; alternatively one can look at file extensions (field ext in table path info)
and map popular extensions to programming languages. We have adopted the
sloccount approach in the following.

Table 9 presents per release and per language median file sizes for the most
popular languages. For the top-6 of them, their evolution over time is plotted
in Fig. 6.

Most of the studied languages are shown to be relatively stable in their
median file size over time. This is the case for mainstream languages such
as C, C++, and Java, as well as several others such as Perl and Lisp (not
plotted). Median file size also appears to be a rather intrinsic characteristic
of a programming language, that is not really affected by how popular the
language is in a large FOSS ecosystem.
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Fig. 6 Evolution over time of the median file size (in SLOC) per language, based on file
extension.

5.4 Debian licensing over time

One of the most important characteristics that define a FOSS component
is its license. It is very important to know the license of a package, as it
determines the rights and obligations of anybody wanting to reuse and further
distribute the software (either as a component or as a stand-alone product).
Since the conception of Debian in 1993 the FOSS license landscape has evolved
significantly. Many licenses released new versions, others have been created,
and some ceased to be used. The long history of Debian creates a perfect
subject to evaluate how FOSS licenses use has evolved over time, and the
popularity of licenses currently in use.

Creating a census of licenses used in a large software distribution is not an
easy task though. The first challenge is how to identify the licenses of individual
files. Then, one needs to consider the overall licenses of aggregate/composite
software bundles, such as packages in the case of FOSS distributions. The
license of a package as a whole is indeed not necessarily the same of the files
that compose it: due to how license compatibility works, a package might
have most of its files under license A, but its aggregate license might end up
being license B 6= A. Unfortunately there is no well-established convention
for documenting either one, and tools for license identification have thus far
focused on discovering the license of individual files. In order to answer RQ iv,
in the following we focus on the license of individual files. We do not study
the license of packages as wholes. We do, however, aggregate file licenses by
package in order to study license variability within packages, answering RQ v.
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Finally, in order to answer RQ vi (how has license use evolved in Debian over
time? ), we analyze the evolution of our answers to RQ iv (file licensing) and
RQ v (source package licensing) across all Debian stable releases.

As automatic license identification of a file is still difficult and error prone,
we avoid developing in house heuristics and rather resort to the two tools
that are considered the state of the art in license identification: ninka [8] and
fossology [9]. Both tools are capable of identifying commonly used licenses,
but vary in the way that they deal with less common ones. For example, ninka
is capable of identifying many variants of the BSD and MIT family of licenses,
while fossology groups them into “MIT-style” and “BSD-style”. On the other
hand fossology is capable of identifying more licenses and, where applicable,
uses the license identifiers standardized by SPDX [22] for its reports.

In terms of Debsources Dataset use, the license information we have ex-
tracted using both ninka and fossology are readily available from table li-
censes. The detected licenses of individual files as returned by the two tools
can be discriminated using the oracle field of that table, whose value will
be either “ninka” or “fossology”. Note that the detected license, available in
field license, is tool-dependent: we have favored preserving the full informa-
tion returned by license identification tools over data uniformity. For the sake
of brevity in the following we only discuss fossology results, but interested
scholars can use the Debsources Dataset to explore ninka results.

While the Debsources Dataset contains the output of ninka and fossology

for every unique file, in the following we only report about licensing of source
code files (excluding, e.g., binary files such as raster images). To that end we
will ignore all files not recognized as being source code by sloccount.

5.4.1 Individual file licensing

Table 10 Number of different licenses identified in each release.

Release Licenses
hamm 281
slink 326
potato 437
woody 620
sarge 949
etch 1125
lenny 1352
wheezy 1879
jessie 2039

Table 10 shows the total amount of different licenses identified for each
release in the dataset. As it can be observed, the number of identified licenses
is very large and has grown an order of magnitude across Debian history. Part
of the reason is that, when a file is licensed under two or more licenses, such
combination of licenses is considered to be a different license by license identi-
fication tools. For example, in several Debian releases Firefox is licensed under
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a combination of the MPL, GPL-2.0, and LGPL-2.1. In most releases, few
licenses account for most of the identified licenses: the top 50 most frequently
identified licenses (including “No license found”) correspond to 94–97% of re-
lease source files.

