
Conduite de Projet
Cours 9 — Test-Driven Development

Stefano Zacchiroli
zack@irif.fr

Laboratoire IRIF, Université Paris Diderot

2018–2019

URL https://upsilon.cc/zack/teaching/1819/cproj/
Copyright © 2013–2019 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-sa/4.0/

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 1 / 47

https://upsilon.cc/zack/teaching/1819/cproj/
https://creativecommons.org/licenses/by-sa/4.0/

Outline

1 Test-Driven Development

2 Case study

3 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 2 / 47

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e., develop better software, less
stressfully.

The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process

the xUnit family of testing frameworks
ñ e.g., JUnit, Python’s unittest, Check, OUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 3 / 47

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e., develop better software, less
stressfully.

The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process

the xUnit family of testing frameworks
ñ e.g., JUnit, Python’s unittest, Check, OUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 3 / 47

xUnit

xUnit collectively refers to a set of frameworks for automated unit
testing which share a common test coding style.

Each xUnit framework includes:

test case abstraction used to define tests

test suite abstraction used to organize test in test suites

assertion API to implement test case oracles to verify outcomes

test fixture mechanisms to factorize test initialization and clean up
code

test runner end-user program to discover and (selectively) run test
suites

test result formatters summarize test results and present them for
human consumption

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 4 / 47

xUnit implementations

Teting frameworks that adhere to the xUnit paradigm exist for most
languages and platforms, e.g.: 1

SUnit (Smalltalk)

JUnit (Java)

CppUnit (C++)

OUnit (OCaml)

Test::Unit (Ruby)

HUnit (Haskell)

NUnit (.NET)

unittest (Python)

Check (C)

1. https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 5 / 47

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Outline

1 Test-Driven Development

2 Case study

3 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 6 / 47

Development as learning

every software development project tries something that has
never been tried before

ñ otherwise you wouldn’t be doing it. . .

due to constraints, developers often use technologies they don’t
completely master

ñ new technologies, old technologies used in new contexts, etc

all stakeholders (developers, managers, customers) learn as the
project progresses

Problem
As we don’t know everything at the beginning, there will be
unexpected changes during the project.

How do we cope with them?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 7 / 47

Nested feedback loops

Idea
1 we use empirical feedback to learn about the system

2 we store what we learn in the system itself, for future use

To do so, we organize development as nested feedback loops with
increasing time periods and scopes in the organization (file, unit,
product, team, etc.), e.g.:

pair programming period: seconds

unit tests seconds–1 minute

acceptance tests minutes

daily meeting 1 day

iterations 1 day–1 week

releases 1 week–months

We want feedback as quickly as possible. If something slips through
an inner loop, it will (hopefully) be catched by an outer one.
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 8 / 47

Expecting the unexpected

Practices that (empirically) help coping with unexpected changes:

constant testing
ñ when we change something we might introduce regressions
ñ to avoid that we need to constantly test our system
ñ doing it manually doesn’t scale ⇒ automated testing

simple design
keep the code as simple as possible
optimize for simplicity

ñ as we will have to change it, we want code that is easy to
understand and modify

ñ empirical studies show that developers spend more time reading
code than writing it

ñ clean design doesn’t come for free, to achieve it we must
constantly refactor

ñ test suites give you courage to refactor, and apply other
changes, thanks to their tight feedback loop

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 9 / 47

TDD principle

So we have test suites. Why do we need TDD?

Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
“I was finally able to separate logical from physical design.
I’d always been told to do that but no one ever explained
how.” — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, underlying design is probably wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 10 / 47

TDD principle

So we have test suites. Why do we need TDD? Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
“I was finally able to separate logical from physical design.
I’d always been told to do that but no one ever explained
how.” — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, underlying design is probably wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 10 / 47

TDD principle

So we have test suites. Why do we need TDD? Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
“I was finally able to separate logical from physical design.
I’d always been told to do that but no one ever explained
how.” — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, underlying design is probably wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 10 / 47

TDD in a nutshell

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 11 / 47

The TDD development cycle

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 12 / 47

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

By writing the test we:

clarify acceptance criteria

are pushed to design loosely
coupled components

ñ otherwise they are difficult to test

document the code, via an
executable description of it

incrementally build a regression test
suite

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 12 / 47

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

By running the test we:

detect errors when the context is
fresh in our mind

have a measure of progress, know
when to stop (i.e., when we are
“done enough”)

ñ avoid over-coding, “gold plating”

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 12 / 47

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

GOOS, Figure 1.1

TDD golden rule

Never write a new functionality without a failing test.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 12 / 47

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 13 / 47

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests

GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 13 / 47

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests
GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 13 / 47

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e., test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 14 / 47

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e., test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 14 / 47

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e., test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 14 / 47

Step 3 — refactor

At this point: we have a test, some new code, and we are reasonably
convinced that it is that code that makes the test pass.
We can now improve the code design, using tests as a safety net.

The goal of refactoring is to improve the design of existing code,
without altering its external behavior (see Fowler 1999). We only
give some of its intuitions here:

Code smells

duplicate code

long methods/large class

too many parameters

inappropriate intimacy

Liskov principle violation

complex conditionals

. . .

Techniques

encapsulate field

generalize type

conditionals → polymorphism

extract class/method

rename method/field

pull up/push down

. . .

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 15 / 47

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 16 / 47

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 16 / 47

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 16 / 47

TDD cycle — exercise

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 17 / 47

TDD cycle — exercise

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

Possible work-flow:

0 receive bug report
1 run all tests to ensure clean slate
2 create a new test that

ñ recreates the context of the (alleged) bug
ñ would succeed if the bug didn’t exist

3 run all tests
ñ new test fails → reproducible bug
ñ new test passes → unreproducible bug → investigate with

submitter

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 17 / 47

TDD cycle — exercise (cont.)

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

Possible work-flow:
5 fix the bug

ñ even with dirty workarounds, to ensure you’ve cornered it
6 run all tests

ñ all test passes → bingo!
ñ new test fails → try again (= go back to 5)
ñ old tests fail → regression, try again

7 refactor as needed
ñ from workaround, to proper fix

8 release fix (including the new test!)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 17 / 47

Outline

1 Test-Driven Development

2 Case study

3 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 18 / 47

The money example

There are a several “great classics” among case studies to learn TDD
and in particular its “rhythm.” Some of the most famous are:

The money example — included in Kent Beck’s milestone book
on TDD

The bowling game — http://www.objectmentor.com/
resources/articles/xpepisode.htm

In the remainder we are going to discuss (some parts of) the money
example. Disclaimers:

the rhythm might seem slow at first, you will be tempted to use
obvious implementation more often than in the example (which
uses fake it very often)

that’s fine, you will find your own rhythm; in the meantime
starting slow will help understand the philosophy

we will take shortcuts, check out the full example in the book

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 19 / 47

http://www.objectmentor.com/resources/articles/xpepisode.htm
http://www.objectmentor.com/resources/articles/xpepisode.htm

Goal: multi-currency money

Instrument Shares Price Total
IBM 1000 25 25 000
GE 400 100 40 000

Total 65 000

⇓

Instrument Shares Price Total
IBM 1000 25 USD 25 000 USD
Novartis 400 150 CHF 60 000 CHF

Total 65 000 USD

From To Rate
CHF USD 1.5

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 20 / 47

Notation — To-do list

When applying TDD you will often stumble upon items you want to
work on (e.g., design improvements) which you have to postpone to
the appropriate phase (e.g., refactoring). To keep track of them we
will use to-do lists like this one:

ToDo

oh yes, we should really do this
but we are currently working on this
this is done
this too

Initial to-do list for the money example:
ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 21 / 47

Multiplication

Write a failing unit test:

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;

}

Which doesn’t compile!

no class Dollar

no constructor

no method times(int)

no field amount

That’s fine! We progressed: we now have a more immediate goal to
achieve (i.e., make the test compile).

