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ABSTRACT
Software distributions in the FOSS world rely on so-called
package managers for the installation and removal of pack-
ages on target machines. State-of-the-art package managers
are monolithic in architecture, and each of them is hard-
wired to an ad-hoc dependency solver implementing a cus-
tomized heuristics. In this paper we propose a modular
architecture allowing for pluggable dependency solvers and
backends. We argue that this is the path that leads to the
next generation of package managers that will deliver bet-
ter results, accept more expressive input languages, and can
be easily adaptable to new platforms. We present a work-
ing prototype—called MPM—which has been implemented
following the design advocated in this paper.
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1. INTRODUCTION
Free and Open Source Software (FOSS) distributions, as

well as other complex software platforms, strive to provide
modular software components (or packages) that can be as-
sembled to provide the user with the desired functionali-
ties. Packages are described by stanzas of meta-information;
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these include complex relationships to other packages de-
scribing the requirements for a package to run properly on a
target system. So-called package managers are used to per-
form installation, upgrade and removal of packages on target
machines. Package managers incorporate numerous func-
tionalities: (trusted) retrieval of components from remote
repositories; planning of upgrade paths that respect inter-
component constraints (also known as dependency solving);
user interaction to allow for fine-tuning of the choice of com-
ponents; and finally the actual deployment of upgrades by
removing and adding components in the right order, abort-
ing the operation if problems are encountered.

Until recently, package managers in FOSS distributions
followed a monolithic architecture (re-)implementing all func-
tionalities to fit specific formats of meta-data and user re-
quests. In particular, dependency solving was often im-
plemented by ad-hoc algorithms instead of employing well
known solver technologies. Surprisingly little was known
about the intrinsic complexity of dependency solving. It is
only in [6] that some of the authors have shown that for
packages in GNU/Linux distributions determining whether
a component can be installed is an NP-complete problem.
This result has been established by showing the equivalence
of package installation with Boolean satisfiability, which has
opened the door to show that installation in other compo-
nent models is NP-complete as well. These results and the
straightforward encoding into Boolean satisfiability [13] have
pushed various communities to incorporate SAT solvers di-
rectly in package managers, instead of writing ad-hoc solvers
as it was previously the case [4, 10, 17, 18].

In this paper we argue that decoupling dependency solving
from other functionalities will yield better package managers

• that succeed in finding an upgrade path where existing
package managers fail,

• that are more powerful by accepting an input language
that is more expressive than the ones currently sup-
ported,

• and that are more flexible by being easily adaptable to
new platforms.

We propose a modular architecture to build component man-
agers based on two domain specific languages (DSL). In par-
ticular we describe MPM, the Mancoosi Package Manager,
which is a proof-of-concept implementation of this modu-
lar package manager architecture for Debian based systems.
MPM largely outperforms the mainstream package man-
agers available in Debian, in terms of quality of the proposed
solution.



The rest of the paper is structured as follows: Section 2
introduces the package installation problem. We discuss the
state of the art in package solvers used in FOSS distribu-
tions, we give a concrete example of such problems and show
the solution proposed by MPM. In Section 3, we discuss the
design of a modular package manager and we present two
domain specific languages. Section 4 introduces a new mod-
ular package manager which is able to cope efficiently with
different installation scenarios. Section 5 gives an overview
of the performances of MPM in comparison with other pack-
age manages. Before concluding, Section 6 discusses related
research.

2. THE UPGRADE PROBLEM
A stable GNU/Linux distribution nowadays undergoes a

strict quality assurance process, and contains only one ver-
sion of each package1. As a consequence, the initial instal-
lation of a GNU/Linux system from scratch usually runs
little risk of producing dependency problems. Installing, re-
moving, and upgrading components in such configuration
is a task that is correctly handled by the large majority of
legacy package managers.

