
Constrained Wiki: an Oxymoron?

Angelo Di Iorio
Department of Computer Science

University of Bologna
Mura Anteo Zamboni, 7
40127 Bologna, ITALY

diiorio@cs.unibo.it

Stefano Zacchiroli
Department of Computer Science

University of Bologna
Mura Anteo Zamboni, 7
40127 Bologna, ITALY

zacchiro@cs.unibo.it

ABSTRACT
In this paper we propose a new wiki concept — light con-
straints — designed to encode community best practices and
domain-specific requirements, and to assist in their applica-
tion. While the idea of constraining user editing of wiki con-
tent seems to inherently contradict “The Wiki Way”, it is
well-known that communities of users involved in wiki sites
have the habit of establishing best authoring practices. For
domain-specific wiki systems which process wiki content, it
is often useful to enforce some well-formedness conditions
on specific page contents.

This paper describes a general framework to think about
the interaction of wiki system with constraints, and presents
a generic architecture which can be easily incorporated into
existing wiki systems to exploit the capabilities enabled by
light constraints.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Hypertext/hypermedia;
H.3.5 [Online Information Services]: Web-based Ser-
vices

General Terms
Design

Keywords
Wiki System, Validation, Assisted Editing

1. INTRODUCTION
The main factor of success of wiki sites is what inven-

tor Ward Cunningham called “The Wiki Way” [4]: an open
editing philosophy that allows users to freely write and col-
laborate on web content, without any restriction. In a sense,
a wiki site can be considered a state-of-mind, an inclination
shared by the users, rather than a collection of scripts and
pages. This free notion of web editing, strengthened by some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym’06, August 21-23, 2006, Odense, Denmark.
Copyright 2006 ACM 1-59593-413-8/06/0008 ...$5.00.

careful technical choices (direct editing in the browsers, min-
imality, versioning, . . .) has made wiki systems commonly
useful tools for single users, universities and firms.

Although authors are free to change and produce new con-
tent at will, we cannot help noticing that even the wiki edit-
ing process is often bound by some (implicit) rules. For
instance, writers frequently create sets of pages (often ex-
plicitly grouped in wiki site areas) that share a predefined
structure. Surprisingly, the most widely used approach to
create and manage such structures is based on copy&paste
and manual refinement and checking. Some solutions based
on a partially constrained editing model have been inves-
tigated, mostly exploiting powerful yet flexible templating
languages (see [8] for instance).

Templating control is only an example of a more general
trend we observed: wiki users tend to agree on sets of non-
written conventions that one or more pages must adhere to,
and they then need ways for ensuring, or at least checking,
that those requirements are really met. In a sense, the exis-
tence of WikiGnomes [20] (who work behind the scenes to fix
minor nuisances) show this need, since much of their work is
based on monitoring and adjusting to community best prac-
tices. Moreover, in the context of the success of grassroots
information encyclopedias based on wiki technologies (like
WikipediA [21] or World66 [23]), the issue of the quality of
wiki site content is increasingly becoming relevant.

Apart from such spontaneous and implicit rules developed
by the community, some wiki sites need to satisfy require-
ments that depend on the context they are being used in.
Consider for instance the wiki systems that supply in-lining,
i.e. mixing content written in varied formats within a doc-
ument written in wiki syntax: SnipSnap [11] allows users
to in-line a text representation of mind maps, organigrams
and UML diagrams; OpenWiki [16] users can enrich pages
with mathematical formulas written in MathML [15], and
TWiki [18] users can include LATEX mark-up commands, if
a plug-in is installed. It is very useful to require that such
in-lined text is correctly parsed and rendered by the wiki
system. Yet, the existence of ill-formed documents does
not cause irreversible problems (actually, inconsistent sta-
tuses are accepted for intermediate savings) but it would be
preferable having integrated and automatic mechanisms to
validate such content.

In this paper we analyze scenarios where non-written con-
ventions over content are set up by the community as well
as scenarios where inherent and context-based requirements
affect wiki sites. Despite apparent differences, these issues
have a common denominator: the need to express and en-
force rules over the wiki content, without sacrificing the
wiki editing paradigm. All these scenarios can be helped
by what we have called light constraints, to emphasize their
non-mandatory nature.

All the solutions we know are essentially ad hoc proposals
for specific domains, hard-coded within systems, rather than
instantiations of a general mechanism. No wiki system we
are aware of offers support for representing and exploring
different classes of light constraints and no generic model
has been proposed yet. This paper has a double goal: on
the one hand, to emphasize the strong relationship between
wiki sites and content constraints, in order to foster such
discussion in the wiki community; and on the other hand,
to propose a solution based on a strong distinction between
wiki engine and validation tools used to verify whether rel-
evant light constraints are respected or not.

The framework we present can be instantiated whenever
a form of validation on wiki content is required. The usual
wiki workflow changes somewhat, since the View operation
is enriched with a validation report and the Save opera-
tion become a conditional step controlled by an intermediate
validation process. It’s worth remarking that validation re-
spects the lightness of constraints, since users may still read
and save invalid pages. Validation is meant to be helpful
for both readers and authors, without sacrificing “The Wiki
Way”.

The rest of the paper is structured as follows. Section 2
discusses related works and various scenarios where light
constraints need to be accounted for. Section 3 introduces
our generic framework, describing the underlying data model
and the role of validation. Section 4 focuses on actors (which
may be either users or system components), discussing how
their actions interact with the validation process. Section 5
presents a proof of concept implementation of our model in
MoinMoin [9]. Section 6 concludes the paper and discusses
future work.

