
Automatic Classification of Software Repositories:
a Systematic Mapping Study

Stefano Balla
stefano.balla2@unibo.it

DISI - Università di Bologna
Bologna, Italy

Thomas Degueule
thomas.degueule@labri.fr

Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800
Bordeaux, France

Romain Robbes
romain.robbes@labri.fr

Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800
Bordeaux, France

Jean-Rémy Falleri
falleri@labri.fr

Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800, Institut
Universitaire de France

Bordeaux, France

Stefano Zacchiroli
stefano.zacchiroli@telecom-paris.fr

LTCI, Télécom Paris, Institut
Polytechnique de Paris

Palaiseau, France

Abstract
The rapid growth of software repositories on development plat-
forms such as GitHub, as well as archives like Software Heritage,
prompts the need for better repository classification. Machine learn-
ing is increasingly used to automate this classification, but there
are no secondary studies analyzing this research landscape.

We present a systematic mapping study of 43 primary sources
published between 2002 and 2023, where we examine the goals,
inputs, outputs, training, and evaluation processes involved in au-
tomatic repository classification.

Our findings reveal a growing interest in automatic classification,
particularly to enhance the discoverability and recommendation
of relevant repositories. Other applications, such as classification
for mining studies, were surprisingly underrepresented. We also
observe that a lack of standardized datasets, classification tasks, and
evaluation metrics makes it difficult to compare the performance
of different techniques.

CCS Concepts
• General and reference→ Surveys and overviews; • Software
and its engineering→ Software libraries and repositories; •
Information systems→ Clustering and classification.

Keywords
software repositories, repository classification, systematic mapping
study

1 Introduction
Software engineering (SE) has seen rapid growth in the volume of
version control system (VCS) repositories available (just “reposi-
tories”, for short, in the following), particularly with collaborative
commercial development platforms such as GitHub and GitLab,
as well as academic platforms such as Software Heritage [7] and
World of Code [14]. The sheer quantity of software repositories
available—in excess of 345 million on Software Heritage alone, at

This work is licensed under a Creative Commons Attribution 4.0 International License.

the time of writing1—makes automatic repository classification
highly desirable. This need is compounded by the complexity of
modern software systems and the variety of classifications required
to support various development and maintenance activities. Classi-
fication efforts in software repositories often aim to improve the
efficiency of project management, code reuse, and collaboration,
among other objectives [S32, S42, S50].

To classify software repositories, researchers tend to use auto-
mated techniques, particularly machine learning (ML). These tech-
niques are used in various areas such as project tagging, repository
recommendations, and code categorization. However, the landscape
of repository classification remains fragmented, with various ap-
proaches, goals, and methodologies being employed. Researchers
have developed numerous models for classification, yet little work
has been done to comprehensively map the field and synthesize the
results systematically. To fill this knowledge gap, we conducted a
systematic mapping study (SMS) to provide an overview of current
trends and identify areas where further research is required.

Paper structure. Section 2 details the methodology of our study.
We focus on fundamental research questions, such as where and
when the work was conducted, and the goals and motivations be-
hind the classification efforts. Since current repository classification
relies heavily on machine learning, we examine both data-related
and algorithmic aspects. To ensure completeness and rigor, we fol-
lowed a systematic methodology with defined inclusion/exclusion
criteria, screening steps, and backward snowballing, validated through
inter-rater reliability (Fleiss’ kappa [9]) and refined via discussion.
This led to the final selection of 43 studies, which were then catego-
rized based on various dimensions related to our research questions.
Section 3 presents our main results, which can be summarized as:

• There is a long-running research interest in repository clas-
sification, lasting more than two decades, with a spike in
the last 7 years.

• The main stated motivation for repository classification
is discoverability; surprisingly few studies address other
themes.

1https://www.softwareheritage.org, visited on 2025-01-24

https://orcid.org/0000-0002-5679-6912
https://orcid.org/0000-0002-5961-7940
https://orcid.org/0000-0003-4569-6868
https://orcid.org/0000-0002-8284-7218
https://orcid.org/0000-0002-4576-136X
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.softwareheritage.org


Stefano Balla, Thomas Degueule, Romain Robbes, Jean-Rémy Falleri, and Stefano Zacchiroli

• A wide variety of datasets, input data, features and met-
rics are used, highlighting the richness and complexity of
software repository data.

In Section 4, we examine the implications of our findings, including
the strong emphasis on discoverability as the primary motivation,
the absence of standardized benchmarks for datasets and evalu-
ation methods, and the scalability challenges in applying these
approaches to ultra-large-scale repository collections. Before con-
cluding (Section 6), we discuss study limitations in Section 5.

Contributions and Data Availability. This paper presents (i) the
first secondary study on the automatic classification of software
repositories, and (ii) a publicly available replication package [1]
containing the dataset of 43 analyzed papers and a structured tax-
onomy categorizing their key characteristics. All code and data
used in this study are included in the package.

2 Methodology
To carry out this study, we followed the methodology proposed
by Petersen et al. [17, 18], which was designed to ensure a com-
prehensive and reproducible process for selecting and analyzing
relevant articles. The methodology is organized around three main
phases: developing research questions (Section 2.1), selection of
primary sources (Section 2.2), and data extraction (Section 2.3). Ad-
ditionally, we used Parsifal [24] throughout the various stages to
streamline the process.

2.1 Research questions
To systematically map the state of software repository classification
research, we formulated seven research questions (RQs), described
below. For each RQ we describe the dimension used to answer it,
collectively defining our classification scheme (Table 1).

RQ1: Where and when was the research published. Under-
standing the publication context is essential for grasping the de-
velopment and current state of software repository classification
research. We identified two key dimensions:

Year of publication: Recording the publication year of each study
allows observing temporal trends and assess whether interest in the
topic is increasing, stable, or declining. When a paper has multiple
versions (such as journal extensions), we only consider the latest
peer-reviewed publication, to avoid overcounting the same result.

Venue: Identifying the specific conferences or journals where
studies are published helps us understand the research fields and
communities engaged with this topic. This dimension includes the
name of the peer-reviewed venue (e.g., IEEE Transactions on Software
Engineering), providing insight into the fields that are contributing
to this area (e.g., software engineering, machine learning).

RQ2: What is the goal of the classification? This research
question maps the motivations that drive researchers to engage in
software repository classification and the practical applications of
these classifications within the studies.

In particular, we identified two dimensions to answer this re-
search question:

Stated motivation for classification: This dimension captures the
authors’ reasons for performing the classification, reflecting their
desired outcomes or the problems they aim to address. For example,

Table 1: Classification scheme

Dimension Scale

RQ1: Where and when was the research published?
Year of publication Time-based scale
Venue Single-choice close scale

RQ2: What is the goal of the classification?
Stated motivation for classification Multi-valued open scale
Application of the classification Multi-valued open scale

RQ3: What kind of raw information is used for the classification?
Type of raw information used Multi-valued open scale

RQ4: What features are computed for classification?
Input features Multi-valued open scale

RQ5: What are the output classes for the classification?
Type of labels Multi-valued closed scale
Class structure Single-choice closed scale
Classification domain Multi-valued open scale

RQ6: What is the training process?
Data provenance Multi-valued open scale
Use of preexisting datasets Yes/No scale
Size of the training datasets Integer scale
Types of supervision Multi-valued closed scale
Label acquisition method Multi-valued closed scale
Machine learning algorithms Multi-valued open scale

RQ7: What is the evaluation process?
Data provenance Multi-valued open scale
Use of preexisting datasets Yes/No scale
Size of the evaluation datasets Integer scale
Label acquisition method Multi-valued closed scale
Evaluation procedure Multi-valued open scale
Evaluation metrics Multi-valued open scale

a study may state that the motivation is to enhance the discover-
ability of software repositories for educational purposes.

