
Towards Universal Software Evolution Analysis
Antoine Pietri

Inria
Paris, France

antoine.pietri@inria.fr

Stefano Zacchiroli
University Paris Diderot and Inria

Paris, France
zack@irif.fr

Abstract—Software evolution studies have mostly focused on
individual software products, generally developed as Free/Open
Source Software (FOSS) projects, and more sparingly on software
collections like component and package ecosystems. We argue in
this paper that the next step in this organic scale expansion is
universal software evolution analysis, i.e., the study of software
evolution at the scale of the whole body of publicly available
software.

We consider the case of Software Heritage, the largest existing
archive of publicly available software source code artifacts (more
than 5 B unique files archived and 1 B commits, coming
from more than 80 M software projects). We propose research
requirements that would allow to leverage the Software Heritage
archive to study universal software evolution. We discuss the
challenges that need to be overcome to address such requirements
and outline a research roadmap to do so.

Index Terms—software evolution, source code, open source
software, free software, digital preservation

I. INTRODUCTION

Nearing the closing of the fourth decade since Lehman’s
seminal work [14], the literature on software evolution is
abundant [12]. In particular, the practice of studying Free/Open
Source Software (FOSS) projects from various software evolu-
tion angles has flourished providing researchers with treasure
troves of software-related data to analyze [5], [18]. And yet,
most present-day evolution studies still focus on the evolutive
patterns of individual software projects, at fine-grained gran-
ularity (e.g., commits). There is a clear interest in doing so,
for instance to ascertain which factors contribute to maximize
software health [3].

Larger-scale studies have been performed [7], [11], reaching
up to the scale of the evolution of specific software ecosystems
(app stores, package manager repositories, etc.), but paying the
price of a more coarse-grained granularity (e.g., releases). The
current “ceiling” in software evolution studies hence appears
to be, on the one hand, the scale of software ecosystems and,
on the other hand, the granularity of commits.

Arguably, one of the next frontier in the field should be
studying what we call universal software evolution, that is:
the study of software evolution at the largest scale possible
at the finest possible granularity. At present, the largest scale
possible is that of the software commons, i.e., the body of all
software which is available at little or no cost and which can
be reused with few restrictions [4], [13]; the finest observable
granularity is that of commits, as captured by state-of-the-art
version control systems (VCSs) [17].

In the remainder of this paper we consider the challenge
of studying universal software evolution using the Software
Heritage archive [2], [10] (described in Sec. II) as a proxy
for the software commons. We present the requirements for
enabling scientists in analyzing universal software evolution
(Sec. III), discuss the challenges to be overcome to address
them on top of Software Heritage (Sec. IV), and present a
roadmap to do so (Sec. V).

II. SOFTWARE HERITAGE

Launched in 2016, the Software Heritage project [2] has
the stated mission of collecting, preserving, and sharing all
software that is available in source code form, together with
its development history. Even though full coverage w.r.t. the
software commons is a moving target for any archive, the
Software Heritage one is currently the best approximation for
enabling studying universal software evolution, both in terms
of coverage and granularity.

The Software Heritage data model [10] is a Merkle
DAG [15], schematized in Figure 1. Each node is identified
by a persistent, cryptographic-strong identifier [9] and dedu-
plication is enforced on all nodes. Each node in the diagram
corresponds to an archived source code artifact, produced as
part of software development. The following kinds of artifacts
are supported:

Contents: (or “blobs”) the raw content of files; note that
filenames are context-dependent and stored only as part of
directory entries.

Directories: lists of named directory entries, where each
entry can point to content objects (“file entries”), revisions
(“revision entries”), or other directories (“directory entries”).
Each entry is associated to a local name (i.e., a relative
path without any path separator) and permission metadata and
modification timestamps.

Revisions: (or “commits”) point-in-time captures of the
entire source tree of a development project. Each revision
points to the “root” directory of the project source tree. Also,
revisions are associated to commit metadata like timestamps,
commit message, author, etc.

Releases: (or “tags”) revisions that have been marked as
noteworthy with a specific, usually mnemonic, name (e.g., a
version number). Each release points to a revision and might
include additional descriptive metadata.