2. LIGHT CONSTRAINTS SCENARIOS
Drawing the word “wiki” close to the word “constraint”

sounds as an oxymoron. We noticed however that specific
forms of constraints are surprisingly compatible with wiki
systems and they can be fruitful exploited by them. Gen-
erally speaking, we define as an informal constraint on wiki
content any kind of rule that a wiki page ought to satisfy.
Our focus is thus on constraints which do apply to the con-
tent of wiki pages, not to other entities like URLs, metadata,
keywords, user profiles, . . .

Two different classes of informal constraints can be dis-
tinguished:

Hard Constraints: constraints that wiki pages must sat-
isfy at any given time instant to be practically useful.
An example is the need of having syntactically cor-
rect pages (i.e. pages which can be parsed by the wiki
engine);

Light Constraints: constraints that can be (temporarily
or not) violated, without inhibiting proper wiki run-
time behaviour.

Light constraints are particularly relevant to wiki systems,
since they can give fruitful help to the authors without sac-
rificing the wiki open editing philosophy. The lightness of
such constraints plays a leading role: they can be verified
providing detailed error reports, but users can ignore them.
On the other hand, when verified, they improve the wiki
authoring process.

In this section we present various scenarios where existing
wiki systems have already dealt with light constraints (ei-
ther in an implicit manner or by adopting ad hoc solutions),
and new scenarios where the light constraints concept can
be recognized. These scenarios taken all together emphasize
that the relationship between wiki systems and light con-
straints is already pervasive within the wiki community. We
believe that relationship deserves deeper investigation.

2.1 Scenarios from existing wiki systems
A very basic example of light constraints is the verifi-

cation of the spelling of words. Some wikis are supplied
with an internal tool that spell checks content on request.
For instance, MoinMoin [9] integrates a Python module that
validates a document against a dictionary and a list of ex-
ceptions. New words can be easily added modifying the ex-
ceptions using the wiki. Note that such spell checking is an
optional operation that users can activate only on demand.
Still, the lightness of the constraints is preserved, since users
can save pages without caring about correct spelling. Sim-
ilarly, DokuWiki [7] implements a 2-phase editing process
that allows users to edit a page, to switch in correction
mode and fix misspelled word (by invoking a server-side
spell checker) and then save the final document. Moreover,
DokuWiki is designed to help users, teams and work groups
in producing documentation: verification can be particularly
interesting in such kind of wiki applications, since pages are
subject to some rules about correctness and well-formedness.

The correct management of intra wiki links is another
field of application for light constraints. The “broken links”
do not represent a real problem, since they are practically
used to create new pages. Actually, two classes of dangling
links have to be distinguished: those intentionally created
to add new pages, and those created (often unintentionally)
when deleting fragments or whole pages. A very interest-
ing example in such area is PurpleWiki [12]. PurpleWiki is
a wiki-clone that implements a fine-grained linking mecha-
nism, through purple numbers: paragraphs, heading, lists
and other text fragments are labeled with a number used
to reference that elements. It’s worth ensuring that any
referenced purple numbers really exists, in order to avoid
dangling links. Delete and move operations, as well as addi-
tion of new content, need to be carefully managed and can
be once again bounded with light constraints. Moreover, it
can be useful to express constraints about the non-existence
of unreachable pages. Some wikis can retrieve a list (usu-
ally called orphan pages) of those pages, which are usually
re-connected to the rest of the wiki site by a manual inter-
vention. No wiki system we are aware of provides users a
direct way for preventing the creation of orphan pages, after
deleting a page or a fragment. However, their absence is a
common and implicit requirement that should be fulfilled.

Light constraints can be also used to ensure minimum ca-
pabilities. In TWiki [18] whenever a new user registers, a
page with the corresponding profile is created according to
a given master page. Such master page allows users to auto-

matically set their profile, which can be erroneously modified
preventing users to modify their own page and permissions.
A light constraint is implicitly defined on TWiki pages, in
order to prevent the cancellation of such access control data.

In addition, a new class of light constraints can be identi-
fied considering properties shared among pages belonging to
the same group. Many times wiki users define spontaneously
conventions on pages in order to ensure uniformity on wiki
subsections: they define the structure of specific pages, the
type of content, the order of the elements and so on. These
requirements are often non-written and manually checked
or simply ignored. For instance, in [5] authors discussed the
adoption of wikis within an italian academic community, re-
porting examples of repeated pages, structures and patterns
developed in that context.

Templating mechanisms ease the enforcement of such uni-
formity. WikipediA implements a powerful templating en-
gine: to provide a page users simply instantiate a template
assigning values to its variable. For instance, a summary ta-
ble in the “oak” page is described with the following markup:

{{Taxobox

| color = lightgreen

| name = Oaks

| image = Quercus robur.jpg

| image_width = 240px

| image_caption = Foliage and acorns of

’’[[Pedunculate oak|Quercus robur]]’’

| regnum = [[Plant]]ae

| divisio = [[flowering plant|Magnoliophyta]]

| classis = [[dicotyledon|Magnoliopsida]]

...

}}

In this case, expressing constraints on the final structure
of a page does not make sense, but it can be interesting to
enforce the instantiation of a core set of template variables.
Such constraints has not to be forced and always valid (in
a page under construction or after an intermediate saving,
it is fair having an invalid state) but they can be used to
notify users of the need of more information (the same role
played by “stub pages”).

WikipediA gives us the opportunity of outlining a dif-
ferent form of light constraints, which ensure consistency
among lists of elements shown in different pages. Consider
for instance the set of states described in WikipediA: many
different lists of these states can be found, ordered by name
or by population, grouped by continent or by timezone and
so on. All these lists are manually maintained and no check
is performed to ensure they contain the same sets of ele-
ments. Similarly, the correctness of the order of elements
in a list is not checked. Once more, such controls do not
interfere with the editing process which remain spontaneous
and free.