Application of the classification: This analysis focuses on the ap-
plication of classification within the study, which may or may not
correspond with the declared objectives. The classification could
be used for various purposes, such as developing a recommender
system, improving repositories with missing tags, or performing
clustering for analytical insights. For example, a study could incor-
porate a tagging framework designed to optimize discoverability,
thereby directly utilizing classification to achieve its stated goals.

By examining the stated motivation behind the research and the
applications of classification methods in the literature, we aim to
evaluate how well the implemented solutions align with the initial
objectives.

RQ3: What kind of raw information is used for the classifi-
cation? We explore this RQ with a single dimension:

Type of raw information used: data sources utilized, such as source
code, README files, and commit histories. Understanding these
inputs reveals which types of data are most commonly employed
and how they contribute to the classification process.



Automatic Classification of Software Repositories: a Systematic Mapping Study

RQ4: What features are computed for the classification?
This research question investigates the features derived from raw
data for the classification tasks. Analyzing these transformations
helps map prevalent feature engineering practices and types of
features commonly utilized in the field.

Input features: This dimension focuses on the techniques em-
ployed to represent raw information in a format suitable for ma-
chine learningmodels. Examples include embeddings, term frequency-
inverse document frequency (TF-IDF) matrices, and statistical mea-
sures. Understanding these transformations provides insights into
common approaches to feature engineering and their role in classi-
fication tasks.

RQ5: What are the output classes for the classification?
This research question investigates the output classes used in clas-
sification tasks. This involves analyzing the types of labels, the
nature of the classes, and the specific domains of classification. By
mapping the output classes, we aim to understand how classifi-
cation results are structured and identify trends within the target
sets for different classification endeavors. To analyze the nature of
classification outputs, we define three dimensions:

Type of labels: This dimension characterizes the classification
task based on the structure of labels, including single-label versus
multi-label and binary versus multi-class classifications.

Class structure (open vs closed classes): This dimension specifies
whether the classification operates within a predefined set of cate-
gories (closed-class) or allows for the creation of new categories as
needed (open-class). For example, classifying repositories as mal-
ware or not is a single-label, binary classification; assigning relevant
concepts to a repository is a multi-label, open-class classification.

Classification domain: This dimension specifies the target cate-
gories or domains.

RQ6: What is the training process? This research question ex-
amines the training processes used to develop classification models,
focusing on fundamental dimensions such as data provenance, use
of existing datasets, training set size, types of supervision, methods
of label acquisition, and machine learning algorithms. By analyzing
these aspects, we aim to understand the common methodological
practices and identify trends in training classification models.

Data provenance: This dimension highlights the sources of train-
ing data, such as GitHub, GitLab, or SourceForge, which offers
insights into the diversity and representativeness of datasets. For
instance, datasets obtained from GitHub often encompass a wide
range of open source projects.

Use of preexisting datasets: whether pre-existing datasets are
utilized, which is crucial for ensuring the reproducibility of previous
results and enabling comparative evaluations.

Size of the training datasets: scale of training datasets, providing
insights into trends related to model robustness and scalability. For
example, training on thousands of repositories can lead to better
generalization compared to using smaller datasets.

Types of supervision: used learning paradigm, distinguishing
among supervised, unsupervised, semi-supervised, reinforcement,
and self-supervised learning approaches.

Label acquisition method: how labels are obtained in supervised
learning tasks—whether through manual annotation, automated

processes, pre-existing datasets, or crowd-sourcing—thus helping
to evaluate data quality and labeling practices.

Machine learning algorithms: techniques employed, ranging from
traditional methods such as decision trees and support vector ma-
chines (SVM) to advanced approaches such as neural networks,
graph neural networks (GNNs), transformers, and pre-trained lan-
guage models.

RQ7: What is the evaluation process? Finally, this research
question examines the evaluation processes employed to assess
the performance of classification models. This includes analyzing
the evaluation dataset provenance, the use of preexisting datasets,
dataset sizes, label acquisition methods, evaluation procedures, and
evaluation metrics dimensions. By mapping these dimensions, we
aim to understand how performance is measured and reported in
the field and identify trends in evaluation practices.

Data provenance: sources of evaluation data, such as GitHub,
SourceForge, or proprietary datasets, providing insight into the
generalizability of models across different contexts.

Use of preexisting datasets: whether preexisting datasets are used,
which facilitates reproducibility and comparison across studies.

Size of the evaluation datasets: scale of datasets used for valida-
tion, as larger datasets tend to produce more robust and reliable
performance metrics.

Label acquisition method: how labels are obtained for evaluation
data—whether through manual annotation, automated processes,
preexisting datasets, or crowd-sourcing—which can influence the
interpretation of results.

Evaluation procedure: This dimension captures the validation
methods employed, such as holdout validation, k-fold cross-validation,
or bootstrapping. Evaluation metrics: This dimension highlights
the criteria used to assess performance, including precision, recall,
F1-score, accuracy, and other task-specific measures, reflecting the
aspects of model performance emphasized in the studies.

2.2 Selection of primary sources
Figure 1 depicts the protocol used for the selection of our primary
sources. First, we defined search queries to be used on several online
libraries and executed them. After deduplication of obtained results,
we applied inclusion and exclusion criteria, screened the titles and
abstracts, screened the full content of the sources, and conducted
a backward snowballing phase to obtain the final set of primary
sources.

Search query definition. To identify the key terms for our search
query, we adopted the PICO framework [12], commonly used in
systematic reviews, which stands for “Population, Intervention,
Comparison, and Outcome”. This approach formulates research
questions and structure as outlined by Petersen et al. [17]. Our
systematic mapping study focused on the Population and Interven-
tion components. The Population component in our study refers
to software repositories and related entities. We defined this us-
ing the terms: software, repository, library, project, application, and
program. The Intervention component pertains to the classifica-
tion processes applied to these entities. We defined this using the
terms: classification, categorization, labeling, recommendation, and
clustering.



Stefano Balla, Thomas Degueule, Romain Robbes, Jean-Rémy Falleri, and Stefano Zacchiroli

Figure 1: Protocol used for the selection of primary sources

We did not include the Comparision component because our
study does not involve comparing different classification methods
or interventions against each other. Our objective is to map the
existing research on software repository classification as a whole
rather than to evaluate or contrast specific approaches. Similarly,
we excluded the Outcome component because we are not focusing
on specific, measurable outcomes resulting from classification inter-
ventions, such as performance improvements or accuracy metrics.
Instead, our aim is to identify and categorize the characteristics of
existing studies, such as their motivations, data sources, features
used, and methodologies, without assessing their empirical results.