Snapshots: point-in-time captures of the full state of a
project development repository. Differently from revisions,



Fig. 1. Software Heritage data model: a uniform Merkle DAG containing
source code artifacts and their development history

which capture the state of a single development line (or
“branch”), snapshots capture the state of all branches in a
repository and allow to deduplicate identical forks of it across
the archive.

This data model is uniform in the sense that it captures in
a single graph both source code trees and their development
histories. It is also canonical as it allows to store (and dedu-
plicate) source code artifacts coming from different version
control systems, source packages, etc.

Software Heritage also stores provenance information (not
shown in the picture). Each time a software origin is visited,
its full state is captured by a snapshot object (novel or reused)
and a 3-way mapping between the origin (usually as its URL),
the time of the visit, and the snapshot object is added to an
append-only journal of crawling activities.

The actual Software Heritage archive1 covers major active
development forges such as GitHub and GitLab.com, gone
ones like Gitorious and Google Code, as well as GNU/Linux
distributions such as Debian and language specific component
ecosystems such as PyPI. All in all the archive contains more
than 5 billion unique source code files and more than 1 billion
unique commits coming from more than 85 million projects.
Active software origins (GitHub, GitLab, Debian, etc.) are
periodically re-crawled to keep the archive content fresh. There
is some update lag (potentially up to a couple of months
for large forges), but that does not appear to be problematic

1https://archive.softwareheritage.org, accessed November 1st, 2018

for universal software evolution studies considering typical
publication delays.

III. RESEARCH REQUIREMENTS

There is clear interest on the part of empirical software
engineering researchers in accessing the Software Heritage
dataset for various purposes. After preliminary conversations
with researchers working in the field, we have categorized their
needs based on which type of data they are interested in:

Content access. One of the most common requests is to
obtain a set of file contents stored in the archive based on
some specific criterion. This specifically pertains to the binary
data contained in the archived objects. Those requests are
usually made in the purpose of analysing the code itself:
code patterns recognition, language detection, static analysis,
malware detection, and so on.

Occasionally, those requests also require some data prepro-
cessing to be applied to the file contents before the analysis
(comments removal, data or binary strings removal, etc.).

Filtering on metadata. It is generally useful to filter the
query results depending on some criterion on the metadata
of the files. This metadata can be either already present
in the archived repositories (file extensions, file names, file
sizes, directory depth. . . ), or derived from the data (MIME
types, language detected, license. . . ). This metadata has to be
precomputed and indexed along with the files.

Content search. The ability to perform full-text search for
specific code fragments or patterns is very useful to focus
computations on the relevant parts of the code, and it requires
an up to date full-text search index.

History graph: When analyzing not only the software itself
but its evolution through time, accessing the revision history
graph along with the associated metadata (authors, commit
messages, etc.) and being able to examine the relationships
between the different objects in the revision trees is paramount.
In the context of Software Heritage, the relationships are
also expressed between different repositories: forks point to
the same ancestors, directories that were moved from one
repository to another point to the same object, etc.

Provenance indexing: While the software DAG works top-
down (the nodes only point to their children i.e., their content,
but never their parents), it’s also sometimes necessary to be
able to list the different objects that point to a specific object.
There are multiple applications for that: find the possible
extensions of a file, the different repositories that contain a
code fragment, a directory or a revision, etc.

In addition to providing these different data filtering and
lookup methods, it should be done in an expressive and generic
enough manner, to allow for different categories of data to be
accessed in all the steps of the analyses.

Most of the time the final result of the computation is
not very large compared to the volume of data processed,
but rather just a product of a reduce (in the MapReduce
[8] sense) operation on the computed results, so aggregating
computations should have a small overhead and avoid large
data transfers.

https://archive.softwareheritage.org


IV. CHALLENGES

Satisfying all the requirements outlined above for the entire
dataset requires addressing a lot of technical challenges.

