
Conduite de Projet
Cours 2 — Version Control

Stefano Zacchiroli
zack@irif.fr

Laboratoire IRIF, Université Paris Diderot

2017–2018

URL https://upsilon.cc/zack/teaching/1718/cproj/
Copyright © 2012–2018 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 1 / 44

https://upsilon.cc/zack/teaching/1718/cproj/
https://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Sommaire

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 2 / 44

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 3 / 44

Change

During the life time of a software project, everything changes:

bugs are discovered and have to be fixed (code)

system requirements change and need to be implemented

external dependencies change
ñ e.g. new version of hardware and software you depend upon

competitors might catch up

Most software systems can be thought of as a set of evolving
versions

potentially, each of them has to be maintained concurrently with
the others

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 4 / 44

Configuration management

Definition (Configuration Management)

Configuration Management (CM) is concerned with the policies,
processes, and tools for managing changing software systems.

(Sommerville)

Why?

it is easy to lose track of which changes have been incorporated
in each version

ñ things get even messier with versions which have to be
maintained in parallel

minimize risks of working on the wrong version

useful for solo projects ⇒ backup on steroids + it’s easy to
forgot which change has been made and why

useful for team project ⇒ help in praising(, blaming), know who
to ask

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 5 / 44

Configuration management activities

Change management keep track of request for changes (from both
customers and developers), evaluate
costs/risks/benefits, making committment to change

Version management (or version control, revision control, etc.)
keeping track of multiple version of (software)
components and ensure unrelated changes do not
interfere

System building assembling program components, data, and
libraries into executable systems

Release management preparing software for external release and
keep track of which version is in use at which customer
site

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 6 / 44

Configuration management activities

Change management keep track of request for changes (from both
customers and developers), evaluate
costs/risks/benefits, making committment to change

Version management (or version control, revision control, etc.)
keeping track of multiple version of (software)
components and ensure unrelated changes do not
interfere

System building assembling program components, data, and
libraries into executable systems

Release management preparing software for external release and
keep track of which version is in use at which customer
site

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 6 / 44

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 7 / 44

Before version control: diff & patch

The Swiss army knife of change management: diff & patch

diff compute the difference D among a file A and a file B

can be applied recursively to directories

patch apply a difference D (usually computed using diff) to a
file A (possibly producing a new file B)

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 8 / 44

diff & patch

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 9 / 44

diff & patch — discussion

patches are (were) usually conveyed via email messages to the
main software maintainer

best practices
ñ add to emails clear and concise explanations of the purpose of

the attached patch
ñ do the same in the source code added by the patch

« nothing new: usual good coding practice; it becomes more
important only because the number of software authors grows. . .)

ñ http://tldp.org/HOWTO/
Software-Release-Practice-HOWTO/patching.html

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 10 / 44

http://tldp.org/HOWTO/Software-Release-Practice-HOWTO/patching.html
http://tldp.org/HOWTO/Software-Release-Practice-HOWTO/patching.html

Poor man’s version control

Projects by a license student often look like this:

lucien > ls
a . out
projet .ml
projet−save .ml
projet−hier .ml
projet−marche−vraiement .ml
projet−dernier .ml

what are the differences among the 5 source files?

what are the relationships among them?

hard to answer without specific utilities

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 11 / 44

Poor men’s version control (plural)

Project by a group of license students:

lucien > ls ~joe l /projet lucien > ls ~ju l ien /projet
a . out a . out
module .ml module .ml
module−de−ju l ien−qui−marche .ml projet .ml
projet .ml projet−recu−de−joe l .ml
projet−save .ml module−envoye−a−joe l .ml
projet−hier .ml
projet−marche−vraiement .ml
projet−dernier .ml

What is the right combination of projet.ml and module.ml to obtain
a good grade at the exam?

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 12 / 44

diff & patch to the rescue

To exchange projet.ml and module.ml a group of students can rely
on emails, diff, and patch (a huge improvement!)
Julien

lucien > d i f f −Nurp projet−hier .ml projet .ml > mescorrections
lucien > mail −s " Voici mes modifs " joel@lucien < mescorrections

Joel

lucien > mail
Mail version 8.1.2 01/15/2001. Type ? for help .
> 1 julien@home Fr i Sep 13 20:06 96/4309 voic i mes modifs
& s 1 /tmp/changes
& x
lucien > patch < /tmp/changes

Julien’s changes between projet-hier.ml and projet.ml are now
integrated in Joel’s copy of projet.ml (hoping no conflicting changes
have been made by Joel. . .)

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 13 / 44

diff & patch: except that. . .

Nonetheless, on exam day nothing works, although it worked just
the day before. Panicking, you’ll try to understand:

what has changed

who did the change
ñ probably you don’t care about why, but still. . .

when it has been done

which state, not including that change, works properly

how to get back to that state

⇒ you (badly) need a real Version Control System

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 14 / 44

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 15 / 44

Version Control System (VCS)

A version control system

manage specific artifacts which form your source code
ñ files, directories, their attributes, etc.

is able to store changes to those artifacts (a VCS implements the
notion of version for source code)

ñ who has done a change
ñ wrt which state
ñ why
ñ when

can show the differences among different (stored) states

can go back in time and restore a previous state

can manage concurrent work among developers, distributing
the changes among them

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 16 / 44

Basic VCS concepts

A few basic concepts are shared across VCSs: 1

revision (or version) a specific state, or point in time, of the
content tracked by the VCS

granularity and scope vary

history a set of revisions, (partially) ordered

1. although the actual naming changes from system to system; we’ll stick to the
naming presented here
Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 17 / 44

Basic VCS concepts (cont.)

A few basic concepts are shared across VCSs: 1

repository (or depot) where the tracked content and all its history,
as known to the VCS, is stored

might be local or remote

working copy a local copy of a revision, which might be acted upon

where the “real” work happens

checkout (or clone) the action of creating a working copy from a
repository

1. although the actual naming changes from system to system; we’ll stick to the
naming presented here
Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 17 / 44

Basic VCS concepts (cont.)

