
The Debsources Dataset:
Two Decades of Debian Source Code Metadata

Stefano Zacchiroli∗
∗Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France

Email: zack@pps.univ-paris-diderot.fr

Abstract—We present the Debsources Dataset: distribution
metadata and source code metrics spanning two decades of Free
and Open Source Software (FOSS) history, seen through the lens
of the Debian distribution.

Debsources is a software platform used to gather, search, and
publish on the Web the full source code of the Debian operating
system, as well as measures about it. A notable public instance
of Debsources is available at http://sources.debian.net; it includes
both current and historical releases of Debian. Plugins to compute
popular source code metrics (lines of code, defined symbols,
disk usage) and other derived data (e.g., checksums) have been
written, integrated, and run on all the source code available on
sources.debian.net.

The Debsources Dataset is a PostgreSQL database dump
of sources.debian.net metadata, as of February 10th, 2015.
The dataset contains both Debian-specific metadata—e.g., which
software packages are available in which release, which source
code file belong to which package, release dates, etc.—and source
code information gathered by running Debsources plugins.

The Debsources Dataset offer a very long-term historical view
of the macro-level evolution and constitution of FOSS through
the lens of popular, representative FOSS projects of their times.

I. INTRODUCTION

Software is increasingly being distributed to final users
by the means of software collections, and installed using
package manager tools. Some collections are very tightly
curated and integrated, like Free and Open Source Software
(FOSS) distributions, others much more loosely so, like so
called “app stores”. The study of software evolution [1], [2]
can no longer ignore software collections as relevant subjects
for macro-level studies [3], [4], i.e., evolution studies at the
granularity of individual component releases.

The study of software collections, however, poses specific
challenges to scholars, due to a common tendency at growing
ad hoc software ecosystems, made of homegrown tools, tech-
nical conventions, and social norms that might be hard to take
into account when conducting empirical studies.

The Debsources platform [4] has been developed to counter
those challenges in the specific case of Debian:1 one of the
most reputed and oldest (est. 1993) FOSS distributions, often
credited as the largest organized collection of FOSS, and a
popular subject of empirical software engineering studies (e.g.,
[5], [3], [6]). Debsources allow to gather, search, and publish

This work has been partially performed at IRILL, center for Free Software
Research and Innovation in Paris, France http://www.irill.org. Unless noted
otherwise, all URLs in the text have been retrieved on February 27th, 2015.

1http://www.debian.org

on the Web the entire source code of Debian and measures
about it. As a result, Debsources eases the study of macro-level
FOSS evolution patterns, under the assumption that Debian is
a representative sample of popular FOSS projects.

The most notable instance of Debsources is publicly avail-
able at http://sources.debian.net. It indexes all currently active
(or “live”) Debian releases, with several updates per day, as
well as historical Debian releases going back almost 20 years.

Contributions: With this paper we release the Debsources
Dataset, composed of metadata obtained indexing more than
3.5 billion lines of code, contained in about 90 thousand source
package releases, from 18 Debian suites (or “releases”). The
dataset relates source code files—about 40 millions of them—
to the corresponding source packages, and those to Debian
releases. Using suitable Debsources plugins, all source pack-
ages have been measured with sloccount,2 indexed with
Exuberant Ctags3 for developer-defined symbols (functions,
data types, classes, methods, etc.), and measured for disk
usage; SHA256 checksums of all source files have also been
computed. All obtained metadata are included in the dataset.
The Debsources Dataset is a valuable resource for scholars
interested in both long-term evolution studies of FOSS, and
also in studying its composition thanks to the sub-file level
granularity of its metadata.

The Debsources Dataset comes as a portable, tex-
tual dump of the PostgreSQL4 database that underpins
sources.debian.net. The dump discussed in this paper has been
taken on Tue, 10 Feb 2015 13:48:40 +0000 and carries the
(UNIX) timestamp of 1423576120.