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 22 / 47

Multiplication

Write a failing unit test:

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;

}

Which doesn’t compile!

no class Dollar

no constructor

no method times(int)

no field amount

That’s fine! We progressed: we now have a more immediate goal to
achieve (i.e., make the test compile).

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 22 / 47

Multiplication

Write a failing unit test:

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;

}

Which doesn’t compile!

no class Dollar

no constructor

no method times(int)

no field amount

That’s fine! We progressed: we now have a more immediate goal to
achieve (i.e., make the test compile).

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 22 / 47

Multiplication (cont.)

Let’s address one compilation error at a time. . .

1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};
4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from
success—1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 23 / 47

Multiplication (cont.)

Let’s address one compilation error at a time. . .
1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};
4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from
success—1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 23 / 47

Multiplication (cont.)

Let’s address one compilation error at a time. . .
1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};
4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from
success—1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 23 / 47

Multiplication (cont.)

Let’s make the bar green (you won’t like this).

public int amount = 10; // fake i t

The test now passes!
But that is obviously not the right solution so. . . refactor.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 24 / 47

Multiplication (cont.)

We currently have duplication in our code, even if it’s hidden:
the test contains a 5∗ 2 multiplication
the code contains 10(= 5∗ 2)

we want to factor out the duplication.

public Dollar (int amount) {
this .amount = amount ;

}
public void times (int mult ip l ier) {

this .amount *= mult ip l ier ;
}

ToDo
5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD
make amount private
avoid Dollar side effects
allow to have cents

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 25 / 47

Multiplication (cont.)

We currently have duplication in our code, even if it’s hidden:
the test contains a 5∗ 2 multiplication
the code contains 10(= 5∗ 2)

we want to factor out the duplication.

public Dollar (int amount) {
this .amount = amount ;

}
public void times (int mult ip l ier) {

this .amount *= mult ip l ier ;
}

ToDo
5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD
make amount private
avoid Dollar side effects
allow to have cents

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 25 / 47

Functional objects

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;
f i ve . times (3) ;
assertEquals (15 , f i ve .amount) ; // mmmmmhhhh. . .

}

⇓
@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
Dollar product = f i ve . times (2) ;
assertEquals (10 , product .amount) ;
product = f i ve . times (3) ;
assertEquals (15 , product .amount) ; // better design !

}

Red bar again!

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 26 / 47

Functional objects

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;
f i ve . times (3) ;
assertEquals (15 , f i ve .amount) ; // mmmmmhhhh. . .

} ⇓
@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
Dollar product = f i ve . times (2) ;
assertEquals (10 , product .amount) ;
product = f i ve . times (3) ;
assertEquals (15 , product .amount) ; // better design !

}

Red bar again!
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 26 / 47

Functional objects (cont.)

Let’s make it compile:

Dollar times (int mult ip l ier) {
amount *= mult ip l ier ;
return null ; // fake i t

}

test now compiles but doesn’t pass

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 27 / 47

Functional objects (cont.)

Let’s make it pass:

Dollar times (int mult ip l ier) {
return new Dollar (amount * mult ip l ier) ;

}

Green bar: YAY!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD
make amount private
avoid Dollar side effects
allow to have cents
equality

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 28 / 47

Functional objects (cont.)

Let’s make it pass:

Dollar times (int mult ip l ier) {
return new Dollar (amount * mult ip l ier) ;

}

Green bar: YAY!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD
make amount private
avoid Dollar side effects
allow to have cents
equality

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 28 / 47

Equality

@Test
public void dol larsEqual i ty () {

assertEquals (new Dollar (5) , new Dollar (5)) ;

// same as , but clearer than
// assertTrue (new Dollar (5) . equals (new Dollar (5))) ;

}

the test compiles (why?)

but fails (why?)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 29 / 47

Equality (cont.)

public boolean equals (Object object) {
return true ;

}

Test passes!

But we want a proper implementation, so let’s prove we have a bug
in the current implementation. . . with a test!