However, as new releases are rolled out, it is common prac-
tice to add the new stable distribution as an extra source of
packages (or package “baselines”) and use it to perform up-
grades on the machines, instead of reinstalling the machine
from scratch, or performing a full upgrade. Unfortunately,
as we will show in Section 5, using multiple package sources
makes the problem considerably harder because there are
now multiple versions of packages from which to choose, and
the set of possible configurations of the machine grows very
quickly.

As time goes by, this situation often leads to what is
known as dependency hell : the user gets entangled into an
inextricable web of dependencies and conflicts that state-of-
the-art package managers are unable to handle. Users are
left on their own, and as a last resort the user is requested
to guide interactively the package manager, by suggesting
choices among packages which may seem totally unrelated
to the original request.

2.1 State of the Art
FOSS distributions are mainly divided into RPM and De-

bian based distributions. This division is imposed by dif-
ferent package formats, and consequently different low-level
package managers (rpm versus dpkg) and different formats
of metadata. The most used package managers in the RPM
universe are urpmi, yum, yast, and apt-pbo. Urpmi and yum

are front-ends to rpm and have a monolithic architecture and
a custom dependency solver. Yast, on the other hand, uses
an external SAT solver (libzypp), but preferences are hard
coded in the problem encoding [19, 10]. apt-pbo is a fork
of apt-get and uses a pseudo-Boolean solver as dependency
solving engine. It is possible to specify custom optimization
functions to reflect user preferences [17].

The Debian ecosystem of package managers is less frag-
mented with apt-get and aptitude playing the main role,
and many other alternative package managers striving to

1Notwithstanding the case where different upstream ver-
sions of the same software are organised into packages with
distinct names, as it is often the case for packages of the
Linux kernel

gain acceptance in the community. Notably, the cupt pack-
age manager [12] in its latest revision implements an exper-
imental CUDF (see Section 3.1) back-end. apt-get and ap-

titude are both based on libapt, which is a low-level library
used to handle user configuration files, package retrieval,
and installation planning. Both apt-get and aptitude con-
tain an ad-hoc dependency solver. Despite performing very
well on a stable release of the debian distribution, it shows
its shortcoming when mixing repositories of different debian
releases, and when dealing with unusually complicated sce-
narios ([7], see also Section 2.2). apt-get has an experimen-
tal support to use an external SAT solver, however it is still
not possible to specify user criteria directly [9].

One exception to this classification is the cross distribu-
tion package manager smart. It has a modular architecture
w.r.t. the package installer backend and the meta-data for-
mat. The notion of a best solution is specified by a policy
which assigns weights to different solutions, and thus al-
lows smart to choose the most suitable one. By trying to
obtain an optimal solution, the Smart dependency solving
algorithm explores a potentially huge solution space, using
some heuristics to avoid getting lost.

The problem of finding an optimal installation candidate,
w.r.t. some criteria, is computationally hard and is treated
differently by different tools. Some rely on special heuris-
tics, like Apt and Urpmi, that perform reasonably well on
well-behaved repositories, and ensure that an answer will
be reported in a limited time, but at the price of giving up
completeness. These tools may fail to find an installation
candidate when it is located too far from the solution sug-
gested by the heuristics. Others, like Smart, strive to be
complete, and really try to explore the solution space, using
some special heuristic to try and limit the effect of the com-
binatorial explosion of the solution space, but at the price of
having unacceptably high computation times on some cases;
as we have seen, the solution found is not necessarily always
optimal either.

2.2 A problematic example
In this section, we present a real world example of this

unsatisfactory situation: we have taken a stable installation
of the Debian sarge release, gradually added some more
recent releases, etch and lenny, and looked at how diffi-
cult it is to install a single, apparently innocuous package,
python-simpy, that provides a process-based discrete-event
simulation language based on Python. This configuration
is far from unusual since sarge, etch and lenny are two
consecutive stable Debian releases, which have passed strict
quality assurance tests.

In this particular configuration, there are three versions
of the python-simpy package: 1.5.1-2, 1.7.1-1 and 1.8.1.