A few basic concepts are shared across VCSs: 1

change (or delta) a specific modification to (or with respect to)
the content tracked by the VCS

granularity vary

commit (as a verb) the act of writing a change performed in the
working copy back to the repository

= adding a new revision to the history

commit (as a substantive) same as change, for changes that
have been committed

diff the act of (or the result of) inspecting the differences
among two revisions, or among a revision and the
working copy

inspection format is usually diff

1. although the actual naming changes from system to system; we’ll stick to the
naming presented here
Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 17 / 44

Branching and merging

branch (verb) the act of duplicating (or
“forking”) a specific revision in
history, to open up a new line of
development

branches are usually named

branch (substantive) subset of history
rooted at a fork point and
extending until the next merge
point

merge (verb) the act of joining together
multiple lines of development,
reconciling all their changes
together

merge (substantive) the point in history
where the merge happens

http://en.wikipedia.org/wiki/File:

Revision_controlled_project_visualization-2010-24-02.svg

1

2

3

4

5

6

7

8

10

9

T1

T2

Trunks

Branches

Merges

Tags

Discontinued
development

branchStefano Zacchiroli (Paris Diderot) Version Control 2017–2018 18 / 44

http://en.wikipedia.org/wiki/File:Revision_controlled_project_visualization-2010-24-02.svg
http://en.wikipedia.org/wiki/File:Revision_controlled_project_visualization-2010-24-02.svg

Branching and merging (cont.)

assuming an idealized purely functional
model, content history can then be
depicted as a direct acyclic graph

parallel changes may or may not be
compatible. . .

conflict the situation occurring when, upon
a merge attempt, changes from
involved branches cannot be
reconciled

solving a conflict means applying extra
changes to combine non
(automatically) reconcilable
changes or choose a subset of
them

1

2

3

4

5

6

7

8

10

9

T1

T2

Trunks

Branches

Merges

Tags

Discontinued
development

branch

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 18 / 44

Branching and merging (cont.)

tag (or label) a symbolic name attached
to a particular revision in history

head (or tip) the (moving) tag always
associated to the most recent
commit; might be limited to a
specific “special” branch, such as:

trunk (or master) the unique line of
development which is not a branch

peculiar: treating a specific
branch as special is not
necessary for the idealized
model to work

1

2

3

4

5

6

7

8

10

9

T1

T2

Trunks

Branches

Merges

Tags

Discontinued
development

branch

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 18 / 44

Brief history of VCSs

1972 SCCS (Source Code Control System), commercial (AT&T)
UNIX-es, part of the Single UNIX Specification; scope:
file; modern clone (for compatibility only): cssc

1982 RCS (Revision Control System) GNU-based UNIX-es;
scope: file; Free-er and generally considered more
evolved than SCCS, currently maintained by the GNU
Project

1990 CVS (Concurrent Version System), client-server
paradigm; scope: set of files

late 1990’s TeamWare, BitKeeper; early attempt at distributed
version control system; proprietary

2000 Subversion (SVN); client-server, addressing many
defects of CVS

2001– Distributed VCS (DVCS) golden age: GNU arch (2001),
Darcs (2002), SVK (2003), Monotone (2003), Git (2005),
Mercurial (2005), Bazaar (2005) more on this later. . .

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 19 / 44

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 20 / 44

Revision Control System (RCS)

one of the oldest system (1982)

typical of the commercial UNIX era

scope: single file
ñ although the repositories for several files can be stored in the

same “shared” place

repository
ñ file,v where file is the original name of the checked in file
ñ changes are stored as incremental reverse diffs
ñ minimization of secondary storage: delta compression is

triggered by deletion of intermediate revisions

concurrency model:
ñ pessimistic approach: one have to acquire explicit locks before

making modification; by default working copies are read-only
ñ as the working copy is shared among users, this enforced a

rather heavy mutual exclusion discipline

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 21 / 44

RCS — basic operations

commit ci FILE (without lock)
ci -l FILE (with lock)

checkout co FILE (without lock)
co -l FILE (with lock)

diff rcsdiff -rVERSION1 -rVERSION2 FILE

history rlog FILE

acquire lock rcs -l FILE

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 22 / 44

RCS — basic operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 22 / 44

RCS — branching and merging

Versions in RCS are trees, where branches are reflected in the syntax
of versions. “Minor” version numbers are increased automatically by
RCS upon commit; “major” numbers can be specified explicitly by
the user upon commit.

history with single branch

(1.1) -> (1.2) -> (1.3) -> (1.4) -> (2.1) -> (2.2)

history with multiple branches

(1.1) -> (1.2) -> (1.3) -> (1.4) -> (2.1) -> (2.2)
\
----> (1.3.1.1)

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 23 / 44

RCS — branching and merging operations

branch ci -rVERSION FILE
example: ci -r2 foo.ml

branch checkout co -rVERSION FILE

merge rcsmerge -p -rVERSION1 -rVERSION2 FILE > RESULT

preforms a 3-way diff (a-la diff3) among old
(common) VERSION1, and the two new versions:
VERSION2 and the current state of FILE

Example

rcsmerge -p -r1 -r3 foo.ml > foo.ml.new

merges the differences among branch 1 and 3 of foo.ml, with
differences among branch 1 and the current version of foo.ml; save
the result to foo.ml.new

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 24 / 44

RCS — branching and merging operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 24 / 44

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 25 / 44

Concurrent Versions System (CVS)

a significant (r)evolution in the history of VCS

designed to address the (too) constraining mutual exclusion
discipline enforced by RCS (hence the emphasis on concurrent)

client-server model
ñ enforce decoupling of repository and working copy
ñ several working copies exist—generally one for each

developer—and can be acted upon independently
ñ commands and processes to:

« “push” local changes from working copies to the repository
« “pull” changes (made by others) from the repository and merge it

with the local (uncommitted) changes
« deal with conflicts and try to avoid they hit the repository

ñ note: the repository is used as the orchestrator and as the sole
data storage

« “local commits” are not possible
« disconnected operations are heavily limited

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 26 / 44

CVS — some details

scope: a project (i.e., a tree of file and directories)
built as a set of scripts on top of RCS

ñ each file has its own ,v file stored in the repository
ñ each file has its own set of RCS versions (1.1, 2.3, 1.1.2.4, etc.)
ñ a very cool hack, but still a hack

the repository can be either local (i.e., on the same machine of
the working copy) or remote (accessible through the network;
common scenario)
concurrency model:

ñ optimistic approach: working copies can be acted upon by
default; given that working copies are independent from each
other, work is concurrent by default

ñ conflicts are noticed upon commit and must be solved locally
(i.e., commits prior to merges are forbidden)

ñ explicit locks are permitted via dedicated actions

curiosity: one of the first popular UNIX commands relying on
sub-commands

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 27 / 44

CVS — basic operations

repository setup export CVSROOT=SOME/DIR
cvs init

create a project cd PROJECT-DIR
cvs import -d NAME VENDOR-NAME RELEASE-NAME
example: cvs import -d coolhack zack initial

checkout cvs checkout NAME

status get information about the status of the working copy
with respect to (the last contact with) the repository

commit cvs commit [FILE...]
example: cvs commit -m ’fix segmentation fault’ foo.c

update (merge changes from the repository in the local copy)
cvs update -d

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 28 / 44

CVS — basic operations (cont.)

history cvs log

diff cvs diff [FILE...] (among working copy and last update)

diff cvs diff -rVERSION1 -rVERSION2 [FILE...]

remove file cvs rm FILE (schedule removal; needs commit)

add file cvs add FILE (schedule addition; needs commit)

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 28 / 44

CVS — basic operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 28 / 44

CVS — branching and merging operations

tag cvs tag TAG-NAME

branch cvs tag −b BRANCH−NAME
work on trunk continues
cvs update −r BRANCH−NAME
work on branch . . .
cvs update −A
go back working on trunk

merge cvs update −j BRANCH−NAME # merge changes (wc)
cvs commit

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 29 / 44

CVS — branching and merging operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 30 / 44

CVS — discussion

revolutionary for its time
affected by severe limitations nonetheless:

revisions are per file, i.e., there is no knowledge of
repository-wide revisions (they can be emulated by tags, but. . .)

no knowledge of several common file-system features (e.g.,
attributes, symlink, file move)

files are considered textual by default; ad-hoc and limited
support for binary content

branch operations are expensive (underlying assumption: most
of the work happens in trunk)

commits are not atomic operations

very little support for disconnected operations (e.g., painful
when you’re hacking on a plane)

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 31 / 44

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 32 / 44

Subversion (SVN) — context

Started in 2000 to overcome CVS limitations.

Historical context:

In the world of open source software, the Concurrent Ver-
sion System (CVS) has long been the tool of choice for ver-
sion control. And rightly so. CVS itself is free software,
and its non-restrictive modus operandi and support for net-
worked operation—which allow dozens of geographically dis-
persed programmers to share their work—fits the collabora-
tive nature of the open-source world very well. CVS and its
semi-chaotic development model have become cornerstones
of open-source.

— Collins-Sussman

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 33 / 44

Subversion (SVN)

same paradigm of CVS: client-server + independent working
copies

features (i.e., “bug fixes” w.r.t. CVS):
ñ atomic commits
ñ tracking (in the history!) of file-system level operations (copy,

move, remove, etc.)
ñ global versioning (rather than per-file versioning)
ñ support for symlinks and (some) file-system level metadata
ñ cheap (server-side) branches
ñ some (but not much) support for disconnected operations (most

notably: diff among working copy and HEAD)

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 34 / 44

SVN — basic operations

To increase adoption chances within CVS circles, SVN command line
interface has been designed to be as compatible as possible to CVS
interface. The strategy has worked very well! Most commands work
as in CVS.

basic operations svn checkout, svn status, svn add, svn remove,
svn commit, svn diff, svn log, svn update, . . .

repository setup svnadmin create REPO-PATH

create a project (actually: create a directory in a repository)
svn checkout REPO-PATH
svn mkdir DIR

svn commit

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 35 / 44

SVN — basic operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 35 / 44

SVN — branching and merging

branches in SVN are part of the versioned tree

to create a branch, one makes a copy of an existing directory to
a new path

ñ development can then proceed independently in the original and
new directory

ñ branches are cheap (“shallow copies”) on the repository side (but
not on the client side)

ñ partial checkouts are possible, to avoid forcing clients to keep all
branches at once

tags work in the same way; the only difference is that a tag
doesn’t (i.e., shouldn’t) be committed to

specific path conventions are suggested. . .

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 36 / 44

SVN — path conventions
project /

trunk/
main .ml
module−foo .ml
quux/
. . .

branches/
feature1/

main .ml
module−foo .ml
quux/
. . .

feature2/
main .ml
module−foo .ml
quux/
. . .

tags/
1.0−rc1/

main .ml
module−foo .ml
quux/
. . .

1.0/
main .ml
module−foo .ml
quux/
. . .

1.1/
main .ml
module−foo .ml
quux/
. . .

Recommended path conventions.

No strict requirement (but still
recommended for uniformity
across projects).

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 37 / 44

SVN — branching and merging example

branching off trunk

$ svn cp −m " Creating branch for feature A" \
/trunk/component1 /branches/zack−component1−featureA

$ svn log −v /branches/zack−component1−featureA
prints revision number, say 123

updating the branch

$ svn merge −r 123:HEAD /trunk/component1 .
test new code from master
$ svn commit −m’ sync with master ’
Revision 256.

merging into trunk

$ cd /trunk/component1
$ svn merge −r 123:HEAD /branches/zack−component1−featureA
$ svn commit −m’ integrate feature A by Zack ’
$

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 38 / 44

SVN — branching and merging example (better)

$ cd /trunk/component1
$ svn merge −−reintegrate REPO−PATH/branches/zack−component1−featureA
$ svn commit −m’ integrate feature A by Zack ’
$

keep track of merged revisions via svn:mergeinfo property

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 39 / 44

SVN — branching and merging

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 40 / 44

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 41 / 44

A Git tutorial

We will follow the excellent tutorial:

Git, a distributed revision control system
Thomas Petazzoni

Free Electrons
thomas.petazzoni@free-electrons.com

http://thomas.enix.org/pub/conf/git2011/presentation.pdf

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 42 / 44

http://thomas.enix.org/pub/conf/git2011/presentation.pdf

Agenda

I Version control, centralized vs. distributed

I Git local and basic usage

I Details on Git internals

I Working with branches

I Working with remotes in Git

I Contributing with Git

I Some advanced features

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2

Centralized version control

I The server has all the history of the project

I Users only have a working copy

I All operations involve the central server, no code can be
exchanged without this server

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5

Distributed version control

I Each user has a local repository, with the full history of the
project

I No server is needed for any operation, everything can be done
locally: committing, creating branches and tags, merging, etc.