The dilemma between unstructured wiki pages and struc-
tured ones has been investigated in [8]. The authors stressed
the need of structured information, considering it a way to
help users in stating their ideas and comments. They in-
troduced the concept of wiki templates, which are pairs of
edit/display templates. When a page is viewed it is format-
ted according to its view template; when it is edited a set
of editable text area will be supplied, one for each “hole”
in the edit template. Users cannot modify the whole con-
tent and structure of a page, rather only the areas identified

by the “holes”. The apparent contrast with The Wiki Way
is solved using a tailoring process: users can freely mod-
ify the templates, so that no limitation is provided over the
editing. Wiki templates embodied a different form of light
constraints: instead of validating them after an editing ses-
sion, they are enforced a priori. The possibility of freely edit
templates makes such constraints light.

2.2 New scenarios
Before discussing how light constraints are expressed and

validated in our model, it is worth introducing two possible
new scenarios: WikiFactory and Miki. Light constraints
management turned out to be generic enough to address
domain-specific issues we found in two unrelated projects.

2.2.1 WikiFactory
WikiFactory [6] is a framework designed to automatically

produce domain-oriented wiki sites. The idea came by exam-
ining how users use to create similar pages and structures, in
wiki sites for a specific domain. What we observed is that
most of that work is completely manual, time-consuming,
and error-prone. On the other hand, each domain suggests
a set of pages, links and data structures that each wiki site
used in that domain should have. An example is a wiki
site for a university department, which is supposed to have
a page with the list of professors, for each of them a brief
description and a list of courses, and for each course infor-
mation including an enrollment page for the exam. Instead
of manually creating such pages, we proposed to automat-
ically produce them from an ontological description of the
departments and a set of instance data.

WikiFactory is a Java application based on semantic web
technologies which takes in input an OWL document de-
scribing a domain-oriented wiki site, and produces pages for
a specific wiki engine. Even if the very early implementation
produces only content for MediaWiki, the architecture is in-
dependent from the final wiki engine. The core of the appli-
cation is the ontological description created by an ontology
expert, in charge of writing on OWL document about a spe-
cific domain, and a domain expert, in charge of completing
such OWL document with data about a specific instance of
that domain.

At the first installation, such ontology is actually trans-
formed into a set of consistent pages. An important open
issue of WikiFactory is how to preserve the consistency be-
tween the ontology and the wiki pages upon page editing.
We do not want to prevent users to freely modify content, in
order to preserve The Wiki Way. Still, it would be desirable
updating the ontology according to user requests. Light con-
straints can be really helpful in such scenario: consistency
can be described as a light constraint, so that whenever a
user changes a page she can be notified about the conse-
quence of the change. As expected, many more issues need
to be investigated about the techniques for updating the on-
tologies, for versioning changes, for solving conflicts and so
on, but even this scenario shows the flexibility of a model
based on light constraints.

2.2.2 Miki
Miki is the codename of an ongoing effort for creating

an infrastructure for collaborative authoring of formalized
mathematics on the web. In formalized mathematics, math-
ematical concepts like definitions, lemmata, and theorems

are encoded in some formalism — e.g. higher order logics
or set theory — that enables mechanical checking of proof
correctness. Software artifacts like proof assistants and au-
tomatic theorem provers are used to produce (respectively
interactively and automatically) the formalized versions of
mathematical concepts. Such concepts are stored in machine
understandable formats which are more and more frequently
made available through the web. Examples of web-enabled
digital libraries of formalized mathematics are [1, 2, 19].
Despite the web-friendliness of such libraries for browsing
purposes, their authoring process is far from The Wiki Way
and is often centralized and managed by the developers of
a given proof assistant or theorem prover. Miki aims to im-
port The Wiki Way in the authoring process of libraries of
formalized mathematics.

Interesting challenges to the wiki community are posed by
Miki. Some of them are related to the usability of wikis for
editing content which requires high interactivity, like scripts
(the list of commands which are fed into a proof assistant
to create a proof), but are not relevant to our discussion.
Others are related to the logical consistency of what is shown
to the user. Concepts from the library are not isolated, but
can be linked together by a requirement notion; for example:
the proof of a theorem on algebraic ring structures is likely
to require the availability of a definition of rings in order
to be properly proof checked. If the definition of groups
changes, it is likely for the proof to need changes as well, or
it will probably fail a proof checking test. A user working
on such broken pages needs to be aware of their brokenness
to avoid him trusting wrong mathematical results.

Since libraries of formalized mathematics are also often
used for presenting formal mathematics, they also support
free form pages (sometimes called theories) which are used to
describe mathematical results and which contain references
to formalized concepts. During rendering those references
are inlined and showed to the user. This poses the additional
need of verifying the logical consistency of a set of concepts,
giving feedback to users who are watching theory pages.

In Miki we encoded the logical consistency of mathemat-
ical concepts as a light constraint, and we were able to ad-
dress both the above issues. The design of Miki, which is
still in early stages of development, is an instantiation of the
generic architecture we present in this paper.

2.3 User experience: requirements
In Sections 2.1 and 2.2 we gave evidence of the existence

of light constraints in real world collaborative editing tasks.
No wiki system we are aware of support them in any way.
For this reason, even what does “supporting them” mean
is an unanswered question. In this work we give one an-
swer, hoping to foster discussion on this subject in the wiki
communities.

We claim that an authoring system is said to support light
constraints if:

(a) it helps the editing work of authors giving visibility to
constraint violations;

(b) it helps the work of tailors (the users which coordinate
the collaboration on set of pages) enabling the descrip-
tion of constraints and their association to pages.