Paper structure: Section II explains how the Debsources
Dataset has been assembled and how it can be reproducibly,
but costly, rebuilt. Section III describes the data scheme and
gives some figures about its content. Section IV shows how
to get started using the dataset; Section V discusses potential
limitations. Before concluding, Section VI points to related
work.

Dataset and software availability: The Debsources plat-
form, used to produce the Debsources Dataset, is Free Soft-
ware, released under the terms of the GNU Affero General
Public License (AGPL). It is available from the Git repos-
itory at http://anonscm.debian.org/cgit/qa/debsources.git; the
version used to produce the dataset is shipped as part of it.

2http://www.dwheeler.com/sloccount/
3http://ctags.sourceforge.net/
4http://www.postgresql.org

http://sources.debian.net
http://www.irill.org
http://www.debian.org
http://sources.debian.net
http://anonscm.debian.org/cgit/qa/debsources.git
http://www.dwheeler.com/sloccount/
http://ctags.sourceforge.net/
http://www.postgresql.org

The Debsources Dataset is Open Data, made available under
the terms of the Creative Commons Attribution-ShareAlike
4.0 International Public License (CC BY-SA). It is available
from Zenodo at https://zenodo.org/record/16106, with DOI
reference 10.5281/zenodo.16106.

II. DATA GATHERING & REPRODUCIBILITY

The Debsources Dataset has been assembled using Deb-
sources [4] and injecting into it both current and historical
Debian releases. Given that both Debsources and all Debian
releases are freely available, the dataset can be recreated from
scratch following the recipe given below.

a) Deploy Debsources: Installation and configuration
instructions are available in the README and HACKING
files of Debsources. The latest Git commit in use when
the Debsources Dataset of this paper has been taken was
07a7eae4fbce583bfa51c4b376cb4a7fb2776528.

b) Mirror live suites: configure Debsources to mirror
from a nearby Debian mirror.5

The last mirror update received by sources.debian.net before
taking the Debsources Dataset snapshot was dated Tue, 10
Feb 2015, at around 11:00 UTC. To recreate the exact same
dataset of this paper you should mirror from http://snapshot.
debian.org/, passing a nearby time stamp. Alternatively you
can mirror from the regular Debian mirror network, and obtain
slightly more recent data for all live suites.

c) Trigger the first update run: Run
bin/debsources-update. This will inject into your
Debsources instance all previously mirrored Debian live
suites.

d) Mirror historical releases: Mirror http://archive.
debian.org using rsync, to retrieve all historical releases,
which are no longer available from the regular mirror network.

e) Inject historical releases: Inject one by
one all previously retrieved historical releases using
bin/debsources-suite-archive add RELEASE.

f) Dump the database: If you need an actual database
dump, in the same format used by the Debsources Dataset, you
can dump the obtained Postgres database with something like
pg_dump --no-owner --no-acl -Fp debsources
| xz -9 -c > debsources.$(date +%s).xz If
you do not need an actual dump, the Debsources Dataset is
now available in your local debsources database.

The injection process is I/O-bound: the time needed to
complete it depends mostly on I/O write speed. For reference,
it took us ∼5 days to inject archived suites + 8 days for the live
ones =∼2 weeks—using 7.2 kRPM disks in RAID5, which are
quite slow by today standards and certainly not optimized for
write speed. Dumping and compressing the Postgres database
took about 1.5 hours.

Disk usage is as follows: 166 GB for the local mirror
+ 682 GB for extracted source code on disk + 78 GB for
the DB = ∼926 GB. The total disk size is quite tolerable
for server-grade deployments, but might be demanding for

5https://www.debian.org/mirror/list

desktop/laptop ones. If you are only interested in the metadata,
both the local mirror and the actual source code can be
removed after the initial injection, dividing disk usage by a
factor 10.

The above figures assume that all the plugins used to
produce the Debsources Dataset are enabled: disk usage,
sloccount, ctags, and checksums. A significant part of the
processing time (∼40%) is devoted to ctags indexing. If you
are not interested in those data, injection time can be cut in
half by disabling the corresponding plugin.