I Code can be exchanged with others without any central server

I And many more cool features !

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6

A short history of open-source DVCS

I Until 2002, Linus Torvalds and the kernel developers were not
using any version control system, because none of the existing
one would scale enough for a project as large as Linux.

I In 2002, they started using BitKeeper, a proprietary
distributed version control system, for which a free (as in free
beer) was available.

I It proved that DVCS were useful for large free software
projects

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7

A short history of open-source DVCS

I In 2005, a developer started to reverse engineer the BitKeeper
protocol in order to create a free (as in free speech)
compatible client

I In reaction, the company developing BitKeeper stopped the
free as in free beer client. The kernel community was left
without its version control system

I In March 2005, Linus Torvalds starts the development of Git,
with the first release published on 7th April 2005

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8

A short history of open-source DVCS

I On 16th June 2005, the first Linux kernel managed by Git is
released

I When Git development started, many other DVCS were
started: Monotone, SVK, Mercurial, Darcs, Arch, Bazaar

I Six years later, only two free DVCS are still widely used: Git
and Mercurial, with Git having probably more than 90%
“market share” in the free software community

I Projects such as Gnome, Eclipse, KDE, the Linux kernel,
X.org, Freedesktop, Qt and many other open-source projects

I Nowadays, knowing Git is mandatory to contribute to
most open-source projects

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9

Creating a repository

$ mkdir myproject
$ cd myproject

$ git init
Initialized empty Git repository in .../myproject/.git/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10

The .git directory

$ ls -al
drwxr-xr-x 7 thomas thomas 4096 2011-03-17 20:31 .git

$ ls -al .git

drwxr-xr-x 2 thomas thomas 4096 2011-03-17 20:31 branches

-rw-r--r-- 1 thomas thomas 92 2011-03-17 20:31 config

-rw-r--r-- 1 thomas thomas 73 2011-03-17 20:31 description

-rw-r--r-- 1 thomas thomas 23 2011-03-17 20:31 HEAD

drwxr-xr-x 2 thomas thomas 4096 2011-03-17 20:31 hooks

drwxr-xr-x 2 thomas thomas 4096 2011-03-17 20:31 info

drwxr-xr-x 4 thomas thomas 4096 2011-03-17 20:31 objects

drwxr-xr-x 4 thomas thomas 4096 2011-03-17 20:31 refs

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11

Working copy and repository

I The project directory is the working copy: it will contain
directly the files of the project, that we can edit, modify,
commit, etc.. At any given time, the working directory allows
to edit one particular version of the project.

I The .git directory is the repository: it will contain the
complete history of the project.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12

Configuration

Git maintains configuration at two levels:

I At the project level, in the .git/config file

I At the user level, in the ~/.gitconfig file

I At the system level, in the /etc/gitconfig file (rarely used)

The configuration can be edited:

I With the git config command. By default at the project
level, with --global at the user level

I Manually by editing the configuration files

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13

Basic configuration

At the minimum, one must set its name and e-mail through the git
configuration: these informations are used to identify each commit.

git config --global user.name \

"Thomas Petazzoni"

git config --global user.email \

thomas.petazzoni@free-electrons.com

Resulting .gitconfig file:

[user]

name = Thomas Petazzoni

email = thomas.petazzoni@free-electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14

Add a file

$ cat > README
This is a wonderful project

Ctrl+D

$ git add README

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15

Status of the working copy

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: README

#

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16

Committing the changes

$ git commit

Starts a text editor to define the commit message

[master (root-commit) 6ea2ec1] First commit.

1 files changed, 1 insertions(+), 0 deletions(-)

create mode 100644 README

or, alternatively:
$ git commit -m ‘‘My commit message’’

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17

Rules for the commit message

A commit message should be composed of:

I A first line that briefly summarizes the change. Should be less
than ≈ 80 characters. Git will use it as the short description
of the commit.

I An empty line, separating the short description and the long
description.

I A long description, of arbitrary size. Most projects want this
to be wrapped at ≈ 80 characters.

I A Signed-off-by: Foobar <foobar@company.com> line,
as requested by various projects. git commit -s adds the
SoB automatically.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18

An example commit message

net: fix rds_iovec page count overflow

As reported by Thomas Pollet, the rdma page counting can overflow. We

get the rdma sizes in 64-bit unsigned entities, but then limit it to

UINT_MAX bytes and shift them down to pages (so with a possible "+1" for

an unaligned address).

So each individual page count fits comfortably in an ’unsigned int’ (not

even close to overflowing into signed), but as they are added up, they

might end up resulting in a signed return value. Which would be wrong.

Catch the case of tot_pages turning negative, and return the appropriate

error code.

Reported-by: Thomas Pollet <thomas.pollet@gmail.com>

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Signed-off-by: Andy Grover <andy.grover@oracle.com>

Signed-off-by: David S. Miller <davem@davemloft.net>

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19

Add a few more files

$ cat > foo.c

#include <stdio.h>

int main(void) {

printf("Hello world\n");

return 0;

}

Ctrl+D

$ git add foo.c
$ git commit -s -m ‘‘foo.c: new program’’

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20

Exploring history: git log

$ git log

commit 43ed997a01891a4bfe2cd9c5d41d23e7099068cf

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Tue Mar 29 20:17:39 2011 +0200

foo.c: new program

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

commit f01765d134d897ff373e70c4f1df7610b810392e

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Tue Mar 29 20:17:33 2011 +0200

Documentation for project

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Shows the history in reverse chronological order. Other orderings
are possible.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21

Exploring history: more git log

I $ git log -p to show the patch together with each commit

I $ git log foo.c to show the changes affecting a
particular file or directory

I $ git log commit1..commit2 to show the changes
between two specific commits

I $ git show somecommit to show the change done by a
particular commit

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22

Commit identification

I The distributed nature of Git makes it impossible to provide a
linear revision number that monotonically increments over
time, as is done in Subversion or CVS