According to the methodology of Biolchini et al. [5], we con-
ducted an evaluation of our search strategy utilizing a curated
control set comprising 14 papers, selected by the authors based
on domain-specific expertise and experience in the field. Initially,
our search retrieved 1684 papers, of which 108 were duplicates. We
iteratively refined the query to optimize both precision and recall
with respect to the control set. 6 of the 14 control papers were
retrieved, producing a recall of 42.86%. The precision, calculated
as the number of control papers retrieved over the total number of
non-duplicated papers (6 out of 1576), was 0.37%.

The search string was refined, using the control papers as a
benchmark, until an acceptable level of precision and recall was
achieved. According to Beyer and Wright [4], the recall of search
strategies can range from 0% to 87%, and precision from 0% to
14.3%. Our results, with a recall of 42.86% and precision of 0.37%,
fall within this expected range. However, as highlighted by Wohlin

and Prikladnicki [25], using a single search strategy can lead to
missing studies, confirming the need to combine database searches
with techniques such as snowball sampling to ensure more com-
prehensive coverage.

Table 2 presents the final search query, adapted to the syntax
and semantics of each bibliographic database. These queries were
applied exclusively to paper titles. This is because many of the
keywords we search for are very common in the software engineer-
ing literature; searching for them in paper abstracts (or even full
texts) returned large amounts of non-relevant papers during our
iterations on the search query. This approach allowed us to ensure
high relevance of the retrieved papers without compromising the
breadth of the search. The selected digital libraries represent the
major repositories available in the field of software engineering.

Inclusion and exclusion criteria. To ensure the selection of rele-
vant studies, we applied the inclusion and exclusion criteria shown
in Table 3. They require that studies: (C1) include a contribution
that involves the automatic classification of software projects, (C2)
be written in English, (C3) be peer-reviewed, (C4) be accessible in
full text, and (C5) in cases of multiple versions of the same study,
the most recent and complete version would be considered. Papers
were excluded if they did not meet these criteria.

Title and abstract screening. We then applied a screening based
on the titles and abstracts of the retrieved papers, as recommended
by [18]. This step was performed by the first author, who read
titles and abstracts, and applied inclusion/exclusion criteria based
on them. Out of the 1586 total papers retained thus far, 1439 papers
were rejected, leaving 147 potentially-relevant papers for further
analysis.

Full content screening. We then applied the inclusion/exclusion
criteria to the full content of retained papers. The task was di-
vided among all authors. To assess the consistency of the screen-
ing process within the group, we randomly selected 10% of the
papers—rounded up to 15 studies in total—and assigned these to
five independent reviewers. Each reviewer applied the criteria to
the same set of studies, and we calculated the inter-rater agreement
using Fleiss’ kappa coefficient. While Petersen and Ali [16] used
Cohen’s kappa, which is suitable for two raters, we opted for Fleiss’
kappa as it accommodates multiple raters. The results indicated a
kappa value of 0.370, which falls within the “fair agreement” range,
suggesting that the selectors were largely consistent, with some
variations in judgment, leaving room for improvement.

After discussion, all reviewers reached a consensus on the final
decisions for the 15 studies, with only one paper being accepted.
This led to a refinement of our criteria to enhance consistency
in future evaluations, emphasizing the importance of inter-rater
reliability in systematic mapping studies, where subjectivity can
influence results.

Following the kappa evaluation, we proceeded with the evalua-
tion of the remaining 147 − 15 = 132 papers. These were divided
equally among the five evaluators, each tasked with applying the
inclusion and exclusion criteria to their subset.

The selection process allowed reviewers to mark studies as
“maybe” in case of uncertainty about their inclusion, prompting
a second evaluation by another reviewer. Out of the 132 studies,



Automatic Classification of Software Repositories: a Systematic Mapping Study

Table 2: Queries used to search bibliographic databases.

Database Search query

Springer Link “Github Recommendation” OR “Github Topics” OR “Recommendation Repositories” OR “Topic Recommendation” OR “Software
Classification” OR “Tagging Repository” OR “Repository Classification”

ACM (Github AND Recommendation OR Github AND Topics OR Recommendation AND Repositories OR Topic AND Recommendation
OR Software AND Classification OR Tagging AND Repository OR Repository AND Classification)

IEEE “Github Recommendation” OR “Github Topics” OR “Recommendation Repositories” OR “Topic Recommendation” OR “Software
Classification” OR “Tagging Repository” OR “Repository Classification”

Wiley Github AND Recommendation OR Github AND Topics OR Recommendation AND Repositories OR Topic AND Recommendation OR
Software AND Classification OR Tagging AND Repository OR Repository AND Classification

Science Direct (Github Recommendation OR Tagging Repository OR Recommendation Repositories OR Topic Recommendation OR Software
Classification OR Tagging Repository)

Scopus (“Github Recommendation” OR “Github Topics” OR “Recommendation Repositories” OR “Topic Recommendation” OR “Software
Classification” OR “Tagging Repository” OR “Repository Classification”)

Table 3: Inclusion and exclusion criteria.

Inclusion Exclusion

Contribution Content
Articles that include in their
contributions a step where a
set of software repositories are
being automatically classified.

Articles that do not include
this feature in their contribu-
tions.

Language
Articles presented in English. Articles not presented in Eng-

lish.

Source Type
Articles from peer-reviewed
sources.

Articles from grey litera-
ture (e.g., technical reports,
theses, books, abstracts,
presentations, tutorials,
guidelines, summaries of con-
ferences/editorials). Articles
not peer-reviewed.

Accessibility
Articles available in full text. Articles not available in full

text.

Extension
If multiple publications of the
same study exist presenting
the same analysis, the latest
version (i.e., most complete
study report) will be included.

Studies for which a
newer/more complete
version exists.

105 were clear rejections, and 11 clear acceptances. 16 studies were
marked as “maybe”. After second opinion by a different reviewer, 9
of themaybe-s were accepted and 7 rejected. In the end, we accepted
a total of 20 papers from the original 132.

In the end, we retained 35 papers for further analysis: 1 accepted
during the kappa evaluation, 20 from the main selection phase,
and 14 from the control set; further reduced to 29 papers after

deduplication (note that the previous step of deduplication did not
include the control set).

Backward snowballing. Considering the initial precision and re-
call, there was still room for improvement in the retrieval of rele-
vant studies. To address this, we incorporated an additional step:
backward snowballing. This process was applied to the 29 studies
accepted during the selection of primary sources.

The snowballing phase followed the established methodology
used for evaluating the primary sources: we began with 29 direct
studies, which led to the identification of 990 references. These
were processed through the three sequential steps: (1) removal of
duplicate papers, (2) title and abstract screening, and (3) full content
screening. Through this process, we identified 14 additional studies,
bringing the total number of primary sources to 43.

2.3 Data extraction
In the data extraction phase, we first randomly selected five papers
from the 43 primary sources. Five evaluators independently read the
full text of the papers and extracted the information corresponding
to the dimensions and scales of Table 1. Then, all evaluators met
to discuss their results and ensure that their interpretations of the
different dimensions and scales were aligned. Based on this agree-
ment, the first author proceeded to read and extract the information
from the remaining papers.