Note that to use the Debsources Dataset you do not need to
go through the above process, which is documented here for
information and reproducibility purposes only. The dataset is
ready to use as is; see Section IV for a quick start guide.

III. DATABASE SCHEMA

The Debsources Dataset comes as a Postgres database. Its
SQL schema, generated by PostgreSQL Autodoc,6 is shown in
Figures 1–2. A brief description of each table is given below:

• package names: Debian source package names. They are
stable across releases of the same package, and usually
correspond to upstream FOSS project names, e.g., bash,
linux (the kernel), libreoffice, etc.

• packages: source package releases (or “versioned source
packages”), with one table entry for each known version
of a given package name, e.g., bash 2.03-6, bash 3.2-4,
linux 3.16.3-2, libreoffice 4.3.3-2.

• suites info: static information about known Debian re-
leases; for each release its name, version, and release
date are given.

• suites: mappings from versioned source packages to
Debian releases.

• files: individual source files, pointing back to the contain-
ing source package; identical files, shipped by multiple
packages, have multiple entries in this table. Note that
due to space constraints the actual content of source files
is not included in the Debsources Dataset.

• checksums: SHA256 checksums of all source files. Note
that some files (e.g., special device files) cannot be
checksummed, so not all file entries have corresponding
entries in this table.

• sloccounts: sloccount results for each versioned
source package. The table contains one entry for each
〈language,versioned-package〉 pair; the absence of a lan-
guage entry for a given package means that the language
has not been detected by sloccount on that version.

• ctags: ctags results for each versioned source package.
The table contains one entry for each developer-defined
symbol, in a given source file, together with precise file
location and kind of symbol (function, type, method, etc).

• metrics: simple, uniform metrics about known packages
are collected here. Currently the only metric of this kind
is disk usage. This table thus reports source total code
size, in bytes, for each versioned source package.

6http://autodoc.projects.pgfoundry.org/

https://zenodo.org/record/16106
http://dx.doi.org/10.5281/zenodo.16106
http://snapshot.debian.org/
http://snapshot.debian.org/
http://archive.debian.org
http://archive.debian.org
https://www.debian.org/mirror/list
http://autodoc.projects.pgfoundry.org/

 binaries

 id serial PK

 version character varying

 name_id integer FK

 package_id integer FK

 binary_names

 id serial PK

 name character varying

binaryversions_binarypackage_id_fkey

 packages

 id serial PK

 version character varying

 name_id integer FK

 area character varying(8)

 vcs_type vcs_types

 vcs_url character varying

 vcs_browser character varying

 sticky boolean

binaryversions_sourceversion_id_fkey

 checksums

 id serial PK

 package_id integer

 file_id integer FK

 sha256 character varying(64)
 files

 id serial PK

 package_id integer

 path bytea

checksums_file_id_fkey

checksums_version_id_fkey

 ctags

 id serial PK

 package_id integer FK

 tag character varying

 file_id integer FK

 line integer

 kind character varying

 language ctags_languages

ctags_file_id_fkey

ctags_version_id_fkey

files_version_id_fkey

 metrics

 id serial PK

 package_id integer

 metric metric_types

 value_ integer

metrics_sourceversion_id_fkey

 package_names

 id serial PK

 name character varying

versions_package_id_fkey

 sloccounts

 id serial PK

 package_id integer

 language language_names

 count integer

sloccounts_sourceversion_id_fkey

 suites

 id serial PK

 package_id integer

 suite character varying

suitesmapping_sourceversion_id_fkey

Fig. 1. Debsources DB schema, part 1: main tables

 history_size

 timestamp timestamp without time zone PK

 suite character varying PK

 source_packages integer

 binary_packages integer

 disk_usage integer

 source_files integer

 ctags integer

 history_sloccount

 timestamp timestamp without time zone PK

 suite character varying PK

 lang_ada integer

 lang_ansic integer

 ... (one column per language)

 lang_xml integer

 lang_yacc integer

 suites_info

 name character varying PK

 version character varying

 release_date date

 sticky boolean

Fig. 2. Debsources DB schema, part 2: history and auxiliary tables

TABLE I
DEBSOURCES DATASET TABLE SIZES

table tuples disk size
checksums* 37,169,366 3,873 MB
ctags* 367,372,807 24 GB
files 37,267,117 2,746 MB
history size 14,489 960 KB
history sloccount 13,566 2,504 KB
metrics* 87,274 3,800 KB
package names 30,264 1,488 KB
packages 87,274 9,696 KB
sloccounts* 310,554 13 MB
suites 123,451 5,408 KB
suites info 18 16 KB