Instantiating such a system in the setting of wiki system
poses additional requirements on the way users should in-
teract with it. All boils down to respecting the wiki way

of working and is expressed by the following set of require-
ments:

(1) Unconstrained Saving: authors should not be forced
to resolve all constraint violations in order to save a
page. In apparent contrast with the purpose of light
constraints support, this requirement stresses the fact
that constraints are meant to help authors while not
diminishing their freedom.

(2) Freedom of Constraints Definition: tailors should
be able to work on constraints and associate them to
pages using classical wiki techniques. This include pro-
viding simplified markup for constraint definitions, and
versioning of both constraints and of their association
to pages.

(3) Constraints Visibility: information on constraints
should be visible to all users. This requirement is meant
to provide visibility of all information relative to con-
straints (which are associated to a given page, which
are violated and which aren’t, . . .) to all users, i.e. not
only to authors during page editing. This would help
diminishing the gap between page producers and page
consumers (the more is visible that something need to
be fixed, the more is likely that someone will fix it),
and ease WikiGnomes’ lives.

We claim all these requirements are fulfillable in a wiki
system and in the next sections we describe the skeleton of
such a system.

3. DATA MODEL
Our proposal to the wiki community for encoding light

constraints in wiki system is to represent them as validators:
computational entities able to decide whether a wiki page
fulfills a given light-constraint. Validators will be associated
to pages. View, Save, and other actions on pages will be
changed to exploit validation outcome. Most notably: Save
will become conditional on the validation outcome (or on an
explicit “forced saving” required by the author) and View
will notify every wiki user of the validation status of the
viewed page.

This section and the next one are devoted to describing a
generic architecture which implements this proposal. Here
we present the concepts and the static entities which char-
acterize it (what we call the data model) while in Section 4
we focus on the actors which compose it and on how the
behaviour of the usual wiki actions is changed to exploit
validation.

Figure 1 is an Unified Modeling Language (UML) sketch
of the data model. The basic entity of all wiki system is the
page, which is reported on the left of Figure 1. At the very
minimum it is characterized by three properties:

Markup: a text string containing the actual wiki markup
the user see when editing a page and that is rendered
on-the-fly upon page viewing. Its actual syntax is sys-
tem dependent;

Name: a text string denoting univocally a page inside the
system, the name should follow system-specific conven-
tions (like CamelCase) since it is used to ease linking
mechanisms;

Figure 1: UML sketch of the data model.

Version: a text string denoting the version of a page; over
the set of versions a total order should be defined.

Let’s consider the spell checking scenario of Section 2.1 (an
example that will follow us in this section), a sample page
might be represented in the minimal data model as follows
(using a syntax inspired by the object as record metaphor):

Page about = {

markup = "This peper rocks, follow TheWikiWay";

name = "AboutThisPaper";

version = "314";

}

A validator is intuitively a function encoding a single light
constraint. A validator can be applied (via the isValid

method) to pages and returns either a statement that the
page is valid (with respect to the light constraint encoded by
the validator itself) or a statement that it is not. This com-
putational aspect of validator is needed in order to be able
to take decisions based on its outcome as it will be done, for
instance, for conditional saving. In case a page turns out
not to be valid, the validator returns a list of localized error
messages: textual messages which are bound to particular
characters in the wiki markup. This choice is motivated by
the need of guiding authors toward fulfilling constraints: lo-
calized errors are easier to spot than global ones and hence
faster to solve (at the very minimum the spotting time is re-
duced). Note that the textual part of message can actually
be wiki markup to provide fancier (hence more expressive)
messages to the user. In the example above the ideal error
message, representable in our data model, would be located
at the beginning of the string peper and would contain a
statement that the word does not spell check together with
a link for adding the word to the current spell checking ex-
ceptions page.

In order to respect requirement (2) (see Section 2.3), the
association among a page and its validators should be part
of the information which are editable by users, hence the
following property on pages:

Validators: a list of validators, one for each light constraint
which should be enforced on the page.

In the frequent case of wiki systems supporting hierarchi-
cal structuring of the page namespace, the validators prop-
erty is likely to be inherited to enforce a common set of light

constraints to a particular area of a wiki site. Addition and
removal of constraints on large page sets, for example, can
then be performed changing a property in a single (root)
page.

Requirement (3) is implemented in the data model by
keeping track of the validation status with the following
property:

Status: a list of validation statuses, one for each validator,
which were associated to the owning page when the
last validation attempt has been performed. The key
properties of a status are valid (a boolean value de-
noting the success of the isValid invocation), errors
(the list of located errors, which is meaningful only if
valid == false), and context (a validation context,
discussed below).

From several of the scenarios discussed in Section 2 we
learned that light constraints are not always local to a single
page. They often need additional information that should
be found on wiki pages, or even external to the wiki site.1

In the spell checking scenario for instance, the validation is
parametric on a dictionary external to the wiki site and on
an extra page containing additions to the dictionary. That
page is likely to be editable by users. A validation context
represents the set of wiki pages (referenced by their names)
on which a validator is parametric. Note that pages refer-
enced from validation contexts are non-versioned, since to
better ensure liveness of wiki content validation will always
be attempted using their more recent versions.

Validators are parametric in their validation contexts. In
a sense, we think about validators as taking in input both
the page they should validate and the validation context.
This way we can for instance have parts of a wiki sites spell
checked using a list of geeky words as exceptions and other
parts using a list of biological terms.