We tested apt-get, aptitude, cupt and smart, whose de-
fault behaviour is to try and install the latest available ver-
sion, that is 1.8.1. The results obtained in our tests (see
Section 5) are not encouraging.

Installing python-simpy with apt-get.
Apt-get proposes to the user a solution with 119 upgraded

packages, and 203 newly installed, which might be accept-
able for a user enjoying a lot of disk space. Unfortunately,
apt-get at the same time requires to remove 414 components
to proceed, which is clearly unacceptable.

apt-get --without-recommends install python-simpy



The following extra packages will be installed:
binutils ca-certificates coreutils cpp cpp-4.3
...
tk8.4 totem-common whois xinit xkb-data zlib1g

The following packages will be REMOVED:
abiword-common abiword-gnome amor apt apt-utils
...
xserver-common xserver-xfree86 yelp zenity

The following NEW packages will be installed:
ca-certificates cpp-4.3 dbus
...
system-tools-backends totem-common whois

The following packages will be upgraded:
binutils coreutils cpp debconf dia-libs
...
ocaml-interp perl perl-base perl-modules

119 upgraded, 203 newly installed, 414 to remove
and 338 not upgraded.

Installing python-simpy with aptitude.
Aptitude’s solution is more conservative with “only” 25

packages upgraded, 16 newly installed and 18 to remove.

aptitude --without-recommends install python-simpy
The following NEW packages will be installed:

debian-archive-keyring{a} [2010.08.28~lenny1]
... python-simpy [1.8-1] ...
python2.5-minimal{a} [2.5.2-15+lenny1]

The following packages will be REMOVED:
aptitude{a} [0.2.15.9-2] dia-common{a}
...
synaptic{a} [0.55+cvs20050503-4] tasksel{a}

The following packages will be upgraded:
apt [0.5.28.6 -> 0.7.20.2+lenny2]
...
zlib1g-dev [1:1.2.3.3.dfsg-12]

25 packages upgraded, 16 newly installed,
18 to remove and 784 not upgraded.

Installing python-simpy with cupt or smart.
The last two package managers in our list do not manage

to find a solution in an acceptable time: cupt fails immedi-
ately, while smart enters into a long computation phase that
we aborted after 10 minutes.

smart install python-simpy
Loading cache...
Updating cache... ####################### [100%]

Computing transaction...
^C

2.3 Using the Mancoosi Package Manager
As we will show in Section 3.2, the Mancoosi Package

Manager (MPM) allows the user to specify high-level user-
defined optimization criteria, which are used to choose an in-
stallation solution well adapted to the user needs, and which
is computed by resorting to an efficient external solver.

On our example, calling MPM with a very conservative
policy, namely to minimize the number of removed and changed
packages, leads to a very simple solution which consists in
installing an old version of the package (which might be suf-
ficient for the user’s needs).

mpm -c "-removed,-changed" install python-simpy
Summary of proposed changes:
new: 2
removed: 0

replaced: 0
upgraded: 0
downgraded: 0
unsatisfied recommends:: 97
changed: 2
uptodate: 128
notuptodate: 824

New packages:
python-simpy (1.5.1-2) python2.3-simpy (1.5.1-2)

The user may require a different version of the package by
specifying it on the command line, as python-simpy=1.8.1.
This allows to obtain a solution from MPM that can be
directly compared to the ones found in the previous exper-
iments run with the legacy package managers. In this case
MPM provides a solution that is slightly better than the
one found by aptitude with 15 new, 17 removed and 21
upgraded packages.