• history sloccount, history size: historical, per-release
time series of sloccount and dataset size values

To give an idea of the breadth of the Debsources Dataset,
Table I gives the sizes of the main tables in the dataset, as
number of tuples and occupied disk space.

If tables that take a considerable amount of disk space are
unneeded, they can be dropped (possibly at import time) to
save space. In particular, the ctags table is very large, but
relevant only for sub-file granularity analyses.

The 18 injected suites cover all live releases, and all
historical releases with the exception of Debian 1.1 “buzz”
and 1.2 “rex”. The exception is due to the old, non-standard
package format used by those releases. Supporting such format
is not hard, but requires an additional abstraction layer that is
not implemented in Debsources yet.

The dataset contains ∼30,000 differently named packages,
occurring in ∼90,000 distinct 〈name,version〉 pairs, for an
average of 2.88 versions per package. The number of mappings
between versioned packages and suites, ∼120,000, is signif-
icantly higher than the number of packages due to packages
occurring in multiple releases.

The dataset covers ∼40 M source files, a whopping
∼370 M developer-defined symbols (ctags), and ∼300,000
〈language,package〉 pairs for an average of 3.56 different
programming languages occurring in each package version.

IV. HOW TO USE

The Debsources Dataset is a textual dump of a PostgreSQL
database, compressed in XZ format.7 The dump has been
obtained from Postgres 9.3 using pg_dump, but it should be
compatible with any version of Postgres ≥ 9.1.

To use the dataset you should first install Postgres, then
create a dedicated database, and finally import the dataset into
it. For the last two steps you can proceed as follows, acting
as a user with suitable Postgres permissions:

1) createdb debsources
2) xzcat debsources.TS.xz | psql debsources

where TS is the version (timestamp) of the Debsources Dataset
you have got, e.g., 1423576120.

On a modern high-end laptop equipped with a fast SSD
disk, the import takes about 3.5 hours. The freshly imported

7http://tukaani.org/xz/format.html

http://tukaani.org/xz/format.html

database will require about 80 GB of disk space, 50 GB of
which occupied by indexes.

To query the dataset you can then connect to the database
via the Postgres API and run ordinary SQL queries. For
interactive querying the database, the standard Postgres shell
can be invoked as psql debsources.

V. THREATS TO VALIDITY

As discussed in Section III, the Debsources Dataset does
not include the first 2 Debian releases. Additionally, due to
a regression in dpkg-source,8 12 packages from historical
releases cannot be extracted and are missing from the dataset.
We do not expect such a tiny number of packages to signifi-
cantly impact the usefulness of the dataset.
sloccount and Exuberant Ctags are starting to show their

age and suffer from a lack of active maintenance. Most no-
tably, they do not support languages like Scala and JavaScript,
which might then be underrepresented in the dataset. The case
of JavaScript is particularly worrisome, due to its increasing
popularity for server-side Node.js applications.

The binaries and binary names tables, relative to Debian
binary packages, are currently empty in the dataset due to
the lack of support in Debsources. This should not affect any
analysis targeting source code only, which is the main focus
of the Debsources Dataset.

The content of the history sloccount and history size ta-
bles is not easily reproducible, due to the unwieldiness of
versioning the dataset as a whole. It should be possible
to recreate them injecting into Debsources data from http:
//snapshot.debian.org, but that service “only” goes back to
2005. Also, the history size table started collecting data a few
days later than history sloccount.