In order to fulfill requirement (3), all information about
the validation status should be available to users. That’s
explain the context property of validation statuses. Error
messages are not enough to explain to users why a page is
invalid. Pages which are part of the validation context of
other pages may indeed change, and that can have effect on

1The latter form of additional information should however
be minimized in order to preserve the ability of users to
influence validation.

the validity of other pages. Consider once more the spell
checking scenario, a user removing a word from an excep-
tions list may change the amount of spell checking errors in
other pages. The information on why this page is no longer
valid need to be available to users, that’s way we record
the actual validation status as a property of validation sta-
tus. The actual validation status is a list of page references
corresponding to the validation context, together with their
version. This way it will always be possible to retrieve the
exact set of pages which leaded to a particular validation
outcome.2

4. ARCHITECTURE
The presence of validators changes substantially the work-

flow of wikis based on our model. Each operation on a page
becomes parametric in the set of validators associated to
that page. In particular, viewing a page becomes viewing
both its actual content and its validation state (supplied
with all the relevant information to spot and fix validation
errors), while saving a page becomes invoking validators and,
if not valid, deciding whether saving it or not.

We designed a general-purpose architecture that allows
users to associate and run sets of validators on wiki pages.

Various entities compose such architecture:

Roles Played by Users: 3

Visitors and Authors: users who view or edit the
actual content of wiki pages. No particular skills
are required nor more expertise than that required
by common wiki sites.

Tailors: users in charge of configuring and selecting
validators associated to a given page. Usually, but
not necessarily, users playing this role are more
experienced than others.

Software Components:

Wiki Engine: the actual wiki engine working as any
other wiki clone do, but also in charge of invoking
validators.

Validators: entities that actually validate pages con-
tent, as discussed in 3.

Batch Validator: stand-alone component which ver-
ifies whether or not changes on a single page affect
validation of other pages.

In order to explain the purpose of each entity in our archi-
tecture, we discuss individually the two main operations of
a light-constrained wiki, View and Save, focusing on both
their differences with the corresponding wiki operations and
the architectural choices behind them. Later we discuss how
validation affects other wiki operations, like versioning and
diff-ing.

2Note that changes to external information used by valida-
tors can’t, in general, be captured in the same way: yet
another good reason to keep as much validation information
as possible represented as wiki pages
3as often happens, the same user can play different roles at
different times

View. Our architecture transforms the view operation in
annotated viewing whenever a user accesses a page. Its con-
tent is rendered as usual, but is enriched with a detailed
report of the validation process. Figure 2 summarizes the
runtime behaviour of the View action.

Figure 2: Runtime behaviour of the View action.

The user involved in such scenario is a common user who
simply requires a page (step 1 in Figure 2); the wiki engine
retrieves it (steps 2–3), and its associated validation status
(step 4) before returning it to the user (step 5).

Some points are worth being remarked about the gen-
eralization of our schema. First of all, we have depicted a
content repository without dealing with its actual implemen-
tation: wiki systems use different techniques to store pages,
from MySQL4 databases (as WikipediA) to plain text file
(as most wikis), from RDF tuples [17] to Subversion5 repos-
itory [10]. Moreover, they implement specific solutions to
associate metadata to pages (fields in databases, external
log file, specific lines in text files and so on) and these meta-
data can be usually customized or extended. We propose
to introduce a new class of metadata about the validation
status of a page. The key point is that the wiki engine gets
pages and retrieves such status, previously set by validators:
no matter how these actions are actually performed.

The analysis of the View action from the user perspective
is interesting as well. Few changes are introduced on the be-
haviour of readers, who access wiki content as they always
do, but can even read suggestions from validators or simply
ignoring them, if not interested. The wiki engine produces
a compound page where content and validation outcome are
displayed together (see Figure 5 for a sample screenshot). It
is worth spending some words about the format and detail of
such outcome: different pages can be involved in the valida-
tion process so that several information could be displayed,
often not stored in the page being validated. Consider for
instance, the example of Miki discussed in Section 2.2.2. A
page can be invalid because some lemmas referred by that
page are not correct and, in turn, even these lemmas can be
inconsistent because of other related properties. It is very
useful to show users such a chain of relationships and conse-
quences. Moreover, errors should be localized, as discussed
in 3. Issues related to the usability and cognitive overhead
problems in managing a so huge amount of information are
as inevitable as complex, but we consider them out of the
scope of this paper.

A final remark is worth: such rich information and, above
all, their availability for the whole wiki community even sim-

4http://www.mysql.com
5http://subversion.tigris.org

http://www.mysql.com
http://subversion.tigris.org

plifies and speeds up the production of pages that fulfill light
constraints, since any user can easily discover errors or im-
perfections and can spontaneously fix them. In a sense,
providing a validation feature even for the View action sim-
plifies the life of WikiGnomes and paradoxically improves
both content and sharing habits among wiki users.

Save. While the actual text editing is not affected by the
presence of light constraints, saving is. Our architecture
transforms such operation into conditional saving : whenever
an user saves a page, validation is performed and according
to its outcome a proper page is returned. Two outcomes are
possible: the page is valid, and a simple acknowledgement is
return to the user, or it is not, and a detailed report of errors
is returned (similar to that shown in Figure 5). Then the
user can choose whether saving that page or not. Figure 3
summarizes the runtime behaviour of the Save action.

Figure 3: Runtime behaviour of the Save action.

After submitting a page (step 1 in Figure 3), the wiki en-
gine gets all the validators associated to that page (steps 2–3)
and runs each of them on the submitted content (step 4).
The internal structure of validators, as well as the language
used to implement them and/or configure the validation it-
self, are not relevant at this point. What is relevant here
is the strong separation between the validation process and
the common wiki workflow: such distinction makes it easy
to apply a general model to different wiki clones by intro-
ducing few modifications and importing external validators
or implementing them with less effort. Note also that no
limitation is imposed over the number (and variety) of val-
idators: different kind of light constraints can be checked
over the same page, and different communication protocols
and validation engines can be exploited.

In case a page is valid, a confirmation message is delivered
to the user (step 5) who goes on surfing (or continue editing)
normally. On the contrary, in case a page is not valid, two
options are provided (step 5 as well): the user can “forcedly
save”, being aware the page violates some light constraints,
or can fix errors and try saving again.