Once the information was extracted from all papers, the five
evaluators met again to homogenize the vocabulary used for the
seven open scales following an open card sorting process [27].
For each open scale, the evaluators listed and consolidated the
information extracted from the papers. For instance, for the scale
“Application of the classification”, we consolidated the extracted
terms “tagging repositories”, “assign topics to repositories”, and “tag
repositories” under the common term “Assign topics to repositories”.
Once the exhaustive list of values for each scale was established,
the first author applied them to all papers.

For certain open scales, we further analyzed recurring patterns
in the data, grouping them into distinct themes to provide addi-
tional depth and structure to the analysis. For instance, for the
scale “Type of raw information used”, we grouped all values related
to repository metadata (e.g., repository name, description, license)



Stefano Balla, Thomas Degueule, Romain Robbes, Jean-Rémy Falleri, and Stefano Zacchiroli

2005 2010 2015 2020
0

2

4

6

Year

Nu
m

be
r o

f S
ou

rc
es

Figure 2: Publication years

0 1 2 3 4
Wuhan University Journal of Natural Sciences

ICWS
SANER

FSE
ICDM

ASE
RAID
ISEC

IWPSE
PROMISE

Soft Computing
Frontiers of Computer Science

KI
IEEE Transactions on Software Engineering

KES
CSII
BCD

SIGIR
Internetware

WWW
ICSCC

Applied Intelligence
IITA

ESEM
Software - Practice and Experience

KDD
Journal of Systems and Software

EASE
COMPSAC

MSR
Empirical Software Engineering

ICSME

Number of Sources

Ve
nu

e

VenueType
Conference
Journal

Figure 3: Publication venues

under the “Repository metadata” category. These themes and pat-
terns are further discussed in Section 3, providing a comprehensive
interpretation of the findings.

3 Results
In this section, we review and analyze the information extracted
from the 43 primary sources following the scales and dimensions
identified for each research question in Table 1. For each dimension,
the number of studies matching it is indicated in parentheses. The
raw data, analysis scripts, and plots discussed in this section are
available from the replication package [1].

3.1 RQ1: Where and when was the research
published?

Year of publication. As shown in Figure 2, the analyzed primary
sources span more than two decades, from 2002 to 2023. Over this
period, the annual number of publications increases over time, with
notable peaks in 2018, 2020, and 2023. These observations suggest
a growing and sustained research interest in software repository
classification: the field remains active and evolving.

Cost estim
ation

Discoverability

Discoverability:
 software participation

Discoverability:
 software re-use

Discoverability:
 software study

Malware detection

Assign domains to repositories

Assign topics to repositories

Detect outlier for effort estimation

Malware detection

Predict popularity of repositories

Predict quality of repositories

Recommend some other repositories

2

1

7

15

6

1

2

1

1

2

1

1

1

2

Motivation

Th
e 

us
e

Figure 4: Motivations for and use of automatic classification
in primary sources

Venue. Publication venues are quite varied, reflecting the inter-
disciplinary nature of research on software repository classification
and the shared interests of various communities (Figure 3). While
many papers are distributed across a wide range of venues, Empir-
ical Software Engineering (4) and the International Conference on
Software Maintenance and Evolution (4) published the most works,
indicating a stronger involvement from the empirical software en-
gineering community compared to others.

However, most venues appear only once or twice in the dataset,
showcasing the broad distribution of studies throughout the pub-
lication landscape, including venues related to data mining (e.g.,
KDD, ICDM), web services (e.g., ICWS), and security (e.g., RAID).
This suggests that software repository classification is relevant to
various computer science domains, rather than being concentrated
in a single community or venue.

3.2 RQ2: What is the goal of the classification?
Stated motivation for classification. Stated motivations for classi-

fying software repositories reveal a strong emphasis on enhancing
the discoverability of software repositories, as depicted in Figure 4.
The vast majority of studies mention discoverability (40) as a pri-
mary motivation for their work. For instance, some papers aim to
improve repository navigation [S37], recommend relevant reposito-
ries [S65], or assign descriptive tags to enhance searchability [S55].
Discoverability is also sometimes linked to education (1) [S51], soft-
ware maintenance (2) [S43], software participation (4) [S46], software
reuse (3) [S31], and software studies (3) [S53]. Other motivations
include detection of malware (2) and effort estimation (1).

Application of the classification. Looking at how classification is
used in primary sources, a recurring theme is the use of classifica-
tion to assign topics to repositories (18) to enhance the discoverabil-
ity of repositories, thereby helping users navigate large software
ecosystems [S32, S43, S55]. Here, topics are open-ended labels such



Automatic Classification of Software Repositories: a Systematic Mapping Study

0 5 10 15
Stackoverflow questions

Issues
Users behaviour

Users name
Requirements

Design documents
Contributor guide

Wiki pages
README files

License
Popularity metrics

Project title
Project tags

Project Description
Build files

Effort estimation metrics
Programming Languages

File names and folder structure
Version control data

Source code

Number of Sources

Documentation
Repository metadata
Technical artefacts
User information

Figure 5: Input information used for the classification. Some
approaches combine information from different sources.

as GitHub Topics.2 Additionally, studies assign domains to reposito-
ries (9); domains are smaller close-ended sets of labels representing
software categories or application domains. Another notable area
of focus is the recommendation of repositories (7), based on either
content similarity [S28] or developers’ behavioral patterns [S38].

3.3 RQ3: What kind of raw information is used
for the classification?

As depicted in Figure 5, the primary sources analyzed rely on a
variety of raw information from software repositories to classify
them, from textual documentation to technical artifacts through
repository metadata and user social information.

The most commonly used raw data is source code (15), together
with project descriptions (15) and README files (15). Other fre-
quently used sources include version control data (7) such as com-
mits. It is noteworthy that raw inputs are often used in combi-
nation. For instance, studies frequently leverage both source code
and README files [S65], or they combine textual data with version
control information to enrich classification input [S34]. This multi-
sources approach captures diverse perspectives on repositories to
improve the accuracy of the classification.

In Figure 5we grouped raw information into fourmacro categories—
documentation, repository metadata, technical artifacts, and user in-
formation—providing a structured view of how different features
contribute to repository classification.

3.4 RQ4: What features are computed for
classification?

Our analysis (see Figure 6) reveals that the most commonly com-
puted features for classification are co-occurrence matrices (18).
These matrices capture relationships between elements, such as
terms in textual data, and are often employed as inputs for methods
like term frequency-inverse document frequency (TF-IDF) or latent
Dirichlet allocation (LDA).

2https://github.com/topics

0 5 10 15
Graph

Categorical Data
Embedding

Metrics
Co-occurences matrix

Number of Sources

Fe
at

ur
es

Figure 6: Features used for the classification

Metrics (10) emerge as the second most common feature type.
This category encompasses various numerical and statistical prop-
erties derived from raw inputs, including code measures, repository
size or user activity levels. Closely trailing metrics are embedding
techniques (8). These methods transform raw data, such as textual
or structural inputs, into dense vector representations. Embeddings
are particularly valued for their ability to capture semantic relation-
ships, making them especially useful for analyzing textual artifacts
like README files or project descriptions.

In addition to these commonly used features, categorical data (5)
and graph-based features (3) appear less frequently. Categorical data
consists of discrete labels or categories assigned based on specific
attributes, whereas graph-based features represent relationships
and model structural dependencies or interactions between entities
within the data.