Table 11 shows the top identified licenses in the oldest and newest Debian
releases available in the dataset. As it can be observed, most frequently files
do not have a license that fossology can directly identify. Fig. 7 shows the
evolution over time of the most common identified licenses. As it can be seen,
the most used licenses have been the GPL and BSD families, with recent
increases for Apache-2.0 and the Mozilla Public License (MPL).

Table 11 Top identified licenses in two selected releases.

Release License Files Prop.(%) Accum. (%)
Hamm No license found 72,533 47.5 47.5

GPL-2.0+ 22,983 15.1 62.6
LGPL-2.0+ 14,608 9.6 72.2
BSD-style 3,667 2.4 74.6
See-doc(OTHER) 2,490 1.6 76.2
MIT-style 2,457 1.6 77.8
UnclassifiedLicense 2,359 1.5 79.4
GPL 2,329 1.5 80.9
BSD-4-Clause-UC 2,112 1.4 82.3
See-file 1,938 1.3 83.5
X11 1,887 1.2 84.8

Jessie No license found 1,011,088 29.7 29.7
GPL-2.0+ 432,482 12.7 42.4
Apache-2.0 168,655 5.0 47.4
GPL-3.0+ 160,233 4.7 52.1
GPL-2.0 148,364 4.4 56.4
LGPL-2.1+ 141,747 4.2 60.6
BSD 115,135 3.4 64.0
LGPL-2.0+ 87,153 2.6 66.5
BSD-3-Clause 72,634 2.1 68.7
MIT 71,022 2.1 70.8
EPL-1.0 66,755 2.0 72.7

5.4.2 Package licensing and variability

In order to address RQ v (source package licensing), it is not practical to simply
report each and every license found in very package. Instead, we develop several
metrics, each one highlighting different aspects of the licensing of source code
files belonging to a given package:

– How detectable are the licenses of the package source files? For this purpose
we compute the proportion of files for which a license was identified over
the total number of files. fossology reports No license found when it does
not find the license of a given file, and UnclassifiedLicense when it finds
one it does not know. Hence we consider a file to have an identifiable
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Fig. 7 Evolution of the number of files with a given license, as detected by fossology.

license if fossology reports a license other than No license found and
UnclassifiedLicense. The proportion of files without a license is the number
of source files without an identifiable license divided by the total number
of source files.

– How many different licenses can be found in a given package? In this case
we ignore files without an identifiable license.

– What is the dominant license identified in each package? We define such a
license as the most commonly identifiable license, counted as the number
of files it applies to. If two or more licenses are equally frequent, all of them
are considered to be equally dominant.

– How much diversity is there in the licenses of the files of a package? The
more licenses a package contains, the larger it will be the problem space of
determining its license as an aggregate—due to how license compatibility
works the problem will not necessarily be more difficult, but more options
will have to be considered.
To establish license diversity within a package we use Wilcox’s Analog of
the Mean Difference (MNDif). It represents the average of the absolute
differences of all the possible pairs of license frequencies. Intuitively, it is
the equivalent of a GINI coefficient, but applicable to categorical data. A
value of 0 implies that all files have the same license, while a value of 1
that all licenses are equally represented, i.e., each license is used by the
same number of files.
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When aggregating by package, different licensing patterns appear. Fig. 8 shows
box plots with the proportion of files that do not have a detectable license.
The median number of source files without an identifiable license has fluctu-
ated between 50% and 60%, showing the same pattern over time. It is impor-
tant to mention that sloccount is relatively aggressive on what it considers
source code. For example, sloccount considers Makefiles and configuration
and installation scripts to be source code; these files do not normally include
a license. For this reason we also include the box plots for C (Fig. 9) and Java
files (Fig. 10). As it can be seen, their current median is below 5% in both
cases, and over time, the proportion of files without a license keeps dropping.
It seems that, at least from the point of view of fossology and for mainstream
programming languages, FOSS development practices (and in particular writ-
ing down license annotations) are evolving in a way that makes automatic
license detection easier. There is still plenty of room for improvement though.