“Forced saving” is crucial: it fully adheres to “The Wiki
Way” — as users can freely modify content and ignore val-
idators — and allows users to save work in progress pages
(not yet valid), or intentionally invalid pages (for instance,
as examples of common errors and bad practices). For these

reasons we claim that collaboration is not hindered when
adopting our approach.

When a user accepts saving a page, two events are trig-
gered (steps 6): the new page is stored into the wiki page
repository and a notification is sent to a component we call
batch validator. Note that storing a page in the repository
does not mean only storing its content, but also its val-
idation status. The batch validator is a process running
in background we introduced in order to address context-
related issues. As discussed before, validation is not limited
to a single and isolated page, but rather a global process that
can involve sets of pages up to the whole wiki. Then, run-
ning validators only on the submitted content is not enough,
since changes can affect validity of other pages too. Our so-
lution is notifying save events to a listening daemon and
letting it running validators over each page included in the
current context. Details about the communication proto-
col between the wiki engine and the batch validator are not
relevant here.

The batch validator proceeds as follows: gets all validators
associated to all pages in the context (steps 7–9), executes
them (step 10), and updates pages accordingly to the val-
idation outcome (step 11). The latter action of updating
does not trigger any further validation. Note that the batch
validator works behind the scenes, while the user has sim-
ply received a saving confirmation message. This choice is
motivated by the possible huge amount of pages involved in
validation.

The presence of the batch validator drives us into a very
interesting field: analysing how versioning is affected by val-
idation. In the classical wiki model a new version of a page
can be created only by an editing session (actually some
wikis allow users to group minor changes or adjacent ver-
sions into a single one) but such approach is not enough in
our setting. Users, in fact, can be interested in knowing that
a page changed its validation state but, as outlined so far,
this can even happen without explicit modifications on that
page.

Consider the spell checking example: it can be very pos-
sible that, adding a new word to the dictionary, an existing
page becomes valid; the two statuses of that page, before
and after having added the new word, are worth be traced
and reported to the users. A new version of a document
should be created either after an editing session or after an
automatic update done by the batch validator. Yet, these
two kinds of versions are conceptually different: in a sense,
there exist two overlapping and intermixing version trees
and users should be able to see both.

Inevitably even the Diff operation changes, since a Diff
between two versions does not mean comparing only their
content, but even their validation states. At first glance, it
means simply producing a more complex Diff page com-
posed by two parts: one devoted to show changes in vali-
dation state and another one dealing with content (as ex-
pected, one of these part can be empty). However, a more
complex issue need to be addressed, once again because of
the validation context. Such a Diff should provide users
precise references to the content modifications that causes
that local change, even if they occur in other pages. Obvi-
ously the richness and granularity in the Diff output opens
the doors to a series of complex issues related to usability
and cognitive overhead, but we consider these aspects out
of the scope of this paper.

Last but not least, we need to add details about the asso-
ciation between pages and validators, as well as the config-
uration and encoding of the validators themselves. We in-
troduced a specific user role called tailor. The term “tailor”
indicates the ability of cutting out validators and configuring
them for specific (class of) pages. In [13], the authors noticed
that, even when the whole community is affected by system
customization and tailorability, it is very common that a
restricted set of users actually perform such task: although
that work primarily focused on software customization, the
same observation can be extended wherever a specific and
quite difficult configuration task has to be accomplished, and
highly-skilled users or domain experts need to be involved.
On the contrary, in [14] authors claimed that tailorability
should be extended to all the users: yet, differences among
user expertises exist and are required to exist, but the cus-
tomization itself is improved by involving average users too.
We are still investigating which level of tailorability is suit-
able for light-constrained wiki systems, also considering that
boundaries among roles are blended in the wiki setting.

Actually, considering the generality of our architecture, a
wide spectrum of tailors can exist: on the one edge, a val-
idator can be hard-coded within the system, so that a tailor
can at most select validators; in the middle, validators can
be parametrized so that a tailor can set parameters (besides
associating pages); on the opposite edge, a validator can be
completely programmable, and a tailor can completely de-
cide its internal behaviour. The extreme solution consists of
coding directly the behaviour of validators through a wiki
syntax and allowing any user to describe such behaviour.

5. IMPLEMENTATION
We wrote a proof of concept implementation of the ar-

chitecture described in Section 4 which adds validation ca-
pabilities to MoinMoin [9]. Its aim is not to extend Moin-
Moin into a fully general constraint-enabled wiki system, but
rather to show the non-invasiveness of a similar extension to
a popular wiki system.

The main component of the implementation is a new parser,
which in MoinMoin terminology defines one of the possible
formats a wiki page (or fragments of it) can be written in.
To use the parser, our being called validator, is enough
to add a processing instruction at the beginning of a page
(or of a delimited fragment). It receives as additional argu-
ments a list of validators, each of which can be in turn be
passed a list of validator-specific arguments. Figure 4 shows
a snippet of MoinMoin markup of a page which uses our
parser. It represents the markup of a wiki page on an hypo-
thetical wiki site used to coordinate paper submissions to a
conference on the wiki topic. Line 1 requires the page to be
validated by two validators. The former (abstract length)
checks that the abstract is no longer than 200 words, while
the latter (spellcheck) ensure correct spell checking using
a page named WikiWords as its exceptions list.