I Each commit is uniquely identified by a SHA1 hash of its
contents

I For example:
f01765d134d897ff373e70c4f1df7610b810392e

I One can also refer to it in a shorter-form, as long as it is
unique:

I $ git show f017
I $ git show f01765d1

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23

Commit identification: example

commit f01765d134d897ff373e70c4f1df7610b810392e

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Tue Mar 29 20:17:33 2011 +0200

Documentation for project

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

diff --git a/README b/README

new file mode 100644

index 0000000..3803bca

--- /dev/null

+++ b/README

@@ -0,0 +1 @@

+This is a wonderful project

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24

The index: principle

I Git does not directly commit all the changes you have your
working directory, as Subversion or CVS do

I Instead, Git requires you to stage the changes you would like
to commit, before doing the actual commit

I This is done through a special space, confusingly called the
index

I When used with partial-file staging (seen later), it is a very
powerful feature

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25

The index: principle

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26

The index: make various changes

After adding one line to the README file and changing the message
in foo.c, we have:

$ git diff

diff --git a/README b/README

index 3803bca..bbdf5e3 100644

--- a/README

+++ b/README

@@ -1 +1,2 @@

This is a wonderful project

+really wonderful!

diff --git a/foo.c b/foo.c

index 0e58fa9..0518d69 100644

--- a/foo.c

+++ b/foo.c

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(void) {

- printf("Hello world\n");

+ printf("Bonjour Monde\n");

return 0;

}
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27

The index: stage one change

Now, we stage the changes of foo.c into the index:
$ git add foo.c

$ git diff --cached

diff --git a/foo.c b/foo.c

index 0e58fa9..0518d69 100644

--- a/foo.c

+++ b/foo.c

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(void) {

- printf("Hello world\n");

+ printf("Bonjour Monde\n");

return 0;

}

These are the changes inside the index, which will be committed if
I do git commit

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28

The index: what’s left in the working copy ?

$ git diff

diff --git a/README b/README

index 3803bca..bbdf5e3 100644

--- a/README

+++ b/README

@@ -1 +1,2 @@

This is a wonderful project

+really wonderful!

These are the changes inside the working copy, left to be
committed in a later commit.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29

The index: what’s in the index ?

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: foo.c

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: README

#

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30

The index: commit the contents of the index

We commit the contents of the index:

$ git commit -m ‘‘foo.c: translate to french’’

[master 8f1fab2] foo.c: translate to french

1 files changed, 1 insertions(+), 1 deletions(-)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31

The index: after the commit

$ git show

commit 8f1fab278c876f8677b3b644bbb5403c11a676ea

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Tue Mar 29 21:22:41 2011 +0200

foo.c: translate to french

diff --git a/foo.c b/foo.c

index 0e58fa9..0518d69 100644

--- a/foo.c

+++ b/foo.c

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(void) {

- printf("Hello world\n");

+ printf("Bonjour Monde\n");

return 0;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32

The index: what’s left in the working copy ?

$ git diff

diff --git a/README b/README

index 3803bca..bbdf5e3 100644

--- a/README

+++ b/README

@@ -1 +1,2 @@

This is a wonderful project

+really wonderful!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33

Committing everything ?

I What if I want to commit all the changes I have in my working
directory, without bothering to stage them in the index ?

I You can use git commit -a

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34

Moving and removing files

I git mv f1 f2 will move or rename one file or directory.
History is preserved accross renames.

I git rm f1 will remove one file or directory.

I In both cases, the change is done in the index and needs to be
committed.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35

Git basics summary

I git init, initialize a repository

I git add, stage a file for commit

I git commit, commit changes in the index

I git log, explore history

I git show, show one commit

I git reset, reset changes from the index to the working
directory

I git mv, move files

I git rm, remove files

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36

Git internals: object types

There are three major object types in Git:

I The blob

I The tree

I The commit

All objects are identified by their SHA1.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37

Git internals: the blob

A blob simply allows to store the contents of a particular version
of a file, without its name. Just a chunk of binary data.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38

Git internals: the tree

A tree represents a directory, with pointers to blobs for the files
and pointers to trees for the subdirectories.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39

Git internals: the commit

A commit represents a particular commit, which associates a
particular state of a tree with an author, a committer and a
message, and also points to a parent commit.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40

Exploring commit objects

Raw informations about the latest commit:
$ git show --format=raw

commit 92179e1ea0ba3d62bc2f12463370c3f998ba7d62

tree c5241c1c8a626e7e7b7e8a457eebd6e6e2393aa0

parent fc8911d4b0da304ca6ff9b1fc93ce3f2fbdd1008

author Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 1301427783 +0200

committer Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 1301427783 +0200

Update documentation

diff --git a/README b/README

index 3803bca..bbdf5e3 100644

--- a/README

+++ b/README

@@ -1 +1,2 @@

This is a wonderful project

+really wonderful!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41

Exploring tree objects

Let’s look at the tree:
$ git ls-tree
c5241c1c8a626e7e7b7e8a457eebd6e6e2393aa0

100644 blob bbdf5e3c38e09706b6cb9ca0d87af9d4940e58b1 README

100644 blob 0518d6958a90b7ae45530e93632967826b0ee3d4 foo.c

040000 tree 7751df8a2c450e0860c311fedeff797dd912bda1 src

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 42

Exploring blob objects

Let’s look at one of the blobs:
$ git show
bbdf5e3c38e09706b6cb9ca0d87af9d4940e58b1

This is a wonderful project

really wonderful!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 43

Exploring another commit object

Let’s look at the parent commit:
$ git show --format=raw
fc8911d4b0da304ca6ff9b1fc93ce3f2fbdd1008

commit fc8911d4b0da304ca6ff9b1fc93ce3f2fbdd1008

tree fed70e7fea02547c4ebb74122c98a3c268586377

parent 4fc1910b790f6bba82b9eafa5297146cd0c9e2f5

author Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 1301427777 +0200

committer Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 1301427777 +0200

bar.c: new source file

diff --git a/src/bar.c b/src/bar.c

new file mode 100644

index 0000000..c5853ff

--- /dev/null

+++ b/src/bar.c

@@ -0,0 +1,3 @@

+int bar(void) {

+ return 42;

+}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 44

Exploring another tree object

Let’s look at the root tree for this commit:
$ git ls-tree
fed70e7fea02547c4ebb74122c98a3c268586377