@Test
public void dol lars Inequal i ty () {

assertNotEquals (new Dollar (5) , new Dollar (6)) ;
}

(indeed we have a bug)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 30 / 47

Equality (cont.)

public boolean equals (Object object) {
return true ;

}

Test passes!

But we want a proper implementation, so let’s prove we have a bug
in the current implementation. . . with a test!

@Test
public void dol lars Inequal i ty () {

assertNotEquals (new Dollar (5) , new Dollar (6)) ;
}

(indeed we have a bug)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 30 / 47

Equality (cont.)

We can now triangulate to a more general (and correct) solution:

public boolean equals (Object object) {
Dollar dol lar = (Dollar) object ;
return this .amount == dol lar .amount ;

}

Green bar!!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
make amount private
allow to have cents
equality
equality against null
equality against Object
5 CHF * 2 = 10 CHF

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 31 / 47

CHF

@Test
public void f rancMult ipl icat ion () {

Franc f i ve = new Franc (5) ;
assertEquals (new Franc (10) , f i ve . times (2)) ;
assertEquals (new Franc (15) , f i ve . times (3)) ;

}

What’s the shortest step which will bring us to green bar?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 32 / 47

CHF (cont.)

Copy/paste/adapt from Dollar!

class Franc {
private int amount ;
public Franc (int amount) { this .amount = amount ; }
public Franc times (int mult ip l ier) {

return new Franc (amount * mult ip l ier) ;
}
public boolean equals (Object object) {

Franc franc = (Franc) object ;
return this .amount = franc .amount ;

}
}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
Dollar/Franc duplication
common equals
common times

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 33 / 47

CHF (cont.)

Refactoring to eliminate duplication:

class Money { protected int amount ; }
class Dollar extends Money { /* . . . */ }
class Franc extends Money { /* . . . */ }

public boolean equals (Object object) { // how about equals?
Money dol lar = (Dollar) object ; // ???
return this .amount = dol lar .amount ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
Dollar/Franc duplication
common equals
common times

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 34 / 47

CHF (cont.)

Refactoring to eliminate duplication:

class Money { protected int amount ; }
class Dollar extends Money { /* . . . */ }
class Franc extends Money { /* . . . */ }

public boolean equals (Object object) { // how about equals?
Money dol lar = (Dollar) object ; // ???
return this .amount = dol lar .amount ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
Dollar/Franc duplication
common equals
common times

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 34 / 47

Equality redux

Bug!

@Test
public void equalityFrancDollar () { // th is passes

assertEquals (new Dollar (5) , new Dollar (5)) ;
assertEquals (new Franc (7) , new Franc (7)) ;

}

@Test
public void inequalityFrancDollar () { // exception !

assertNotEquals (new Dollar (5) , new Franc (6)) ;
assertNotEquals (new Franc (7) , new Dollar (8)) ;

}

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 35 / 47

Equality redux (cont.)

// pull−up in class Money
public boolean equals (Object object) {

Money money = (Money) object ;
return amount == money.amount

&& getClass () . equals (money. getClass ()) ;
}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
Dollar/Franc duplication
common equals
common times

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 36 / 47

Etc.

.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 37 / 47

Outline

1 Test-Driven Development

2 Case study

3 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 38 / 47

TDD — the bigger picture

It is tempting to use only unit tests to implement TDD, but:

you might end up having a lot of unused well-tested units

you don’t know where to start, nor when to stop

That’s why TDD leverages both acceptance (outer feedback loop)
and unit tests (inner feedback loop):

GOOS, Figure 1.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 39 / 47

TDD — the bigger picture

It is tempting to use only unit tests to implement TDD, but:

you might end up having a lot of unused well-tested units

you don’t know where to start, nor when to stop

That’s why TDD leverages both acceptance (outer feedback loop)
and unit tests (inner feedback loop):