0.00

0.25

0.50

0.75

1.00

07
−

19
98

 (
ha

m
m

)

03
−

19
99

 (
sl

in
k)

08
−

20
00

 (
po

ta
to

)

07
−

20
02

 (
w

oo
dy

)

06
−

20
05

 (
sa

rg
e)

04
−

20
07

 (
et

ch
)

02
−

20
09

 (
le

nn
y)

02
−

20
11

 (
sq

ue
ez

e)

05
−

20
13

 (
w

he
ez

y)

04
−

20
15

 (
je

ss
ie

)

Debian Release

P
ro

po
rt

io
n

Source files in Package without a detected license

Fig. 8 Box plots of the proportion of files with no identifiable license.

The number of licenses used per package is generally very small, as shown
in Fig. 11. The median is 2; the third quartile has decreased from 3 to 2 licenses
in recent releases (taking into account identifiable licenses only).

With regard to the chosen licenses, we present in Fig. 12 the evolution of
licenses that occur at least once in a package. As it can be seen variants of
the GPL licenses are still, by far, the most commonly used, and in particular
versions 2.0 and 2.0+ (i.e., “version 2 or any later version”).

Fig. 13 shows the evolution of dominant licenses in Debian packages, ac-
cording to our definition. The top license is, once again, GPL-2.0+, followed
by: Artistic-1.0/GPL dual-licensing (the licensing choice of Perl and most Perl
libraries), GPL-3.0+, and Apache-2.0.
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Fig. 9 Box plots of the proportion of C files with no identifiable license.
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Fig. 10 Box plots of the proportion of Java files with no identifiable license.

With regard to the variability of licenses in packages, we present in Fig. 15
the box plot of the MNDif of the licenses per package in each release. As
it can be seen, most packages have very small license variability, and license
diversity seems to be decreasing over time. This might be due to new, popular
programming language ecosystems that manage to impose, either with legal
agreements or simply via “bandwagon” effects, a specific license to all the new
modules and libraries that will be developed in the language.

Fig. 14 shows a scatter plot showing MNDif vs the number of source files
in a package, for the most recent Debian release (Jessie). A pattern stands
out: the more source files a package has, the less license diversity. This might
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Fig. 11 Box plots with the number of different identified licenses per package.
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Fig. 12 Evolution of the number packages that use a license at least once.

seem counter intuitive at first, because more files would appear to give more
opportunities for reusing code from other FOSS projects and hence adopt a
new license, increasing diversity. Our intuition is that such aspect is countered
by the fact that larger, well-established FOSS projects tend to be governance-
heavy, cautious when importing external code in their own repositories (e.g.,
due to long-term maintainability concerns), if not simply used to impose a
specific license as a condition to accept external code contributions.
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Fig. 14 Each point represents a package in Jessie (version 8): its MNDif vs number of source
files. As it can be seen, smaller packages tend to have more variability in their licensing.

To the best of our knowledge this is the first study of FOSS license popu-
larity at this scale, and in particular over such a long time frame. While there
exist reports on the Web about FOSS license popularity, and most notably
from Black Duck,17 such reports do not disclose the adopted methodology nor
are clear on the underlying sample of observed FOSS projects, making them
non-reproducible. Furthermore they do not properly document how licenses

17 https://www.blackducksoftware.com/top-open-source-licenses
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Fig. 15 Box plots showing the MNDif of packages per release. A MNDif of zero means no
variability, while 1 means that every license in the package is equally represented.

are counted, which is an important and tricky aspect of surveying FOSS li-
cense use [14].

5.5 Looking back, Debsources Dataset advantages

Looking back at this case study we can attempt a self-assessment of the advan-
tages induced by using the Debsources Dataset as a starting point. Limitations
and threats to validity will be discussed in the next section.

Using Debsources Dataset metadata (the database) we have been able to
study Debian growth over time as well as the correlation and distribution of the
chosen metrics. We have also been able to get insights on software engineering
practices such as package maintenance and study over time the popularity of
programming languages and software licenses, aggregating at different gran-
ularities (file, package, release). In all cases data gathering boiled down to
crafting and executing relatively straightforward (Postgre)SQL queries. Sta-
tistical analysis and plotting have then been implemented externally (using
GNU R), processing Postgres query output.