$ git ls-tree fed70e7fea02547c4ebb74122c98a3c268586377

100644 blob 3803bca12517a0974a6eb979b7b17e6f0941d550 README

100644 blob 0518d6958a90b7ae45530e93632967826b0ee3d4 foo.c

040000 tree 7751df8a2c450e0860c311fedeff797dd912bda1 src

We have the same blob for foo.c, the same tree for src, but a
different blob for README, this is because the commit changed the
README file.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 45

Exploring another blob object

Let’s look at the state of the README file at this commit:
$ git show
3803bca12517a0974a6eb979b7b17e6f0941d550

This is a wonderful project

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 46

Branches

I Branches are probably one of the most powerful and useful
feature of Git

I While traditional VCS make branches difficult to create and
manage, Git makes it very easy

I Branches are kept completely local, allowing each developer
to organize its work in has many branches as he wants

I Branches are cheap, so typically a developer would create a
branch even for a very small work (fixing a bug, etc.)

I Branches can be merged together, or exchanged with other
developers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 47

Listing branches and default branch

I One can list all local branches using git branch

I By default, there is a master branch

I The current branch is highlighted with a star

$ git branch

* master

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 48

Creating and switching between branches

I To create a branch: git branch branchname. The branch
is created from where you are as the starting point.

I To switch to a branch: git checkout branchname

I To do both at once: git checkout -b branchname

I When you are in a branch, all commits you do end up in the
current branch

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 49

Creating and switching between branches

$ git branch

* master

$ git branch fix-bug
$ git branch

fix-bug

* master

$ git checkout fix-bug

Switched to branch ’fix-bug’

$ git branch

* fix-bug

master

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 50

Making a change in a branch

$ emacs src/bar.c
$ git commit -a -m ‘‘bar.c: fix bug with ret
val’’
$ git log master..

commit ac4d966da54b24d784854cabb0c72855aa4b44f5

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Tue Mar 29 22:20:22 2011 +0200

bar.c: fix bug with ret val

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 51

Branches in gitk

Gitk is a Git history visualizer, started with gitk --all, it shows
the history for all branches:

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 52

Branches in Git

I Branches are just pointers to the latest commit in this
particular branch

I Thanks to the parent pointer in each commit, Git can go back
inside the history

I The branches are described as SHA1 stored in simple text files
in .git/refs/heads

I HEAD is a special pointer that always points to the latest
commit in the current branch

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 53

Merging a branch

I If you have split your work in several branches and want to
merge them together.

I Go to the destination branch (where things should be merged)

I Use the git merge branchname command

I Contrary to Subversion, all the branch history will be
preserved, even if the branch gets deleted.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 54

Merging: state before

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 55

Merging: doing the merge

$ git checkout master

Switched to branch ’master’

$ git merge fix-bug

Updating 92179e1..10e8da2

Fast-forward

src/bar.c | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 56

Merging: state after the merge

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 57

Merging: deleting the branch

$ git branch -d fix-bug

Deleted branch fix-bug (was 10e8da2).

Note: git branch -d only works with completely merged
branches. If you want to remove a non-merged branch, you need to
use git branch -D.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 58

Merging: state after the merge and deletion

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 59

Refering to commits

There are many ways to refer to commits, or range of commits:

I master..mybranch, all commits between master and
mybranch

I master.., all commits from master to where you are

I HEAD is the latest commit

I HEAD^ is the parent of the latest commit

I HEAD~3 is the grand-grand-parent of the latest commit

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 60

Working with remote servers

I Obviously, since Git is distributed, you can communicate with
remote servers.

I This is typically done using the following commands
I git clone
I git push
I git pull

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 61

Cloning

I Cloning is the operation that consists in cloning a complete
repository to your local machine and creating a working copy
for the master branch.

I Done with git clone server-url

I Useful when you’re not starting a project from scratch, but
want to contribute to an existing project.

I git clone is needed only once, just like svn checkout
with Subversion (not to be confused with git checkout !)

I It will setup an initial remote named origin which points to
the server you have cloned from.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 62

Git protocols

Git repositories can be accessed:

I Through the git:// protocol, which is the native git
protocol, offering the best performance. For read-only access
only. Usually the best solution to clone a project.

I Through the http:// protocol. For read-only access, lower
performance than git://. Mostly useful if you are behind a
firewall that doesn’t allow git://.

I Through the ssh:// protocol. For read-write access.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 63

Cloning: example

$ git clone git://git.busybox.net/buildroot

Initialized empty Git repository in /tmp/buildroot/.git/

remote: Counting objects: 68156, done.

remote: Compressing objects: 100% (25281/25281), done.

remote: Total 68156 (delta 46316), reused 64299 (delta 42543)

Receiving objects: 100% (68156/68156), 25.22 MiB | 185 KiB/s, done.

Resolving deltas: 100% (46316/46316), done.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 64

Pulling

I Pulling is the operation that consists in fetching changes
from a remote repository and merging them into the current
local branch

I Under the hood, git pull does git fetch and then git
merge

I Typically, one keeps the master branch free of any local
change, and updates it with a simple git pull command.
Equivalent to svn update in the Subversion world.

I By default, pulls from the master branch of the origin
repository.

I Can also be used to merge contents from other remote
repository, if you’re integrating the work of other developers.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 65

Pulling: example

$ git pull

Updating 2c97608..187ca32

Fast-forward

package/Makefile.autotools.in | 2 +

package/buildroot-libtool-v2.4.patch | 47 ++++++++++++++++++++++++++++++++++

package/qt/qt.mk | 2 +-

3 files changed, 50 insertions(+), 1 deletions(-)

create mode 100644 package/buildroot-libtool-v2.4.patch

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 66

Two main possible workflows

I A centralized workflow, which is similar to Subversion
workflow. There is a central Git repository on a public server,
and all project participants have write access to it. They can
simply git push their changes to it.