mpm -c "-removed,-changed" install python-simpy=1.8.1
Summary of proposed changes:
new: 15
removed: 17
replaced: 1
upgraded: 21
downgraded: 0
unsatisfied recommends:: 92
changed: 54
uptodate: 146
notuptodate: 801
New packages:
python-minimal (2.4.4-2) python-simpy (1.8-1)
...
readline-common (5.2-3.1)
Removed packages: aptitude (0.2.15.9-2)
dia-gnome (0.94.0-7sarge3) gnome (64)
...
python2.3-numeric (23.8-1) synaptic
Replaced packages: linux-kernel-headers
Upgraded packages: apt [0.5.28.6] (0.7.20.2+lenny2)
(0.7.20.2+lenny2) binutils [2.15-6]
...
libxslt1.1 [1.1.12-8] (1.1.19-3)

In this particular example, the total running time of MPM
is 10 seconds, 2 of which are spent by the solver to find a solu-
tion and 8 to write the CUDF file and read the solution. For
comparison, apt-get took 3 seconds total running time, and
aptitude 8 seconds. In order to compete with legacy solvers
we will have to speed up the CUDF file handling between the
external solver and the package manager component. How-
ever, since the solver component takes only a minor fraction
of the running time, we are confident that these details can
be easily addressed in future release of MPM.

As we will see in the rest of the paper, this is not an iso-
lated case: when confronted with installation problems mix-
ing different repositories, MPM significantly outperforms all
the legacy package managers.

3. MODULAR PACKAGE MANAGEMENT
Among all functionalities of a package manager, depen-

dency solving is the most difficult, recurrent, and apparently
underestimated problem. Re-developing from scratch de-
pendency solvers as soon as dependencies and conflicts are
introduced in yet another component model seem to have
not served well FOSS users thus far. We argue that an
alternative, more modular, approach is possible by treating



dependency solving as a separate concern from other compo-
nent management issues. The goal is to decouple the evolu-
tion [sic] of dependency solving from that of specific package
managers and component models.

To attain this goal we have designed a modular architec-
ture based on two domain specific languages; the first is a
common format for describing package upgrade problems,
CUDF that is both distribution-agnostic and neutral w.r.t.
the solving technology; the second is a simple, yet powerful
optimization language apt to specify common user require-
ments and to select an optimal solution.

3.1 Common Upgradeability Description
Format

CUDF (for Common Upgradeability Description Format)
is a specialised language used to describe upgrade problem
instances, that is presented in detail in [16]. Here we just
recall that it has been designed with the following goals in
mind:

Platform independence.
We want a common format to describe upgrade scenar-

ios coming from diverse environments. As a consequence,
CUDF makes no assumptions on a specific component model,
version schema, dependency formalism, or package manager.

Solver independence.
In contrast to encodings of inter-component relations which

are targeted at specific solver techniques, CUDF stays close
to the original problem, in order to preserve its structure
and avoid bias towards specific solvers.

Readability.
CUDF is a compact plain text format which makes it easy

for humans to read upgrade scenarios, and facilitates inter-
operability with package managers.

Extensibility.
Only core component properties that are shared by main-

stream platforms and essential to the meaning of upgrade
scenarios are predefined in CUDF. Other auxiliary proper-
ties can be declared and used in CUDF documents, to allow
the preservation of relevant information that can then be
used in optimization criteria, e.g. component size, number
of bugs, etc.

Formal semantics.
CUDF comes with a rigorous semantics that allows pack-

age manager and solver developers to agree on the meaning
of upgrade scenarios. For example, the fact that self-conflicts
are ignored is not a tacit convention implemented by some
obscure line of code, but a property of the formal semantics.

Figure 1 shows the concrete syntax of CUDF document
in a sample upgrade scenario.

3.2 Optimization criteria
The second DSL that we present is a simple language to

specify optimization criteria.
It is easy to remark that a user request may have exponen-

tially many solutions when many components are installable
independently. Hence, it is necessary to allow users to ex-

preamble:
property: suite: enum(stable ,unstable) = \
"stable"

property: bugs: int = 0

package: car
version: 1
depends: engine , wheel , door , battery
instal led : true
bugs: 183

package: bicycle
version: 7
suite: unstable

package: gasoline -engine
version: 1
depends: turbo
provides: engine
conf l icts : engine , gasoline -engine
instal led : true

...

request:
in s ta l l : bicycle , gasoline -engine = 1
upgrade: door , wheel > 2

Figure 1: Sample CUDF document.

press their preferences about the solutions they really look
for.