3.5 RQ5: What are the output classes for the
classification?

Type of labels. Our analysis reveals that most studies adopt amul-
tilabel (27) classification approach, allowing repositories to belong
to multiple categories simultaneously. This approach is particularly
effective for complex tasks, such as topic assignment or reposi-
tory recommendation, where repositories may span several themes
or purposes [S50, S62]. In contrast, single-label classifications (16)
assign each repository to exactly one category. This simpler ap-
proach is often applied to binary classifications or scenarios where
categories are mutually exclusive [S35].

Class structure (open vs closed classes). Regarding the structure
of the classes, closed-class (30) classifications dominate. In this case,
repositories are classified into a predefined set of categories, such as
known software domains [S43]. Conversely, open-class (13) classifi-
cations, which allow for the creation of new categories as needed,
are particularly useful for recommender systems where the number
of suggestions is not pre-defined [S65].

Classification Domain. The classification output domain provides
insight into the intended purpose of the classification tasks. Our
analysis reveals that topics (17) and software categories (12) are the
most frequently assigned labels, indicating a strong focus on the-
matic organization and categorization of repositories [S67]. Less
commonly, classifications target repositories (6), often for recom-
mendation purposes [S39], or quality metrics (4), where the goal is
to assess various aspects of software quality [S52].

https://github.com/topics


Stefano Balla, Thomas Degueule, Romain Robbes, Jean-Rémy Falleri, and Stefano Zacchiroli

training testing

10

100

1000

10000

100000

siz
e

Figure 7: Sizes of the training and evaluation datasets

3.6 RQ6: What is the training process?
Data provenance. The data used for training classification models

predominantly originates from publicly available repositories, with
GitHub (22) being the overwhelmingly dominant source. Other
sources, such as SourceForge (11) and private datasets (3) from
company-specific repositories, are far less common. Although a few
studies use data from multiple sources, such as combining GitHub
and StackOverflow, the overall diversity of data provenance remains
limited, with most training sets heavily reliant on GitHub [S30, S34].

Use of preexisting datasets. Only a few primary sources use preex-
isting datasets (11), whereas themajority rely on datasets specifically
created for their experiments. This dependence on custom datasets
reflects a lack of standardized benchmarks for repository classifi-
cation, which can interfere with reproducibility and comparability
across studies.

Size of the training datasets. Training set sizes vary significantly,
ranging from as few as 2 repositories [S48] to over 460 000 reposi-
tories in large-scale studies [S30], as shown in Figure 7 (left). Large
datasets, such as those exceeding 100 000 repositories, are typically
used in studies focused on scalable machine learning approaches
(e.g., [S34]), whereas smaller datasets are often seen in exploratory
tasks (e.g., [S68]).

Types of supervision. The most prevalent learning paradigm is
supervised learning (29). Unsupervised learning (13) accounts for a
smaller portion, primarily in clustering and topic modeling tasks.
weak supervision (1) also appears, highlighting innovative strategies
to reduce the dependency on labeled dataset [S69].

Label acquisition method. For supervised studies, labels are most
commonly derived from preexisting annotations (27), as seen in stud-
ies leveraging datasets like GitHub Topics. Other methods include
computed labels (11) (e.g., inferred through algorithms) and human
labeled (2). Preexisting and computed labels dominate, reflecting
the efficiency and scalability of automated and semi-automated
approaches.

Machine learning algorithms. Our analysis highlights a diverse
range of machine learning algorithms employed in the studies
(Figure 8). Clustering (10) emerges as the most frequently used
technique, particularly for unsupervised tasks such as repository
grouping and topic modeling. Its versatility makes it well-suited

0.0 2.5 5.0 7.5 10.0
RNN

Ensemble Learning
Graph Neural Networks

Collaborative filtering
Transformer

Graph search
Regression

CNN
SVM

Decision Trees
Bayesian Techniques

LDA
Clustering

Number of Sources

M
L 

al
go

rit
hm

Figure 8: Algorithms used for the classification

for exploratory data analysis, where predefined categories may not
exist.

LDA (Latent Dirichlet Allocation) (8) is another widely used ap-
proach, especially when handling textual data like README files or
project descriptions. Similarly, Bayesian Techniques (7) and Decision
Trees (7) are commonly employed, often in combination with other
methods, for instance, SVMs (Support Vector Machines) (5). Regres-
sion (3) is applied to prediction tasks, such as estimating repository
popularity or assessing software quality [S29, S70]. Meanwhile,
CNNs (Convolutional Neural Networks) (3) are used for their abil-
ity to extract features from both structured and unstructured data,
making them particularly valuable in tasks involving complex in-
puts [S69]. Other significant methods include Graph Search (2), of-
ten applied to analyze relationships within data, and Collaborative
Filtering (2), commonly used for recommendation tasks. Modern
approaches like Transformers (2) are also beginning to appear in
the field, showcasing their potential for advancing classification
methodologies.

3.7 RQ7: What is the evaluation process?
Data provenance. Most studies utilize data from GitHub (22),

highlighting its dominant role as the primary source of data for
repository classification research. GitHub’s extensive repository
ecosystem, metadata, and activity logs make it an invaluable re-
source for a wide range of classification tasks. SourceForge (10) is the
second most common source. Although less prevalent than GitHub,
SourceForge contributed significantly to this research area.

A smaller number of studies use data from private companies (3),
reflecting the use of proprietary datasets for specialized or domain-
specific investigations. Similarly, Ohloh (2) is cited, emphasizing
its role in aggregating open source project information. As for the
training data provenance, less common sources include Debian
Packages (1), StackOverflow (1), F-Droid (1), and tera-PROMISE (1).

Use of preexisting datasets. As with the training process, most
studies construct their own datasets (30) for the evaluation process,
which does not facilitate comparison between different methodolo-
gies. However, few studies utilize preexisting datasets (12), address-
ing this limitation to some extent.

Size of the evaluation datasets. The sizes of evaluation datasets
vary significantly (Figure 7, right), ranging from as small as 2 [S48]



Automatic Classification of Software Repositories: a Systematic Mapping Study

0 5 10 15
repeated holdout

crowdsourced evaluation
leave one out cross-validation

single holdout
k-fold cross-validation

Number of Sources

Ev
al

 p
ro

ce
du

re
s

Figure 9: Evaluation procedures

0 5 10 15 20
R^2

Relevance score
Kullback-Leibler

Number of Errors
RSE

Relative difference
Specificity
G measure

AARTR
DaviesBouldin index

Calinski-Harabasz Score
Silhouette score

Catalog Coverage
LRAP

HR@K
MRR@K
AROCR

MRR
R-Precision

Top Rank
True Positive Rate

MAP@K
MCC
MRE

AE
Success Rate@K

F1 Score@K
False Positive Rate

AUC
Recall@K
Accuracy

Precision@K
Success Rate

F1 score
Recall

Precision

Number of Sources

Ev
al

 m
et

ric
s

Figure 10: Evaluation metrics

repositories to over 40 000 in large-scale studies [S34], highlighting
the need for further evaluation of real-world archive sizes and their
impact on classification performance.