I A distributed workflow, where only the project maintainer
has write access to the official Git server. This is the workflow
used by many free software projects, such as the Linux kernel.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 67

Distributed workflow

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 68

Setting up a public repository

I Do a bare clone of your repository (a clone without a working
copy)
git clone --bare /home/thomas/myproject

I Make it work through HTTP
cd myproject.git
git --bare update-server-info
mv hooks/post-update.sample hooks/post-update
chmod a+x hooks/post-update

I Transfer the bare clone to a remote location, publicly
accessible, on which you have write access:
scp -r myproject.git
login@somewhere.com:~/public_html

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 69

Accessing the repository

I You can access your repo at
login@somewhere.com:~/public_html/project.git

I Others can access your repo at
http://somewhere.com/~login/project.git

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 70

Pushing changes to your repository

I To push the current branch:
git push
login@somewhere.com:~/public_html/project.git

I To push the branch named foobar to a branch named
barfoo on your remote repository:
git push
login@somewhere.com:~/public_html/project.git
foobar:barfoo

I To delete the remote branch barfoo:
git push
login@somewhere.com:~/public_html/project.git
:barfoo

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 71

Remote branches

With git branch -a you can list all branches, both local and
remote ones.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 72

Short names for remotes

I Typing the complete URL of a remote is painful.

I Git offers a command, git remote, to manage aliases for
remotes. These aliases can then be used with all Git
commands, especially git pull and git push

I git remote add thealias theurl adds a remote

I git remote rm thealias removes a remote

I git remote shows all remotes

I git remote show thealias gives details about a remote

I git remote prune thealias to delete all branches that
no longer exist remotely

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 73

Short names for remotes

I A remote origin is created by git clone, it refers to the
server from which the repository was cloned, and is used as
the default for pull/push.

I All remote aliases are stored in .git/config

I Typically useful for your public repository, but also for the
public repositories of the developers you’re working with.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 74

Short names for remotes

I Add a remote for my public repository:
git remote add public
login@somewhere.com:~/public_html/project.git

I Push the current branch to it:
git push public

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 75

Typical workflow

1. Clone

2. Create branch for feature development or bug fix

3. Make changes, make one or more commit

4. Either
I Push the branch to a public repository
I Tell the project maintainer to pull your branch

5. or
I Send patches by e-mail

6. Once the changes are merged: remove the branch and git
pull your master branch

7. Goto step 2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 76

Sending a pull request

I Helps in sending an e-mail to ask the maintainer to pull one of
your publicly visible branch.

I Make sure your branch is publicly visible and up-to-date:
git push public mybranch

I Prepare the text for the pull request:
git request-pull master
http://somewhere.com/~login/project.git

I The master in the command is the starting point of the
interval of commits for which the pull request is generated.

I Send the text by e-mail to the maintainer.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 77

Pull request example

$ git request-pull master
http://somewhere.com/~login/project.git

The following changes since commit 10e8da2b115bab3419a28e9af52a5d67c3f797cc:

bar.c: fix another bug with ret val (2011-03-29 22:28:58 +0200)

are available in the git repository at:

http://thomas.enix.org/pub/demo.git fix-another-bug

Thomas Petazzoni (2):

foo.c: fix message

foo.c: more messages

foo.c | 3 ++-

1 files changed, 2 insertions(+), 1 deletions(-)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 78

Sending patches

I Another way of contributing is to send patches to a mailing
list. It allows other to review and comment your patches.

I Patches are generated using git format-patch, the short
description is used as the title, the long description as the
changelog of the patch

I Patches are sent using git send-email
I git send-email requires a properly configured SMTP

setup:
I git config --global sendemail.smtpserver
foobar.com

I git config --global sendemail.smtpuser
user

I git config --global sendemail.smtppass
pass

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 79

Sending patches

$ git format-patch master

0001-foo.c-fix-message.patch

0002-foo.c-more-messages.patch

$ git send-email --to mailing@project.org *.patch

To: thomas@enix.org

Subject: [PATCH 1/2] foo.c: fix message

Date: Tue, 29 Mar 2011 23:57:10 +0200

...

To: thomas@enix.org

Subject: [PATCH 2/2] foo.c: more messages

Date: Tue, 29 Mar 2011 23:57:11 +0200

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 80

git send-email tips

I git config --global sendemail.confirm auto
avoids the need to confirm the sending of each message

I git config --global sendemail.chainreplyto
false avoids to have each e-mail being a reply to the
previous one: all patches are attached directly to the main
mail

I git send-email --compose opens a text editor to write a
special text for the introduction message

I Patches formatted with git format-patch are better than
normal patches, as they properly handle binary files and file
renames/removal.

I A maintainer can integrate a patch sent by git
send-email using the git am command.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 81

git send-email output

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 82

Reviewing changes from others

To review changes made by other developers that are visible
through their public repository, one can do:

$ git fetch thedeveloper

then all branches made by the other developer are accessibles as
remotes/thedeveloper/branchname

$ git log -p
master..remotes/thedeveloper/somebugfix

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 83

Rebasing

I You create a branch

I You do some work on this branch, with several commits

I The development goes on in the official project, with several
changes being made

I How can you update your changes on top of all the
improvements done by the other developers ?

I Solution: git rebase

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 84

Before the rebase

The branch fix-another-bug is behind master

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 85

Doing the rebase

$ git checkout fix-another-bug
$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: foo.c: fix message

Applying: foo.c: more messages

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 86

After the rebase

The branch fix-another-bug is on top of master

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 87

Interactive rebasing

I You develop

I You commit

I You develop

I You commit

I Oops, I forgot this, you fix, you commit

I → you have an ugly history, which means ugly patches that
show how stupid you are to the rest of the project members

I Git allows you to hide your stupidity!