The state-of-the-art approach in FOSS package managers
is to present one particular solution found according to some
built-in strategies (generally unknown to the user) and then
allow the user to interactively change the solution.

We propose an alternative approach which consists in let-
ting the user specify high-level criteria to capture what she
considers important in a solution: she may be concerned
about the packages that are changed, the packages that are
not up to date, the packages that get removed, or even “the
number of installed security fixes”, or “the overall installed
size”. Our proposal for a high-level user preference language
is simple yet expressive:

1. define a dictionary of useful criteria: our prototype
supports, among others, removed, changed, new, not-
uptodate, which are self-explanatory;

2. define a dictionary of aggregation functions lex, leximin,
leximax, etc. Our prototypes assumes by default a
lexicographic ordering of the criteria;

3. write the user preference as an expression op(◦c1, . . . , ◦cn)
where op is an aggregation function, ◦ ∈ {+,−} (for
maximize/minimize, resp.), and the ci are criteria.

Using this formalism, it is quite easy to define a paranoid
preference as

paranoid = lex (−removed ,−changed)

The solution scoring best under this criterion will be the one
with the minimum number of removed functionalities, and
then with the minimum number of changes.

This is the optimization function we used for the bench-
marks reported in the next section, but it is straightforward



Figure 2: Modular package manager architecture

to write many others criteria, like

trendy = lex (−removed ,−notuptodate,−new)

which is a criterion capturing the preferences of a user who
wants to have the latest version of each package installed,
as far as no functionality is removed, and without installing
more packages than required.

3.3 A modular architecture
The proposed modular architecture is shown in Figure 2.

Using this framework, the developer of a package manager
for a specific component distribution only needs to be con-
cerned with the front-end, the other parts being reusable
components built and maintained only once, and evolving
independently from the package manager. This architecture
brings back separation of concerns to package management
design:

Format conversion.
CUDF adapters are developed and maintained once for

each component model by the developers maintaining the
package metadata format, or by CUDF experts working with
them;

Dependency solvers.
are created and maintained once by solver experts, who

will see their technology gain many new fields of applica-
tion by just supporting one generic I/O format—CUDF—
which comes with a rigorous semantics, relieving the pain
of interpreting the meaning of platform-specific component
metadata;

Package manager.
developers may focus on the killer feature of their software

(trust management, user interface and interaction, transac-
tional upgrade deployment, etc.) and stop worrying about
solver issues.

In terms of architectural constraints, we notice that our
proposed architecture makes no assumptions on the distri-
bution of the different elements that make it up: of course,
a distributed implementation would require to address re-
liability and fault tolerance issues more deeply than a cen-
tralised implementation, which are out of the scope of this
paper.

In the next section we propose a centralised implementa-
tion of the architecture described in Figure 2.

4. THE MANCOOSI PACKAGE MANAGER
The Mancoosi package manager (MPM) is a“proof of con-

cept”implementation which integrates solver technology and
optimization criteria to solve real world installation prob-
lems. The back-end of MPM leverages the infrastructure of
the solver APT both to parse command line arguments and
to perform package installation but is modular with respect
to the dependency solver component.

To facilitate the acceptance of MPM we decided to main-
tain a strict compatibility with existing tools. In particular,
MPM has been developed to be used as a drop-in replace-
ment for apt-get / aptitude and to provide an easy-to-use
alternative to solve complicated problems for which the apt
solvers are unable to find a solution.