The validation status is stored, together with the list of
validators associated to a page, encoded in the extra field
of the edit-log file associated to each page. edit-log is
the place where MoinMoin stores the metadata associated
to a page. When a page which uses the validate parser is
accessed its validation status is retrieved and used to anno-
tate the page markup. Annotations come in two flavours: a
validation summary and a set of located errors. The sum-
mary is added at the end of the page and reports, for each

attached validator, whether the validation has been success-
ful or not and the description of each error. Located errors
are reported as links in the markup with (CSS) pop-up de-
scriptions of the errors, pointing to the corresponding error
entries in the summary. Figure 5 is a screenshot of a Moin-
Moin page rendered via validate showing both the valida-
tion summary and one located error (at the beginning of the
abstract). A similar feedback has been returned to the user
who last edited that page, before he chose to forcedly save.

After markup annotation, the validate parser acts as a
“proxy” invoking again the internal MoinMoin machinery
to discover the appropriate parser for the annotated markup
and render it using the abstract formatter which gets passed
to parser.

Validators are stored as Python scripts server side, are
loaded using the importPlugin mechanism of MoinMoin,
and are invoked when a page is saved, possibly requiring
forcing by the user in case of validation errors.

The batch validator has been implemented in Python as a
daemon with XML-RPC interface. Once notified of a save, it
starts digging MoinMoin pages to discover which pages have
the saved on in their validation context.6 Each of them is
then retrieved (using wiki RPC interface [22] getPage), (re-
)validated, and stored in case of validation status change
(using wiki RPC putPage). In order to push toward the
wiki the information about validation status changes, the
implementation of putPage should support the attributes

argument. In MoinMoin that was not the case, we patched
it and reported the bug upstream.

Yet being “proof of concept”, our implementation shows
that adding support for light constraint to existing wiki
systems is far from being challenging. The peculiarities of
MoinMoin we exploited are just a few: the extensibility of
its markup and its metadata, and its wiki RPC interface.
All are features available in the implementation of many ex-
isting wiki systems. The only parts of MoinMoin code we
actually had to patch are the reaction to a “save” request
(adding user notification if she attempted to save an invalid
page without explicitly forcing the save) and a save time
hook which notify the external batch validator. Taken to-
gether they sum up to less then 100 lines of code. The batch
validator is fully reusable for other wiki systems (assuming
they implement the wiki RPC interface).

6. CONCLUSIONS AND FUTURE WORK
The openness and freedom of the wiki editing process

has a strong impact on the final pages: they are frequently
updated, rich, and continuously improved, but also under-
controlled and flawed. We noticed that wiki pages improve
their correctness and clearness, when a set of rules are en-
forced by the community or by the wiki system. These rules
cannot be strict prohibitions that prevent users from freely
expressing their ideas and comments, rather they should
help them in doing work that would be otherwise done later
or never. In this paper we referred these rules as light con-
straints and we proposed a general framework to manage
them. Our goal is awakening the community to the exis-
tence of a strong connection between wikis and constraints,

6this is actually implemented naively using wiki RPC inter-
face method getAllPages, of course this can be optimized
having the batch validator keeping an internal record of val-
idation contexts

1 #format validate abstract_length(200) spellcheck(WikiWords)

2

3 #format wiki

4

5 = Constrained Wiki: an Oxymoron? =

6

7 ’’’Author(s)’’’: ["Angelo Di Iorio"] and ["Stefano Zacchiroli"]

8

9 ’’’Abstract’’’:

10

11 ["The Wiki Way"] is in apparent contrast with any kind of editing-time constraint. Nonetheless it

12 is well-known that communities of users involved in wiki sites have the habit of establishing best

13 authoring practices, and it is a frequent need of domain-specific wiki system to enforce some kind

14 of well-formedness on page content. A general framework to think about the relationship of \WIKI{}

15 system with constraints is missing.

16 ...

Figure 4: MoinMoin markup of a page equipped with validators.

and provide a first general model that can be applied to
heterogeneous scenarios.

Basically our solution relies on a strong distinction be-
tween the actual wiki engine and a set of validators, in
charge of verifying the respect of light constraints associ-
ated to the pages: by exploiting validators wiki systems can
provide conditional saving and annotated viewing. The pro-
posed solution does not change the user editing experience,
as opposed to other solutions like [8].

In the case of spell checking, each page can be associ-
ated to an external validator that actually spell checks con-
tent, looking for a dictionary page, whenever that page is
saved. In the case of inconsistent and unordered lists of
WikipediA, each page can use a validator who knows which
other pages have to be consistent with the current one: such
validator verifies whether all those lists contain the same
elements. Even the new scenarios we described can be ad-
dressed: for WikiFactory, a validator associated to a page
recognizes the template for that page and verifies whether
that page matches it or not. Similarly in Miki the consis-
tency among mathematical concepts is checked by external
validators that run over the whole mathematical repository
and give a response back to the wiki engine. A point-to-
point description of the remaining scenarios is as useless as
boring, but it might not be difficult to instantiate such ob-
servations to each of them.

An analysis of our architecture can be completed verifying
whether all the requirements for a constraint-enabled wiki
are fulfilled. In Section 2.3 we identified three such require-
ments: (1) unconstrained saving, (2) freedom of constraints
definition, and (3) constraints visibility. Many times in this
paper we stressed (1) and (3), showing how no strict rules
are really imposed on the editing process and showing that
all validation information can be given to the users (for in-
stance through the View and Diff operations and through
the localized errors list).

On the contrary, (2) is tricky and not properly addressed.
The Wiki Way would suggest us to allow any user (or better
tailor) to freely program validators, directly on the wiki site.
Such a solution raises several issues. First of all, it is very
difficult to find a language suitable for this purpose, due
to the tension among language expressiveness and simplic-

ity (in term of both syntax and semantics). Scenarios like
Miki shows how complex can be validation needs. A sec-
ond issue is of course security: assuming that a silver bullet
language can be found, we need to prevent malicious uses
of validators which can be easily provide denial of services.
Actually, such approach has already been faced by the so
called Community Programmable wikis [3], which allow any
user to modify the code of the wiki engine itself, without
arriving at satisfying solutions. A compromise solution can
be achieved by “tailoring”, that is allowing only a subset of
trustworthy users to configure and actually write validators.
As discussed in Section 4, limiting users’ tailoring can be,
on the one hand, a very good solution to capitalize skilled
users work but, on the other hand, a restricted approach
which limits average users potentialities. Note that we do
not claim that such a customization is so dangerous to be
impossible, rather we think that a more detailed and deeper
discussion is required.