I Your friend is interactive rebasing, using git rebase -i

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 88

Interactive rebasing

I You are in branch fix-another-bug, which has been
started on top of the master branch

I You run git rebase -i master
I A text editor will open, with one line per commit in your

branch. Each line is prefixed with pick. With each line you
can:

I Keep the pick, the commit will be kept
I Remove the line, which will completely remove the commit

from the history
I Change pick to edit, which will stop the rebase at the

given commit, which allows to make further modifications to it
I Change pick to reword, which allows to rephase the

commit log
I Change pick to fixup, which merges the commit into the

previous one
I Change pick to squash, which merges the commit into the

previous one and edits the commit message

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 89

git log master..

commit 2644e423d9b3f5514284f49f207cd4f7a8e8a764

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Wed Mar 30 15:50:41 2011 +0200

Really fix the return value

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

commit 874a6a0e3f0058a84dd857d2ef68f8b71cb3aeb5

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Wed Mar 30 15:50:27 2011 +0200

Fix return value

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

commit 87b3b0c7e8905d9c0328508050c5e0b596b873cf

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Wed Mar 30 15:50:13 2011 +0200

foo.c: add englich

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

commit 969387105cfcc70562a88dd8505c57418bd4354f

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Wed Mar 30 15:49:52 2011 +0200

foo.c: add spanish

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 90

Git rebasing example

What I want is:

I Fix the commit message in
87b3b0c7e8905d9c0328508050c5e0b596b873cf

I Merge 2644e423d9b3f5514284f49f207cd4f7a8e8a764
into 874a6a0e3f0058a84dd857d2ef68f8b71cb3aeb5

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 91

Git rebasing example

$ git rebase -i master
It opens a text editor with:

pick 9693871 foo.c: add spanish

pick 87b3b0c foo.c: add englich

pick 874a6a0 Fix return value

pick 2644e42 Really fix the return value

Rebase 974cd34..2644e42 onto 974cd34

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit’s log message

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 92

Git rebasing example

You change it to:

pick 9693871 foo.c: add spanish

reword 87b3b0c foo.c: add englich

pick 874a6a0 Fix return value

fixup 2644e42 Really fix the return value

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 93

After rebase, git log master..

commit c332772f74bbc808105e4076bbb821d762c9653f

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Wed Mar 30 15:50:27 2011 +0200

Fix return value

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

commit 06a174ee4426cb83004614cf64a33c12c42670b0

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Wed Mar 30 15:50:13 2011 +0200

foo.c: add english

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

commit 969387105cfcc70562a88dd8505c57418bd4354f

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Wed Mar 30 15:49:52 2011 +0200

foo.c: add spanish

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 94

Rebase: history modification

I git rebase is a tool that rewrites the history: it merges,
splits, and changes commits

I Therefore, if other people had access to a branch you created,
you should never rebase on this branch, unless others are well
informed that the branch might get rebased

I Rebasing is only useful to make modifications before showing
your work to others.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 95

Partial staging

I Wondered why the index thing is so cool ?

I Because you can stage only parts of the modification made to
a given file to the index for committing!

I git add --patch myfile
will ask for each chunk of the patch:

I if you want to stage it, and possibly all other chunks
I if you don’t want to stage it, and possibly quit now
I if you want to split the chunk into smaller chunks

I Another possibility is git add -i, for interactive adding

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 96

Git partial adding example

$ git diff

diff --git a/foo.c b/foo.c

index 0518d69..6371bb4 100644

--- a/foo.c

+++ b/foo.c

@@ -1,5 +1,6 @@

#include <stdio.h>

+#include <stdlib.h>

int main(void) {

printf("Bonjour Monde\n");

- return 0;

+ return 1;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 97

Git partial adding example

$ git add --patch foo.c

diff --git a/foo.c b/foo.c

index 0518d69..6371bb4 100644

--- a/foo.c

+++ b/foo.c

@@ -1,5 +1,6 @@

#include <stdio.h>

+#include <stdlib.h>

int main(void) {

printf("Bonjour Monde\n");

- return 0;

+ return 1;

}

Stage this hunk [y,n,q,a,d,/,s,e,?]?

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 98

Git partial adding example

Let’s split the commit:

Stage this hunk [y,n,q,a,d,/,s,e,?]? s

stage the first chunk:

Split into 2 hunks.

@@ -1,3 +1,4 @@

#include <stdio.h>

+#include <stdlib.h>

int main(void) {

printf("Bonjour Monde\n");

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? y

and skip the last chunk:

@@ -2,4 +3,4 @@

int main(void) {

printf("Bonjour Monde\n");

- return 0;

+ return 1;

}

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? q

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 99

Git partial adding example

$ git diff --cached

diff --git a/foo.c b/foo.c

index 0518d69..41d6359 100644

--- a/foo.c

+++ b/foo.c

@@ -1,4 +1,5 @@

#include <stdio.h>

+#include <stdlib.h>

int main(void) {

printf("Bonjour Monde\n");

return 0;

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 100

Git partial adding example

$ git diff

diff --git a/foo.c b/foo.c

index 41d6359..6371bb4 100644

--- a/foo.c

+++ b/foo.c

@@ -2,5 +2,5 @@

#include <stdlib.h>

int main(void) {

printf("Bonjour Monde\n");

- return 0;

+ return 1;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 101

.gitignore

I Version control systems can usually be told to ignore certain
file names or file name patterns.

I With Git, this is done in .gitignore files

I Each directory can have a .gitignore file, but Git travels
back through the parent directories to find other
.gitignore files

I For example, you can have a global .gitignore file at the
root of your project that ignores *.o, and another
.gitignore file in a sub-directory to ignore a particular file.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 102

Other topics

I Bisecting, to quickly find the commit that introduced a
regression

I git reset has many more features to reset the state of the
index or the working copy

I git stash to put uncommitted changes on the side while
doing something else

I git blame to check which of your colleague introduce this
stupid bug

I Tags, with git tag

I git filter-branch, to rewrite a complete branch to make
modifications on several commits

I git svn, for integration with Subversion repositories

I Graphical interfaces: Giggle in Gtk, QGit in Qt, EGit in
Eclipse, etc.

I Git forges, such as Gitorious or Github

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 103

References

Aiello, Sachs
Configuration Management Best Practices: Practical Methods that
Work in the Real World
Addison-Wesley, 1st edition, 2010

Chacon
Pro Git
Apress, 2005. http://progit.org/book/

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 43 / 44

http://progit.org/book/

Credits

diff/patch slides content adapted from Roberto Di Cosmo’s
slides at
http://www.dicosmo.org/CourseNotes/LogicielLibre/

Git slides are by Thomas Petazzoni
http://thomas.enix.org/pub/conf/git2011/presentation.pdf

Stefano Zacchiroli (Paris Diderot) Version Control 2017–2018 44 / 44

http://www.dicosmo.org/CourseNotes/LogicielLibre/
http://thomas.enix.org/pub/conf/git2011/presentation.pdf

	Configuration management
	diff & patch
	Version control concepts
	Revision Control System (RCS)
	Concurrent Versions System (CVS)
	Subversion
	Git