4.1 Using MPM
Currently, four different utility functions are defined that

can be used in the definition of the optimization criterion.
These are defined in terms of the effect that realizing a pro-
posed solution would have:

removed is the number of packages that would be removed
by a solution;

new is the number of packages newly installed by a solution;

changed is the number of packages that would be changed
by a solution (that is, removed, newly installed, up-
graded or downgraded)

notuptodate is the number installed packages that, after
installation of the solution, would be installed in a ver-
sion that is older than the latest known version;

The current implementation of MPM allows a user to

• specify a solver plugin with the option -s <solver>

• specify an optimization criterion with the option -

c <option>, where <option> is either one of the pre-
defined criteria paranoid or trendy, as defined in Sec-
tion 3.2 or an arbitrary optimization criteria specified
by giving a lexicographic complicated of the available
utility functions.



• besides, any option argument to the -o option is passed
as an option to apt.

The actual request may be any of install, remove, or up-

grade, together with a list of package names (possibly with
a constraint on the respective version of the package).

A user may very well use different optimization criteria
for upgrade request than for install/remove requests (up-
grade means possibly replacing a package by a newer ver-
sion). This is due to the fact that certain criteria that are
useful with one type of requests may just not make sense
when combined with another type of requests. For instance,
the paranoid criterion defined in Section 3.2 may be chosen
by a careful sysadmin when installing or removing packages,
but it is certainly not useful for upgrade request: due to the
CUDF semantics, not changing at all the installation sta-
tus of packages would be a correct solution to any upgrade
request of packages that are already installed, and it would
even be the optimal solution. This is certainly not what the
user had in mind. When issuing an upgrade request one
most likely will chose an optimization criterion that puts
high priority on minimizing the number of not-up-to-date
packages.

4.2 Picking a dependency solver
Any dependency solver that uses CUDF as input and out-

put format, and that accepts the optimization criterion lan-
guage described in Section 3.2 can be used in conjunction
with MPM. CUDF is precisely the input format of the Man-
coosi International Solver Competition (MISC) [14], and the
optimization criterion language has been introduced into
MISC since November 2010. This competition has been
launched in 2010 with the goal to bring together modern
problem solving techniques with the challenging optimiza-
tion problems that arise from component installation man-
agement.

Six different solvers participated in the MISC competition
2010, and use CUDF as input and output format:

1. apt-pbo [17], using a PBO solver

2. aspcud, based on Answer Set Programming using Potassco,
the Potsdam Answer Set Solving Collection

3. inesc [2], using the p2cudf parser (from Eclipse) and
the MaxSAT solver MSUnCore

4. p2cudf [3, 4], a family of solvers on top of the Eclipse
Provisioning Platform p2, based on the SAT4J library

5. ucl, based on graph constraints

6. unsa [15], based on ILOG’s CPLEX

We expect the list of competition participants to grow for
the 2011 issue of the MISC competition. In november 2010,
three of these solvers plus a new one which has entered since
MISC 2010, already accept the user preference language,
and are hence eligible as solver plugin to MPM. The current
prototype implementation of MPM employs aspcud.

4.3 Implementation
The implementation of MPM makes use of some of the

components and tools that have been developed by the Man-
coosi project, and that are centered around the CUDF for-
mat. Since MPM is targeted to debian we use debtodudf [1]

to translate debian package metadata to CUDF; transla-
tors to CUDF are also available for the meta-data format
of rpm [1] and Eclipse [5]. The back translation of the
solution, expressed in CUDF, to apt is performed by the
cudf_sol_diff tool that computes the difference between
the initial package status and the one found in the solution.

MPM is written in python and it uses the python bind-
ings to libapt to access the apt API. For this reason MPM
maintains full backward compatibility with apt, reusing the
same configuration files and settings.

The command line interface of MPM is a super-set of apt
(see the apt-get (1) man page). In addition, the user can
specify a solver and an optimization criterion to be used to
satisfy the current request.