A. Data volume

Most of the challenges in the way of providing some form
of access to the data stem simply from the sheer size of the
software archive. Allowing people to locally retrieve a large
chunk of the archive to perform a local computation is very
impractical at the Software Heritage scale in most cases, both
from a network transfer perspective and form a local storage
one.

Handling the file contents of the archive requires a lot of
resources and expertise. The sheer size of the blobs (currently
~200 TB) demands a lot of storage capacity and the blobs
cannot easily be stored on a single machine using consumer-
grade storage. The unusual size distribution of the blobs,
whose median size is approximately 3 kB, makes it also hard
to use industry-grade storage solutions, because they often
are not designed to store a very large quantity of very small
files. On conventional systems, some limitations on inode
management may apply. Other distributed storage solutions
like Ceph cannot easily handle a large amount of small files
(because of the per-file overhead needed for replication [1]),
and require some form of content packing to take place
beforehand.

While compressing the blobs works well to reduce the size
with a compression ratio of ~2 (estimated on a random sample
of the archive of about 1%), compressing similar contents
together based on content chunking techniques with rolling
hashes [19] [16] are usually not worth the added complex-
ity, with a compression ratio of ~1.5 on the whole archive
(estimated on 0.1% of the blobs, sample taken contiguously
by date of insertion in the archive to preserve the locality of
similar files).

The size of the Merkle DAG itself is more reasonable (the
~10 billion nodes and ~100 billion edges of the graph take
~1.2 TB in the Apache Parquet format), but using it efficiently
often requires some indexes on the hashes, which significantly
increases its size on-disk. Moreover, some intensive processing
on the graph itself could require having it stored directly
in main memory, which is difficult to achieve on standard
machines that have orders of magnitude less RAM.

Even if the recipient of the dataset already has the storage
capacity and expertise to handle such a vast amount of
data, transferring it through the network is impractical and
expensive. Sending the whole dataset through a connection
with a speed matching the common industry standard of
1 Gbps would take more than 20 days, assuming the absence
of sequential overhead between fetches.

B. Representation mismatch

Researchers and data scientists usually try their experiments
by prototyping on small sample sizes, before reaching out
to experiment on larger datasets. Doing so, they generally
use tools that are fit for specific data representations. Thus,

they often expect the data to be presented in specific formats.
One of the challenges of making software analysis accessible
to them is to help them transform the data from a format
well-suited for archival to a format suited for large-scale
analysis/massive computation.

Files and directories contained in a specific revision are
usually expected to be represented as on-disk filesystem trees,
so the children of the directories can directly be accessed
through the primitives of the filesystem. In the Software
Heritage archive, the de-duplication requires this to go through
an additional index of the hashes of the directories. The
interface therefore has to provide a utility to “flatten” the com-
pact representation into a more classical directory structure,
although doing so systematically would invalidate the benefits
of de-duplication.

For the revision graph itself, there is no current standard
of representation, so most of the research experiments so far
have worked on tool-specific representations (often depending
on the version control system used). While there is value in
providing a universal representation for commit-level software
evolution from different sources, it is still important to provide
a data representation that does not stray too far from what
those domain-specific analysis tools usually expect.

C. Provenance mappings
Making provenance mappings accessible to allow looking

up the different places where an object can be found is a
hard problem, because of the combinatorial explosion of the
ancestor relationship mappings. A single file content can be
found in thousand if not millions of origins. There is a difficult
balance to strike between reducing the size of the mappings
using intermediate objects in the relationship as layers to
compress the volume of edges, and reducing as much as
possible the amount of indirections that require index hits for
performance reasons.

Moreover, maintaining this (bottom-up) provenance index
is harder than its top-down counterparts, since there is no way
to know in advance all the objects of the relationship, and thus
represent them with an intrinsic hash for indexing.

D. Metadata misalignment
Usually, the code unit on which experiments are performed

are software “projects”. While this concept makes sense at
the metadata level (a project usually has a homepage URL, a
name, and a single origin for its source code), this concept
is lost in a fully-deduplicated representation of Software
Heritage. This is because: repositories can contain full clones
of other repositories, it is hard to distinguish random forks of
a project from the official one, etc.