Label acquisition method. Labels come predominantly from pre-
existing annotations (27), often derived from established sources like
GitHub Topics. Computed labels (7) and human-labeled datasets (5)
also play a significant role.

Evaluation procedure. K-fold cross-validation (16) is the most
widely used evaluation method, commonly employing values of
k such as 10 and 5 (see Figure 9). Single holdout (14) is also fre-
quent, with variations in specific ratios such as 80/20 or 90/10. Other
methods, including leave one out cross-validation (2), crowdsourced
evaluation (2), and repeated holdout (1) are less commonly used and
focus on tailored approaches suited for specific study designs.

Evaluation metrics. The evaluation metrics used highlight the di-
verse goals and methodologies in software repository classification

(see Figure 10). Precision (20) is the most commonly used metric,
often in conjunction with Recall (19). F1 Score (14) is particularly
significant in situations where achieving a balance between these
two metrics is essential. Other metrics for a fixed number of classes
include Accuracy (5) and Success Rate (5). Additionally, ranking-
specific measures such as Recall@K (4) and Precision@K (5) high-
light the emphasis on recommendation systems and ranking tasks.
However, most metrics only appear once in the studied sources,
highlighting the lack of a unified methodology for evaluating classi-
fication tasks with negative effects on the ability to compare results.

4 Discussion
Our study reveals trends and gaps in the automatic classification of
software repositories, as detailed below.

A growing research area. Analyzing publication years, we ob-
serve a positive growth trajectory, with increasing interest in this
topic, particularly within the software engineering community.
Overall, 60% of the papers were published in the last seven years of
the study period. This rising interest aligns with the rapid expan-
sion of software hosted on development platforms like GitHub and
archives like Software Heritage. Notably, this growth underscores
the significant challenge of discoverability—the most frequently
cited motivation for studies in this field.

Discoverability in practice. While discoverability is a primary
driver of repository classification, care must be taken to ensure the
solutions proposed are aligned to actual developer needs. At the
moment, discoverability is often formulated as a classification task
whose format is strongly influenced by available data: either as
a classification of broad software domains (mostly obtained from
SourceForge or manually curated), or as a classification of fine-
grained topics (mostly obtained from larger datasets extracted from
SourceForge or Github). Since 2019, only works on GitHub top-
ics (akin to tags) have been published. Studies of general tagging
systems have found that in search scenarios, not all users found
tagging systems useful. Notably, some users felt that tags are either
too broad or too narrow for their search needs [11]. Other work
found that tag clouds were most suited to searches for specific in-
formation, rather than general information [21], echoing a similar
sentiment. Of note, a third type of approaches focuses on recom-
mending similar repositories to an existing one: this scenario differs
markedly from the previous two. In light of the above, we call on
the community to ensure that discoverability tasks are well aligned
with practical goals, by means of user studies.

Another use of discoverability is in the context of mining soft-
ware repository studies, where researchers seek to select a relevant
and representative sample of repositories to analyze, and then ex-
trapolate more general conclusions from.We found surprisingly few
studies that addressed this need, despite the fact that understanding
application domains and categories is crucial for qualitative and
quantitative analyses of the extracted data. This finding echoes
a literature review on the workflows and methodologies in min-
ing studies [23], which finds that MSR studies tend to use simple
sampling criteria such as programming language or popularity.

Beyond discoverability. We were very surprised that discoverabil-
ity would be such a dominating topic: only 12% of papers address



Stefano Balla, Thomas Degueule, Romain Robbes, Jean-Rémy Falleri, and Stefano Zacchiroli

other topics. In addition to cost estimation and malware detection,
there are likely other scenarios that can benefit from increased
research (e.g. librairies or packages at risk of being abandoned [2]).

Data and data quality. Regarding the data used for training and
evaluation, most studies operate on dataset of limited sizes, raising
questions about the scalability of these methodologies when ap-
plied to real-world, large-scale repository collections. For instance,
the largest dataset identified in this study contains approximately
460 000 repositories, 3 orders of magnitudes away from the 300
million repositories archived by Software Heritage. Whereas it is
understandable that researchers work on smaller datasets, it would
be useful to also have studies that convincingly show the practical
applicability of automated classifiers to larger, real-world scenarios.

Regarding GitHub topics, while there is a large quantity of data
available, making them appealing, there are some known data qual-
ity issues (e.g., some topics specify the programming language
the repository is implemented in—a task better fulfilled by pro-
gramming language identification tools than repository classifica-
tion) [S55]. These issues contribute to the possible misalignment
between the task as formulated and the practical uses by developers.

Machine learning techniques. Furthermore, most studies utilize
conventional machine learning methods such as decision trees and
clustering. At the same time, only a handful of research studies
have investigated more sophisticated approaches such as neural
networks or transformers, which have recently shown considerable
promise in other fields. Foundation models such as BERT [6] or
CodeBERT [8] in particular have found success in software engi-
neering tasks [13], even with small-scale datasets [19]. The advent
of truly large language models [22], who in some cases can dispense
with additional training opens up additional opportunities. So far,
a single primary source is using pretrained models [S37], while we
are aware of an as yet unpublished work (thus not fulfilling our
inclusion critera) using an LLM to detect scientific software [15].
This limited exploration of recent approaches suggests a potential
avenue for future research, in which scalability issues due to larger
and more diverse datasets are more likely to emerge.

Lack of standard benchmarks. Another significant limitation is
the absence of standardized benchmarks, including datasets, clas-
sification tasks, and evaluation metrics. This absence makes it dif-
ficult to compare the performance of various machine learning
approaches for this task. Establishing standardized benchmarks
would enhance reproducibility and provide a solid foundation for
evaluating and improving the automatic classification of software
repositories, as has been seen for other software engineering fields
such as with benchmarks such as Defects4J [10] or the Bellon bench-
mark [3]. Furthermore, benchmarks are know to foster communities
accelerate progress [20]. There are however pitfalls as benchmarks
must be carefully constructed to minimize data quality issues and in-
centivize the right objectives. As such, given the alignment and data
quality issues mentioned above, simply collecting a large amount
of GitHub topics might not be sufficient to yield an effective bench-
mark. However, approaches that involve a degree of curation, such
as GitRanking [S55], constitute a promising way forward.

5 Threats to validity
Like all secondary studies, this systematic mapping study is sub-
ject to validity concerns. We report these threats following the
guidelines of Wohlin et al. [26].

Internal validity. To mitigate the potential threats to validity
during the screening phase, we performed a pilot screening of 10%
of the papers with overlapping reviewers, followed by a discussion
round to resolve discrepancies. We also computed the Fleiss kappa
to measure inter-rater agreement among the five reviewers. During
the data extraction phase, we avoided inconsistency in gathering
data by having multiple rounds of discussion on how to interpret
and apply dimensions and scales. A potential threat arises from the
diversity of studies, particularly inMachine Learning Algorithm and
Evaluation metrics. Similar metrics reported under different names
were grouped into categories to streamline analysis, which may
obscure subtle differences. To mitigate this, we employed an open
card-sorting process for consistency.