APT::Solver::name "aspcud-paranoid-1.3";
APT::Solver::criteria "-removed,-changed";

Since MPM aims to replace only the dependency solver
part of apt, everything else will still be handled by the un-
derlying library. In particular, once a solution is found by
the dependency solver, apt will be in charge of finding a “in-
stallation plan” for the proposed solution. This installation
plan defines the order in which packages will be installed on
the system, and specifically the invocation order of dpkg,
the low level debian package installer.

As a consequence of the separation of concerns allowed by
our architecture, the size of the code of the MPM prototype
itself is rather small, with less than 500 lines of Python.

5. EXPERIMENTAL VALIDATION
We compared MPM to the latest version available in De-

bian of four different state-of-the-art packages managers.
Our goal was to assess the improvements in the quality of
the solution that are attainable using our modular architec-
ture by reusing solvers which participated in the Mancoosi
International Solver Competition (MISC 2010) [14].

We did not take execution time into account for two rea-
sons: on the one hand side, MPM is a prototype which is not
optimized for reading, writing and caching package reposi-
tories; on the other hand, as the results show, on difficult
problems MPM is the only package manager able to find a
solution, so there is nothing to compare with.

Experimental environment.
Since performance was not a goal of this study, our simu-

lation environment was established in a clean Debian chroot
on a commodity x86 machine. All relevant tools and raw
data are available on line at http://data.mancoosi.org/

papers/cbse2011.

Method.
We performed five groups of tests, using the same installa-

tion / removal requests with a combination of different De-
bian releases - or baselines - (sarge, etch, lenny, squeeze
and sid). The initial status for these experiments was se-
lected as a set of installed packages on a Debian server run-
ning sarge.

The package managers selected for these tests were apt-
get (v. 0.8.10), aptitude (v 0.6.3), smart (v. 1.3-1), and cupt
(v. 1.5.14.1). The first two package managers are the most
representative, as they are the standard ones on Debian; the
last two were selected because available at the time of writ-
ing in the Debian distribution and at the same time capable
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Figure 3: Comparison of mainstream meta-installer with MPM on increasingly large package universes.
Baselines are formed taking increasingly large sets of Debian releases, indexed by the first letter of their
name: sarge, etch, lenny, squeeze, sid.

of working with Debian meta-data. All package managers
were used with their default options.

All these legacy solvers have hardwired some kind of op-
timization criterion, so it is not easy to compare them in
a fair manner; since the algorithms of these tools all work
locally (they try to satisfy the user request by only look-
ing at the dependencies directly related to the request), we
decided to compare their solutions w.r.t. the paranoid opti-
mization function described in Section 3.2, which privileges
conservative solutions.

In order to compare solutions from different solvers we
reused tools that were originally developed for the MISC
solver competition [14], by converting the package-manager’s
output into a CUDF solution and then comparing them us-
ing the paranoid optimization criterion.

Experimental Data.
A problem instance for our test is composed of three parts:

an installation status (a set of packages which are already
installed on the machine that the users wants to modify),
a universe of packages available for installation, and a user
request (which packages to install or remove).

In all our problem sets, the installation status is the same,
and is the image of the installation of a standard server run-
ning Debian sarge. We used five different universes of pack-
ages, obtained by progressively adding together, in chrono-
logical order, all the packages available in the last five De-
bian baselines: sarge, etch, lenny, squeeze and sid. The
smallest universe, with only sarge, contains 15.000 pack-
ages, while the largest universe, with the union of all base-
lines, adds up to 60.000 packages.

For each of these five universes, we have run 162 user re-
quests, half of them requiring the installation of 5 packages

and half requiring the removal of 5 packages. Package man-
agers were given a timeout of 60 seconds for each request.

Assessment.
In Figure 3 we show the aggregate results of our tests

where solutions are ranked according to the “paranoid” cri-
terion and then divided into three categories, optimal, sub-
optimal and failure. Optimal and sub-optimal categories
hold respectively the best solutions (including ex-aequos)
and not optimal, but still correct solutions. The failure cat-
egory aggregates all results that were either not a solution
or were the result of a timeout or a crash of the package
manager.