In order to bridge the notion of “projects” to the Software
Heritage archive, there has to be ways of cross-referencing
the objects in the archive with the metadata surrounding the
projects collected during archival.

E. Repeatability and reproducibility
An important part of scientific experiments is reproducibil-

ity, which is something to keep in mind in making a very



large and constantly-evolving dataset available for research
applications. While intrinsic hashes guarantee full consistency
of the data at the snapshot level, it might be useful to provide a
way to describe the state of the whole archive at some point in
time. If we are able to reconstruct a previous state of the whole
archive from a timestamp, including this timestamp along with
the experiment methodology will allow the experiment to be
repeated on the exact same dataset as when it was executed
for the first time. That way, an experiment can be repeated
by executing it on the timestamped state of the archive, and
reproduced by executing it on a different timestamp.

While the trivial way of timestamping a Merkle DAG is
simply to hash the list of roots, it does not work when the
graph is incomplete. As the Software Heritage DAG has a
lot of holes (missing revisions, files, etc.) that can be added or
removed without changing the intrinsic identifier of the nodes,
relying solely on those hashes is not sufficient to reliably get
a timestamp of the archive as a whole.

One actual way to achieve this would be to store the
evolution of the archive as a journal of insertions that can
be rewinded or replayed, and some static data containing the
time of insertion of objects.

F. Expressivity

Researchers who want to run analyses on the Software Her-
itage dataset will perform queries on the archive to describe
the computations and the part of the archive they will be run
on. Running these queries on the archive will require a query
API that can express these different use cases.

The expressive power of the query language determines
how easy it is to use the different data selection features,
computation primitives and result aggregations when running
queries on the dataset. The semantics of the language have to
provide ways of representing and combining those different
operations so that the breadth of computations that queries
are able to represent is as wide and generic as possible for the
use-cases we identified.

V. ROADMAP

Dataset
in public

clouds

Local
dataset
mirrors

Collect
use-cases

Elicit
Query DSL

Index
derived data

In-memory
graph

A first, preliminary step of this work is to make the dataset
available in some format suitable for scale-out analysis, so
that Software Heritage and other researchers can perform
preliminary experiments on it. Some public cloud computing
providers like Amazon Web Services or Google Cloud have
public datasets programs, on which we can make the Software
Heritage dataset publicly available without bearing the cost of
the storage.

While allowing people to run queries directly on a public
cloud instance is well-suited for one-off experiments, it does

not work well for a more intensive use. Researchers having
access to hardware resources and software engineering skills
might find it more cost-efficient to run their experiments on a
local copy of the archive. As we build a mirroring pipeline and
infrastructure to keep the Software Heritage public datasets up
to date, we need to provide a way for researchers to have their
own local copy of the dataset for intensive uses.

Once the dataset is available in some format for people to
run queries on it, the paramount step to guide the way of
making analysis as accessible as possible will be to collect
real-world use cases: what are the types of queries that
scientists want to run? What are the data and metadata filters
that they need? What is the kind of information that is the
most often retrieved from the data model?

After having collected these use-cases, it will then be
possible to elicit a domain specific language that would cover
the kind of queries required for the use-cases we identified, to
offer a better accessibility than simply doing raw queries on
the database. This language will have to be expressive enough
to address the difficulties we outlined, notably by allowing
flexible manipulations of the data representations. It should
also be as simple as possible to express constraints on the data
used for the computations, and to limit the span of the queries.
The language has to possess powerful aggregation capabilities,
to avoid transferring large amounts of data and instead sending
the result of the reduction of the computation directly.

Real-world use cases might also exhibit patterns of access
to data derived from the dataset, like diffs between revisions,
branching and merging histories, etc. Isolating this “derived
data” to index it in the dataset would also be very useful, as it
would significantly improve the performance of computations
on these common use cases.

While the cost of disk access for the file contents cannot be
avoided, it might be interesting performance-wise to store as
much of the history graph as possible directly in memory. The
on-disk size of the database is currently around 4 TiB, which
indicates an order of magnitude of a size that could be fitted
reasonably well in memory. We examined some compression
techniques [6] that would allow us to represent the history
graph as a sparse adjacency matrix. If these results allow us to
drastically compress the graph, it might lower the cost barrier
for fast in-memory computations.