Without the Debsources Dataset the starting point of the case study would
have necessarily been retrieving and unpacking all Debian releases, followed by
running all measurement/mining tools on the obtained source code. We have
documented in Section 2.2 how, in terms of resources, doing so would have
required about 1.5 months of processing time (on a single machine) and 1.5TB
of disk space. None of this has been necessary to run our case study. More
importantly than savings in computational resources though, the Debsources
Dataset relieves scholars from the responsibility of figuring out which-tools-
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to-use-when in order to mine Debian-specific data sources; the starting point
becomes a relatively straightforward ER data model.

A counter argument here is that the metrics and information we were
interested in were all already available in the dataset; unsurprisingly, given we
initially included them in the dataset for our own needs. The first response
to this is that a significant part of the metadata included in the dataset is
intrinsic to either how Debian works (e.g., Debian release information) or the
nature of the referenced objects (e.g., file size, SHA checksums). We expect
that most studies interested in using Debian as a FOSS sample will need these
information; the Debsources Dataset alleviates the need of having to mine
them over and over again.

Second, when it comes to mining new facts that are not included in the
Debsources Dataset, the source code part of the dataset and how it is organized
offers many benefits. Most notably it saves space; thanks to deduplication the
required disk space is cut by approximately 50%. As many kind batch source
code analyses are I/O bound, a similar saving in processing time should gen-
erally be expected as well. Source code organization also simplifies analysis,
since the files are sharded into a (relatively speaking) small number of directo-
ries; for example, one can run cloc recursively only 256 times, once per each
top-level directory. Another benefit is that this code organization avoids the
challenges of having to deal with the original path names. Some of these paths
use extended character sets, or include characters that might not be handled
properly by (buggy) research tools (e.g., apostrophes and white spaces), or
might differ only in capitalization resulting in name clashes on some popular
file systems.

It is also reasonable to expect that newly mined facts from Debian source
code will need to be correlated, one way or another, with metadata that are
available in this dataset. It is at the border of source code mining and related
metadata that the Debsources Dataset offers the most time- and space-saving
opportunities for empirical software engineering scholars.

6 Threats to validity

Due to the fact that at the time Debian neither had a source package for-
mat that can be extracted using today’s dpkg-source, nor package indexes
(Sources files), the Debsources Dataset does not include the first 3 Debian re-
leases: Buzz (1996), Rex (1996) and Bo (1997). The first release included in the
dataset is Hamm (1998). Additionally, due to a regression in dpkg-source,18

12 packages from historical releases cannot be extracted and are missing from
the dataset. We do not expect such a tiny number of packages to significantly
impact the usefulness of the dataset.

It is important to note that the Debsources Dataset does not fully round-
trip with Debian mirrors: it is not possible to fully reconstruct source packages

18 http://bugs.debian.org/740883
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by only using the dataset. This is because the dataset is not supposed to be
as precise as a backup system in capturing detailed file characteristics such as
ownership, permissions, and extended attributes.

sloccount and Exuberant Ctags are starting to show their age and suffer
from a lack of active maintenance. Most notably, they do not support lan-
guages like Scala and JavaScript, which might then be underrepresented in
the dataset. The case of JavaScript is particularly worrisome, due to its in-
creasing popularity for server-side Node.js applications. On the front of SLOC
counting the issue is mitigated by the presence of counts as returned by cloc,
which is a more modern tool with support for recent languages. At the same
time we consider important to also have sloccount results in the dataset, as
it is used as a reference tool in many works in the literature.

Regarding licensing data, the main threat to construct validity is the relia-
bility of license identification as implemented by the tools that we used to de-
tect licenses. fossology is a mature tool, widely used in the software industry;
ninka is more experimental but shines in specific areas such as discriminating
among license variants. With respect to external validity, we make no specific
claims. While Debian is a good proxy for well-established FOSS products, De-
bian requires clear licensing on any software that it incorporates, hence what
is observable in Debian might not reflect all of FOSS.

More generally, while we claim that the Debsources Dataset is represen-
tative, by construction, of Debian trends, any extrapolation of findings based
on this dataset to more general FOSS trends should stand on its own ground.
Debian is likely representative of enterprise use of FOSS as a base operating
system, where stable, long-term and seldomly updated software products are
desirable. Conversely Debian is unlikely representative of more dynamic FOSS
environments (e.g., modern Web-development with micro libraries) where users,
who are usually developers themselves, expect to receive library updates on a
daily basis. Debian trends on size, language popularity, and licensing are likely
not directly transferable to those contexts.