When looking for a solution in a universe containing only
the sarge baseline, all solvers find a solution in most cases,
and this solution is optimal in roughly 25% of the cases, with
the notable exception of smart which is almost as good as
MPM.

The situation changes radically as soon as more than one
baseline is considered: all legacy package manager fail to
find a solution in more than 50% of the cases, and their hit
rate drops considerably when adding more baselines. This
is consistent with the folklore experience of GNU/Linux dis-
tribution users who know that maintaining an old machine
using these tools becomes more difficult over time.

On the other side, MPM is remarkably stable, and con-
sistently finds the best solution, no matter what the com-
position of the universe is. This is not a surprise, as MPM
relies on a state-of-the-art external solver, that is required
to find a global solution that is optimal w.r.t. the paranoid
criterion, unlike the legacy package managers which apply
ad-hoc local search algorithms.

These results also justify the fact of not comparing execu-



tion times: when the maintenance problem become difficult,
MPM is the only viable tool, even in its prototype, unopti-
mized form.

6. RELATED WORK
To the best of authors knowledge, the proposal of making

dependency solvers a modular component of package man-
agers is novel. In spite of that, several attempts at using spe-
cific formal techniques to attack dependency solving prob-
lems have been made in the past; in some cases they resulted
into the development of package manager prototypes.

A first formal encoding of the upgrade problem in SAT,
together with a proof of the NP-Completeness of the prob-
lem, has been initially proposed in the context of the EDOS
project [7, 13]. Following that initial encoding, the use of
SAT technology in package managers has seen a raise in pop-
ularity. The OPIUM system [18] used in 2006 a SAT solver
with an optimization in line with our paranoid criterion,
SUSE libzypp [10] incorporated a SAT solver in 2007, the
Eclipse P2 system includes the Sat4J solver since 2007 [3].
This trend seems to continue steadily: a very recent entrant
is apt-pbo, introduced in the Caixa Mágica GNU/Linux dis-
tribution just a few months ago [17]. In this paper we have
not benchmarked against some of them for applicability rea-
sons, in particular: apt-pbo as of now does not support re-
moval requests (a quite severe limitation) while, in contrast
to our benchmark data, libzypp is targeted at RPM pack-
ages.

Several alternative encodings of the upgrade problem have
been proposed: SAT [13, 18, 3], Pseudo Boolean Optimiza-
tion [17], Partial Weighted Max SAT [2], Mixed Integer Lin-
ear Programming [15], as well as some others championed
by entrants in the MISC 2010 competition (see Section 4.2).

Jenson [8] proposes a component model without explicit
(or implicit) component conflicts and does not handle com-
ponent removal in neither requests nor solutions. As a con-
sequence, such a degenerate upgrade problem is way simpler
than the problem considered in this paper and can be solved
in polynomial time, even though the number of solutions
may be huge. Dependency solving as SAT with optimiza-
tion has been reviewed in [3] where it was also observed
that much of the complexity stems from multiple versions of
components and the constraints they entail.

7. CONCLUSIONS
We have shown in this work a modular package manager

architecture that allows to rely on external state-of-the-art
solvers for dependency handling, thanks to the formally de-
fined CUDF format coming from the MISC solver competi-
tion; it also provides the user with a flexible, high-level pref-
erence language that allows to tailor the solution to one’s
needs.

We have built a proof-of-concept package manager, MPM,
for Debian-based GNU/Linux distribution, based on this
architecture, by reusing the modular components already
available: solvers coming from the MISC competition, con-
verters between the Debian package format and CUDF, and
low level package management libraries for Debian coming
from the apt library.

Despite the fact that MPM is only a proof of concept,
it significanlty outperforms all legacy package managers, as

soon as installation problems with more than a single release
are to be solved.

These results fully validate our approach, and MPM may
already be used as a drop-in replacement of legacy package
managers for complex installation or upgrade tasks on which
legacy tools fail.
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