VI. CONCLUSION

This paper presents the challenges of making Software
Heritage the universal analysis platform for software evolution.
We have presented a roadmap for answering the main needs
we outlined. While the end goal is to build a fully-fledged
platform with APIs that allow running remote computations on
the archive, the raw form of the dataset can be made available
sooner on public clouds, and will allow us to collect use-cases
to refine our vision of the platform. We expect this availability
to ease the work of scholars working on software evolution
analysis, both at the micro and macro level.



REFERENCES

[1] [ceph-users] ceph behavior on (lots of) small objects (rgw, rados +
erasure coding)? Ceph Users Mailing List, 2018.

[2] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli.
Building the universal archive of source code. Communications of the
ACM, 61(10):29–31, October 2018.

[3] Bram Adams, Eleni Constantinou, Tom Mens, and Gregorio Robles,
editors. Proceedings of the 1st International Workshop on Software
Health, SoHeal@ICSE 2018, Gothenburg, Sweden, May 27, 2018. ACM,
2018.

[4] Donald Beagle. Conceptualizing an information commons. The Journal
of Academic Librarianship, 25(2):82–89, 1999.

[5] Hongyu Pei Breivold, Muhammad Aufeef Chauhan, and Muhammad Ali
Babar. A systematic review of studies of open source software evolution.
In Software Engineering Conference (APSEC), 2010 17th Asia Pacific,
pages 356–365. IEEE, 2010.

[6] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. Compact
representation of web graphs with extended functionality. Information
Systems, 39:152–174, 2014.

[7] Matthieu Caneill, Daniel M. German, and Stefano Zacchiroli. The
debsources dataset: Two decades of free and open source software.
Empirical Software Engineering, 22:1405–1437, June 2017.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, 2008.

[9] Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. Iden-
tifiers for digital objects: the case of software source code preservation.
In iPRES 2018: 15th International Conference on Digital Preservation,
2018.

[10] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and
how to preserve software source code. In iPRES 2017: 14th International
Conference on Digital Preservation, 2017.

[11] Jesus M Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr,
Juan José Amor, and Daniel M German. Macro-level software evolution:
a case study of a large software compilation. Empirical Software
Engineering, 14(3):262–285, 2009.

[12] Israel Herraiz, Daniel Rodriguez, Gregorio Robles, and Jesus M
Gonzalez-Barahona. The evolution of the laws of software evolution:
A discussion based on a systematic literature review. ACM Computing
Surveys (CSUR), 46(2):28, 2013.

[13] Nancy Kranich and Jorge Reina Schement. Information commons.
Annual Review of Information Science and Technology, 42(1):546–591,
2008.

[14] Meir M Lehman. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980.

[15] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, Advances in Cryptology - CRYPTO
’87, A Conference on the Theory and Applications of Cryptographic
Techniques, Santa Barbara, California, USA, August 16-20, 1987, Pro-
ceedings, volume 293 of Lecture Notes in Computer Science, pages
369–378. Springer, 1987.

[16] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-
bandwidth network file system. In ACM SIGOPS Operating Systems
Review, volume 35, pages 174–187. ACM, 2001.

[17] Diomidis Spinellis. Version control systems. IEEE Software, 22(5):108–
109, 2005.

[18] MM Mahbubul Syeed, Imed Hammouda, and Tarja Systa. Evolution of
open source software projects: A systematic literature review. Journal
of Software, 8(11):2815–2830, 2013.

[19] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu,
Qing Liu, and Yucheng Zhang. Fastcdc: a fast and efficient content-
defined chunking approach for data deduplication. In USENIX Annual
Technical Conference, pages 101–114, 2016.


	Introduction
	Software Heritage
	Research requirements
	Challenges
	Data volume
	Representation mismatch
	Provenance mappings
	Metadata misalignment
	Repeatability and reproducibility
	Expressivity

	Roadmap
	Conclusion
	References