GOOS, Figure 1.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 39 / 47

End-to-end testing

Acceptance tests should exercise the system end-to-end

black-box testing at system level
ñ no instantiation/invocation of internal objects
ñ use the system via its interfaces (UI, external API, parsing its

output and producing its inputs, etc.)

test both the system and its processes
ñ build
ñ deployment in a realistic environment

« don’t trust the results of acceptance tests run in development
environments

ñ any other qualification mechanism
« e.g., static analyses, stress testing, benchmark, etc.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 40 / 47

Testing, quality, feedback

External quality: how
well the system meets
the needs of its users

Internal quality: how
well the system meets
the needs of its
developers

e.g., good design:
low coupling & high
cohesion

it is often harder to
push for internal
than external quality,
but we need to do so
to cope with changes

GOOS, Figure 1.3

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 41 / 47

First feature paradox

Writing the first acceptance test at the beginning of a project is
problematic:

we want to test end-to-end the system and its processes
but we don’t have yet the tooling to make the test fail

To get out of the paradox we compromise a bit, implementing a
walking skeleton to kick start TDD.

Definition (walking skeleton)

An implementation of the smallest possible part of real functionality
that we can automatically build, deploy, and test end-to-end.

To implement the walking skeleton we need to automate a lot of
processes. That will force us to understand them better.

Example

The walking skeleton of a DBMS-backed web application will just
show a static “Hello, World” web page.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 42 / 47

First feature paradox

Writing the first acceptance test at the beginning of a project is
problematic:

we want to test end-to-end the system and its processes
but we don’t have yet the tooling to make the test fail

To get out of the paradox we compromise a bit, implementing a
walking skeleton to kick start TDD.

Definition (walking skeleton)

An implementation of the smallest possible part of real functionality
that we can automatically build, deploy, and test end-to-end.

To implement the walking skeleton we need to automate a lot of
processes. That will force us to understand them better.

Example

The walking skeleton of a DBMS-backed web application will just
show a static “Hello, World” web page.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 42 / 47

Walking skeleton

(Some of the) tasks to be completed as part of a walking skeleton:

create a VCS repository, check in the code
ñ requirements: choose Version Control System, choose hosting

automate the build process
ñ requirement: choose build tool (e.g., Make, Maven, etc.)
ñ note: “just click a button in Eclipse” ≠ automation

automate deployment in a realistic environment
ñ requirement: choose packaging/deployment mechanisms

automate test execution
ñ requirement: choose test framework
ñ again: “just click a button in Eclipse” ≠ automation

. . .

iteration 0: implement, deploy, test first feature

Yes, it’s a lot of work!

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 43 / 47

Kick-starting TDD

GOOS, Figure 4.2

Note: “Broad-Brush Design” ≠ “Big Design Up Front (BDUF)”

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 44 / 47

TDD as a whole

Periodically reassess both your understanding of the problem and
the toolchain

GOOS, Figure 4.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 45 / 47

TDD as a whole

Periodically reassess both your understanding of the problem and
the toolchain

GOOS, Figure 4.3

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 45 / 47

Test suites organization

unit and integration test suites
ñ should always pass
ñ should run fast

acceptance test suite
ñ catch regressions
ñ should always pass
ñ might take longer to run

new acceptance test suite
ñ corresponds to work in progress
ñ will keep on failing during inner loop iterations

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 46 / 47

Bibliography

Steve Freeman and Nat Pryce
Growing Object-Oriented Software, Guided by Tests 2

Addison-Wesley, 2009.

Kent Beck
Test Driven Development: By Example
Addison-Wesley, 2002.

Martin Fowler
Refactoring: Improving the Design of Existing Code
Addison-Wesley Professional, 1999.

Kent Beck
Simple smalltalk testing: With patterns
The Smalltalk Report 4.2 (1994): 16-18.
available at http://www.xprogramming.com/testfram.htm

2. referred to as the “GOOS” book in this lecture slides
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2018–2019 47 / 47

http://www.xprogramming.com/testfram.htm

	Test-Driven Development
	Case study
	Bootstrapping TDD