External validity. Because our study focuses on peer-reviewed
publications explicitly mentioning the automatic classification of
software repositories, some relevant industrial or unpublished work
(e.g., gray literature) may have been missed. Furthermore, despite
leveraging multiple digital libraries and following a rigorous pro-
tocol to craft search queries, we might still have missed relevant
studies. The inclusion of backward snowballing mitigates this to
some extent, but complete coverage is never guaranteed in any
systematic review of the literature.

6 Conclusion
Our systematic mapping of 43 primary studies, filtered from an
initial set of almost 1700 works, shows that the interest in soft-
ware repository classification has grown steadily over the last two
decades, with a marked increase in the past seven years. Although
discoverability is the dominant motivation, relatively few studies
address other objectives, such as security or maintainability classi-
fications. We have seen a wide range of different sources, such as
datasets, input data, and features, that highlight the complexity of
large software repositories. In addition, there is significant variation
in machine learning algorithms, evaluation methods, and metrics,
which points to a lack of standardization in this field. Establishing
common benchmarks would help in improving the comparabil-
ity of research results, which is currently quite difficult. Among
the gaps we have observed in the literature, three stand out: (1)
the need of closing the gap between stated goals for repository
classification and developer needs; (2) empirical verifications of
the scalability of state-of-the-art approaches to the largest existing
scale of repository collection; (3) the application of state-of-the-art
machine learning techniques (e.g., transformers) to this task.



Automatic Classification of Software Repositories: a Systematic Mapping Study

References
[1] Anonymous. 2025. Automatic Classification of Software Repositories: A Sys-

tematic Mapping Study - replication package. https://doi.org/10.5281/zenodo.
14773537

[2] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects: An
empirical investigation. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, Porto de Galinhas, Brazil,
1–12. https://doi.org/10.1109/ESEM.2019.8870181 ISSN: 1949-3789.

[3] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and Evaluation of Clone Detection Tools. IEEE Transactions
on Software Engineering 33, 9 (Sept. 2007), 577–591. https://doi.org/10.1109/TSE.
2007.70725 Conference Name: IEEE Transactions on Software Engineering.

[4] Fiona Beyer and Kath Wright. 2011. Comprehensive searching for systematic
reviews: a comparison of database performance. York: Centre for Reviews and
Dissemination, University of York (2011).

[5] Jorge Calmon de Almeida Biolchini, Paula Gomes Mian, Ana Cândida Cruz
Natali, Tayana Uchôa Conte, and Guilherme Horta Travassos. 2007. Scientific
research ontology to support systematic review in software engineering. Adv.
Eng. Informatics 21, 2 (2007), 133–151. https://doi.org/10.1016/J.AEI.2006.11.006

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171–4186. https://doi.
org/10.18653/v1/N19-1423

[7] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why
and How to Preserve Software Source Code. In iPRES 2017 - 14th Interna-
tional Conference on Digital Preservation. PHAIDRA, Kyoto, Japan, 1–10. https:
//hal.science/hal-01590958

[8] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020, Trevor Cohn, Yulan
He, and Yang Liu (Eds.). Association for Computational Linguistics, Online,
1536–1547. https://doi.org/10.18653/v1/2020.findings-emnlp.139

[9] Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological Bulletin 76, 5 (1971), 378–382. https://doi.org/10.1037/h0031619
Place: US Publisher: American Psychological Association.

[10] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database
of existing faults to enable controlled testing studies for Java programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). Association for Computing Machinery, New York, NY, USA, 437–
440. https://doi.org/10.1145/2610384.2628055

[11] Margaret Kipp and D. Grant Campbell. 2010. Searching with Tags: Do Tags
Help Users Find Things? Knowledge Organization 37 (Jan. 2010), 239–255. https:
//doi.org/10.5771/0943-7444-2010-4-239

[12] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey,
and Stephen Linkman. 2009. Systematic literature reviews in software engineer-
ing – A systematic literature review. Information and Software Technology 51, 1
(Jan. 2009), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009

[13] Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, and Jane Cleland-Huang. 2021.
Traceability Transformed: Generating More Accurate Links with Pre-Trained
BERT Models. In Proceedings of 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, Madrid, ES, 324–335. https://doi.org/10.1109/
ICSE43902.2021.00040 ISSN: 1558-1225.

[14] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of Code: An Infrastructure for Mining the Universe of Open Source
VCS Data. In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, Montreal, Canada, 143–154. https://doi.org/10.1109/
MSR.2019.00031 ISSN: 2574-3864.

[15] Addi Malviya-Thakur, Reed Milewicz, Lavinia Paganini, Ahmed Samir Imam
Mahmoud, and Audris Mockus. 2023. SciCat: A Curated Dataset of Scientific Soft-
ware Repositories. https://doi.org/10.48550/arXiv.2312.06382 arXiv:2312.06382
[cs].

[16] Kai Petersen and Nauman Bin Ali. 2011. Identifying Strategies for Study Se-
lection in Systematic Reviews and Maps. In Proceedings of the 5th Interna-
tional Symposium on Empirical Software Engineering and Measurement, ESEM
2011, Banff, AB, Canada, September 22-23, 2011. IEEE, Banff, Canada, 351–354.
https://doi.org/10.1109/ESEM.2011.46

[17] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Sys-
tematic mapping studies in software engineering. In Proceedings of the 12th
International Conference on Evaluation and Assessment in Software Engineering
(EASE’08). Association for Computing Machinery, Bari, Italy, 68–77. event-place:
Italy.

[18] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64 (Aug. 2015), 1–18. https://doi.org/10.
1016/j.infsof.2015.03.007

[19] Julian Aron Prenner and Romain Robbes. 2022. Making the Most of Small Soft-
ware Engineering DatasetsWithModernMachine Learning. IEEE Transactions on
Software Engineering 48, 12 (Dec. 2022), 5050–5067. https://doi.org/10.1109/TSE.
2021.3135465 Conference Name: IEEE Transactions on Software Engineering.

[20] S.E. Sim, S. Easterbrook, and R.C. Holt. 2003. Using benchmarking to advance
research: a challenge to software engineering. In 25th International Conference
on Software Engineering, 2003. Proceedings. IEEE, Portland, USA, 74–83. https:
//doi.org/10.1109/ICSE.2003.1201189 ISSN: 0270-5257.

[21] James Sinclair and Michael Cardew-Hall. 2008. The folksonomy tag cloud: when
is it useful? Journal of Information Science 34, 1 (Feb. 2008), 15–29. https:
//doi.org/10.1177/0165551506078083 Publisher: SAGE Publications Ltd.

[22] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
https://doi.org/10.48550/arXiv.2302.13971 arXiv:2302.13971 [cs].

[23] Adam Tutko, Austin Z. Henley, and Audris Mockus. 2022. How are Software
Repositories Mined? A Systematic Literature Review of Workflows, Method-
ologies, Reproducibility, and Tools. https://doi.org/10.48550/arXiv.2204.08108
arXiv:2204.08108 [cs].

[24] Will Segatto Vitor Freitas. 2024. Parsifal. https://parsif.al/
[25] Claes Wohlin and Rafael Prikladnicki. 2013. Systematic literature reviews in

software engineering. Inf. Softw. Technol. 55, 6 (2013), 919–920.
[26] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,

and Anders Wesslén. 2012. Experimentation in software engineering (2012 ed.).
Springer, Berlin, Germany.