7 Related work

Debsources [3] is the software platform used to produce a previous version of
the Debsources Dataset [27], which contained only metadata (no source code)
and only a subset of the metadata described in this paper. Debsources can be
used to recreate similar datasets for any other FOSS distribution that uses the
Debian source package format, including Ubuntu19 and hundred others [5].

Reproducing the findings of a former macro-level software evolution
study [11] motivated in part the development of Debsources. That study also
shows the results of running sloccount on Debian releases over the 1998–
2007 period. The Debsources Dataset covers twice that period, offers more
and more diverse metadata (ctags, disk size, checksums, license information),

19 http://www.ubuntu.com/
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and is publicly available from archival storage (Zenodo), whereas the dataset
URL from [11] has been down for a few years now. Most notably the availability
of the Debsources Dataset allows today to conduct studies similar to [11] with-
out having to mirror Debian from different websites, run sloccount, manually
classify by release, etc. All needed metadata are already available in an easy-
to-query format. When it comes to missing metadata, they can be extracted
from the source code shipped as part of the Debsources Dataset, minimizing
the required computational effort thanks to source code deduplication.

The Ultimate Debian Database (UDD) [17] has assembled a large dataset
about Debian and some of its derivatives, and is a popular target for mining
studies and challenges [25]. UDD however lacks the time axis and is focused
on distribution-level metadata. As such it lacks most of the content-oriented
metadata (ctags, checksums, license information, etc.) that are available in the
Debsources Dataset.

Other studies have targeted different aspects of the Debian ecosystem, such
as discussion on its mailing lists (e.g., [21]). Those studies cannot be supported
by the Debsources Dataset which focuses on source code. However, the pres-
ence of time-indexed metadata in the dataset allows to correlate mailing list
discussions, and in particular development discussions that often touch specific
versions of specific packages, with release and release dates.

Boa [6] is a Domain Specific Language (DSL) and an infrastructure to mine
FOSS project collections like forges. Boa’s dataset is larger in scope than the
Debsources Dataset (e.g., it contains SourceForge) and also more fine grained,
reaching down to the version control system level, but does not correspond to
curated software collections like FOSS distributions. That has both advantages
(it allows to peek into unsuccessful projects) and disadvantages: contained
projects are less likely to be representative of what was popular at the time.
The time horizon of BOA is also more limited than that of the Debsources
Dataset.

FLOSSmole [12] is a collaborative collection of datasets obtained by mining
FOSS projects. Many datasets in there are about Debian but no one is, by far,
as extensive as the Debsources Dataset.

With respect to our case studies, analyses similar to the one of Section 5
on software evolution have been conducted in the past on various distribu-
tions, e.g., [24, 10], even though only punctually on individual releases. On the
specific aspect of licensing, ninka has been used in the past to scan Debian
Lenny [8]. Several empirical studies on licensing have used other FOSS distri-
butions as data sources, such as Fedora Core 12 [7] and Debian Wheezy [26].

8 Conclusion

We have presented the Debsources Dataset: source code, release metadata
about it, measurements, checksums, and license information spanning two
decades of Free and Open Source Software (FOSS) history, as it can be ob-
served through the lens of the popular Debian distribution. Using the dataset
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we have conducted a long-term, macro-level evolution study of Debian looking
from angles as diverse as size, package maintenance, programming language
popularity, and software licensing.

The Debsources Dataset contains increasingly more fine-grained informa-
tion (packages → releases → source code files → checksums → developer-
defined symbols) about more than 3 billion lines of source code, from popular
FOSS projects of their times. The dataset also contains the corresponding
source code, deduplicated at file-level granularity, resulting in a factor 2 gain
in the space required to store it in uncompressed form. Deduplication allows to
efficiently process the available source code to mine further facts and correlate
them with existing metadata.

The Debsources Dataset is publicly available as Open Data, documented,
and reproducible using data and source code from the Debian project, as well
as a variety of tools that are all available as FOSS. However, recreating it takes
a non-negligible amount of storage and computational resources. Its availabil-
ity as a ready to use dataset can therefore ease the work of scholars interested
in macro-level software evolution, and in the history and composition of FOSS.
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