VI. RELATED WORK

Debsources [4] is the software platform used to produce the
Debsources Dataset. It can be used to recreate the dataset (see
Section II). It can also be used, after import (see Section IV),
to browser and search the metadata; however, as the dataset
does not include the actual source code, rendering of individual
source code files will not work.

Reproducing the findings of a former macro-level software
evolution study [3] motivated in part the development of
Debsources. That study also shows the results of running
sloccount on Debian releases over the 1998–2007 period.
The Debsources Dataset covers twice that period, offers more
metadata (ctags, disk size, checksums), and is publicly avail-
able from archival storage (Zenodo), whereas the dataset URL
from [3] has been down for a few years now.

The Ultimate Debian Database (UDD) [7] has assembled a
large dataset about Debian and some of its derivatives, and is a
popular target for mining studies [5]. UDD however lacks the
time axis—with the sole exception of a history table used to
store time series which cannot be recreated from local storage.

Boa [8] is a DSL and an infrastructure to mine FOSS
project collections like forges. Boa’s dataset is larger in

8http://bugs.debian.org/740883

scope than Debsources (e.g., it contains SourceForge) and
also more fine grained, reaching down to the VCS level,
but does not correspond to curated software collections like
FOSS distributions. That has both pros (it allows to peek into
unsuccessful projects) and cons: contained projects are less
likely to be representative of what was popular at the time.
The time horizon is also more limited than that of Debian.

FLOSSmole [9] is a collaborative collection of datasets
obtained by mining FOSS projects. Many datasets in there
are about Debian but no one is, by far, as extensive as the
Debsources Dataset.

VII. CONCLUSION

We have presented the Debsources Dataset: source code
metadata and measurements spanning two decades of Free and
Open Source Software (FOSS) history, through the lens of the
popular Debian distribution.

The dataset contains increasingly more fine-grained infor-
mation (software packages→ releases→ source code files→
checksums → developer-defined symbols) about more than
3.5 billions lines of source code, from popular FOSS projects,
representative of the state of FOSS at their times.

The Debsources Dataset is publicly available as Open Data,
documented, and reproducible using Debsources and Debian
Project data. However, recreating it takes a non-negligible
amount of resources. Its availability as a ready to use database
dump can therefore ease the work of scholars interested
in macro-level software evolution, and in the history and
composition of FOSS.

REFERENCES

[1] F. P. Brooks, Jr., The mythical man-month: essays on software engineer-
ing, 2nd ed. Addison-Wesley, 1995.

[2] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[3] J. M. González-Barahona, G. Robles, M. Michlmayr, J. J. Amor, and
D. M. Germán, “Macro-level software evolution: a case study of a large
software compilation,” Empirical Software Engineering, vol. 14, no. 3,
pp. 262–285, 2009.

[4] M. Caneill and S. Zacchiroli, “Debsources: Live and historical views
on macro-level software evolution,” in ESEM 2014: 8th International
Symposium on Empirical Software Engineering and Measurement. ACM,
2014.

[5] J. Whitehead and T. Zimmermann, Eds., Mining Software Repositories,
MSR 2010. IEEE, 2010.

[6] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli, “Strong dependen-
cies between software components,” in ESEM, 2009, pp. 89–99.

[7] L. Nussbaum and S. Zacchiroli, “The ultimate debian database: Consol-
idating bazaar metadata for quality assurance and data mining,” in MSR.
IEEE, 2010, pp. 52–61.

[8] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: a language
and infrastructure for analyzing ultra-large-scale software repositories,”
in ICSE. IEEE / ACM, 2013, pp. 422–431.

[9] J. Howison, M. Conklin, and K. Crowston, “FLOSSmole: A collaborative
repository for FLOSS research data and analyses,” IJITWE, vol. 1, no. 3,
pp. 17–26, 2006.

http://snapshot.debian.org
http://snapshot.debian.org
http://bugs.debian.org/740883

	Introduction
	Data Gathering & Reproducibility
	Database Schema
	How to Use
	Threats to Validity
	Related Work
	Conclusion
	References