Our next step will be investigating such relationship among
average users, tailors, languages for programming validators
and open editing philosophy. In particular two future di-
rections seem to be equally valid. On the one side, we will
try to figure out a general language simple, safe, but enough
expressive to allow user to define validators in frequent oc-
curring scenarios. On the other side, we will try to figure out
small (different) languages suitable for specific domains (for
instance, we are discussing a language to define and verify
templates for scenarios similar to WikiFactory). Our point
should be clear now: at first glance constraints and wikis
seem to be incompatible, but after a more careful analysis,
they can coexist in an interesting and fruitful oxymoron.

7. ACKNOWLEDGMENTS
We would like to thank David G. Durand for the fruitful

discussions we had with him on the topic of constrained
wikis and for its feedback on this paper.

8. REFERENCES
[1] S. Allen, M. Bickford, R. Constable, R. Eaton,

C. Kreitz, and L. Lorigo. Fdl: A prototype formal

Figure 5: Screenshot of MoinMoin’s View action extended with validation support.

digital library. Technical Report TR2004-1941, Cornell
University, 2002.

[2] A. Asperti, F. Guidi, L. Padovani, C. Sacerdoti Coen,
and I. Schena. Mathematical knowledge management
in HELM. Annals of Mathematics and Artificial
Intelligence, 38(1-3):27–46, May 2003.

[3] Community programmable wikis.
http://purl.net/net/cpw.

[4] W. Cunningham and B. Leuf. The Wiki way.
Addison-Wesley, New York, 2001.

[5] E. Da Lio, L. Fraboni, and T. Leo. Twiki-based
facilitation in a newly formed academic community of
practice. In Proceedings of WikiSym 2005.

[6] A. Di Iorio, V. Presutti, and F. Vitali. WikiFactory:
an ontology-based application to deploy
domain-oriented wikis. In Proceedings of the European
Semantic Web Conference, 2006.

[7] Dokuwiki.
http://www.splitbrain.org/projects/dokuwiki.

[8] A. Haake, S. Lukosh, and T. Schummer. Wiki
templates: Adding structure support to wikis on
demand. In Proceedings of WikiSym 2005.

[9] P. Herman. Moin Moin Wiki. http://twistedmatrix.
com/users/jh.twistd/moin/moin.cgi/.

[10] J. Hess. Ikiwiki. http://ikiwiki.kitenet.net/.

[11] M. L. Jugel and S. J. Schmidt. Snipsnap: the easy
weblog and wiki software.
http://www.snipsnap.org/space/SnipGraph.

[12] E. E. Kim. Purplewiki.
http://purplewiki.blueoxen.net/cgi-bin/wiki.pl.

[13] W. E. Mackay. Patterns of sharing customizable

software. In CSCW ’90: Proceedings of the 1990 ACM
conference on Computer-supported cooperative work,
pages 209–221, New York, NY, USA, 1990. ACM
Press.

[14] A. MacLean, K. Carter, L. Lövstrand, and T. Moran.
User-tailorable systems: pressing the issues with
buttons. In CHI ’90: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 175–182, New York, NY, USA, 1990. ACM
Press.

[15] Mathematical Markup Language (MathML) Version
2.0. W3C Recommendation 21 February 2001,
http://www.w3.org/TR/MathML2, 2003.

[16] Openwiki. http://www.openwiki.com/.

[17] S. B. Palmer. Rdfwiki.
http://infomesh.net/2001/rdfwiki/.

[18] P. Thoeny. TWiki: Enterprise Collaboration Platform.
http://twiki.org.

[19] J. Urban. XML-izing Mizar: making semantic
processing and presentation of MML easy. In
A. Asperti et al., editors, Post-Proceedings of the 4th
International Conference on Mathematical Knowledge
Management, MKM 2005, volume 3863 of LNCS,
pages 346–360. Springer-Verlag, 2006.

[20] WikiGnomes.
http://en.wikipedia.org/wiki/Wikignomes.

[21] WikipediA, The Free Encyclopedia.
http://www.wikipedia.org/.

[22] Wiki RPC interface 2, API version 2. http://www.
jspwiki.org/Wiki.jsp?page=WikiRPCInterface2.

[23] World66. World66 home. http://www.world66.com/.

http://purl.net/net/cpw
http://www.splitbrain.org/projects/dokuwiki
http://twistedmatrix.com/users/jh.twistd/moin/moin.cgi/
http://twistedmatrix.com/users/jh.twistd/moin/moin.cgi/
http://ikiwiki.kitenet.net/
http://www.snipsnap.org/space/SnipGraph
http://purplewiki.blueoxen.net/cgi-bin/wiki.pl
http://www.w3.org/TR/MathML2
http://www.openwiki.com/
http://infomesh.net/2001/rdfwiki/
http://twiki.org
http://en.wikipedia.org/wiki/Wikignomes
http://www.wikipedia.org/
http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface2
http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface2
http://www.world66.com/

	Introduction
	Light constraints scenarios
	Scenarios from existing wiki systems
	New scenarios
	WikiFactory
	Miki

	User experience: requirements

	Data model
	Architecture
	Implementation
	Conclusions and future work
	Acknowledgments
	REFERENCES -9pt