[27] T. Zimmermann. 2016. Card-sorting: From text to themes. In Perspectives on Data
Science for Software Engineering, Tim Menzies, Laurie Williams, and Thomas
Zimmermann (Eds.). Morgan Kaufmann, Boston, 137–141. https://doi.org/10.
1016/B978-0-12-804206-9.00027-1

Primary sources
[S28] Doaa Altarawy, Hossameldin Shahin, Ayat Mohammed, and Na Meng. 2018.

Lascad : Language-agnostic software categorization and similar application
detection. Journal of Systems and Software 142 (Aug. 2018), 21–34. https:
//doi.org/10.1016/j.jss.2018.04.018

[S29] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Predicting the
Popularity of GitHub Repositories. In Proceedings of the The 12th International
Conference on Predictive Models and Data Analytics in Software Engineering
(PROMISE 2016). Association for Computing Machinery, New York, NY, USA,
1–10. https://doi.org/10.1145/2972958.2972966

[S30] Xuyang Cai, Jiangang Zhu, Beijun Shen, and Yuting Chen. 2016. GRETA: Graph-
Based Tag Assignment for GitHub Repositories. In 2016 IEEE 40th Annual Com-
puter Software and Applications Conference (COMPSAC), Vol. 1. IEEE, Atlanta,
USA, 63–72. https://doi.org/10.1109/COMPSAC.2016.124 ISSN: 0730-3157.

[S31] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, and Riccardo
Rubei. 2020. TopFilter: An Approach to Recommend Relevant GitHub Topics.
In Proceedings of the 14th ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). ACM, Bari Italy, 1–11. https:
//doi.org/10.1145/3382494.3410690

[S32] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong T. Nguyen, and
Riccardo Rubei. 2023. HybridRec: A recommender system for tagging GitHub
repositories. Applied Intelligence 53, 8 (April 2023), 9708–9730. https://doi.org/
10.1007/s10489-022-03864-y

[S33] Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Phuong T. Nguyen.
2020. A Multinomial Naïve Bayesian (MNB) Network to Automatically Rec-
ommend Topics for GitHub Repositories. In Proceedings of the 24th Inter-
national Conference on Evaluation and Assessment in Software Engineering
(EASE ’20). Association for Computing Machinery, New York, NY, USA, 71–80.
https://doi.org/10.1145/3383219.3383227

[S34] Junxiao Han, Shuiguang Deng, Xin Xia, Dongjing Wang, and Jianwei Yin. 2019.
Characterization and Prediction of Popular Projects on GitHub. In 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE,
Milwaukee, WI, USA, 21–26. https://doi.org/10.1109/COMPSAC.2019.00013
ISSN: 0730-3157.

[S35] Kazunori Iwata, Toyoshiro Nakashima, Yoshiyuki Anan, and Naohiro Ishii.
2019. Applying Machine Learning Classification to Determining Outliers in
Effort for Embedded Software Development Projects. In 2019 6th International
Conference on Computational Science/Intelligence and Applied Informatics (CSII).
IEEE, Honolulu, USA, 78–83. https://doi.org/10.1109/CSII.2019.00021

[S36] Maliheh Izadi, Abbas Heydarnoori, and Georgios Gousios. 2021. Topic recom-
mendation for software repositories using multi-label classification algorithms.

https://doi.org/10.5281/zenodo.14773537
https://doi.org/10.5281/zenodo.14773537
https://doi.org/10.1109/ESEM.2019.8870181
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1016/J.AEI.2006.11.006
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://hal.science/hal-01590958
https://hal.science/hal-01590958
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1037/h0031619
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.5771/0943-7444-2010-4-239
https://doi.org/10.5771/0943-7444-2010-4-239
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1109/ICSE43902.2021.00040
https://doi.org/10.1109/ICSE43902.2021.00040
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.48550/arXiv.2312.06382
https://doi.org/10.1109/ESEM.2011.46
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1109/TSE.2021.3135465
https://doi.org/10.1109/TSE.2021.3135465
https://doi.org/10.1109/ICSE.2003.1201189
https://doi.org/10.1109/ICSE.2003.1201189
https://doi.org/10.1177/0165551506078083
https://doi.org/10.1177/0165551506078083
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2204.08108
https://parsif.al/
https://doi.org/10.1016/B978-0-12-804206-9.00027-1
https://doi.org/10.1016/B978-0-12-804206-9.00027-1
https://doi.org/10.1016/j.jss.2018.04.018
https://doi.org/10.1016/j.jss.2018.04.018
https://doi.org/10.1145/2972958.2972966
https://doi.org/10.1109/COMPSAC.2016.124
https://doi.org/10.1145/3382494.3410690
https://doi.org/10.1145/3382494.3410690
https://doi.org/10.1007/s10489-022-03864-y
https://doi.org/10.1007/s10489-022-03864-y
https://doi.org/10.1145/3383219.3383227
https://doi.org/10.1109/COMPSAC.2019.00013
https://doi.org/10.1109/CSII.2019.00021


Stefano Balla, Thomas Degueule, Romain Robbes, Jean-Rémy Falleri, and Stefano Zacchiroli

Empirical Software Engineering 26, 5 (July 2021), 93. https://doi.org/10.1007/
s10664-021-09976-2

[S37] Maliheh Izadi, Mahtab Nejati, and Abbas Heydarnoori. 2023. Semantically-
enhanced topic recommendation systems for software projects. Empirical
Software Engineering 28, 2 (Feb. 2023), 50. https://doi.org/10.1007/s10664-022-
10272-w

[S38] Jyun-Yu Jiang, Pu-Jen Cheng, and Wei Wang. 2017. Open Source Repository
Recommendation in Social Coding. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM,
Shinjuku Tokyo Japan, 1173–1176. https://doi.org/10.1145/3077136.3080753

[S39] S. Kawaguchi, P.K. Garg, M. Matsushita, and K. Inoue. 2003. Automatic cat-
egorization algorithm for evolvable software archive. In Sixth International
Workshop on Principles of Software Evolution, 2003. Proceedings. IEEE, Helsinki,
Finland, 195–200. https://doi.org/10.1109/IWPSE.2003.1231227

[S40] S. Kawaguchi, P.K. Garg, M. Matsushita, and K. Inoue. 2004. MUDABlue: an
automatic categorization system for open source repositories. In 11th Asia-
Pacific Software Engineering Conference. IEEE, Busan, Korea, 184–193. https:
//doi.org/10.1109/APSEC.2004.69 ISSN: 1530-1362.

[S41] Yesol Kim, Seong-je Cho, Sangchul Han, and Ilsun You. 2018. A software
classification scheme using binary-level characteristics for efficient software
filtering. Soft Computing 22, 2 (Jan. 2018), 595–606. https://doi.org/10.1007/
s00500-016-2357-x

[S42] Naoki Kinoshita, Akito Monden, Masateru Tshunoda, and Zeynep Yücel. 2018.
Predictability Classification for Software Effort Estimation. In 2018 IEEE Inter-
national Conference on Big Data, Cloud Computing, Data Science & Engineering
(BCD). IEEE, Yonago, Japan, 43–48. https://doi.org/10.1109/BCD2018.2018.00015

[S43] Alexander LeClair, Zachary Eberhart, and Collin McMillan. 2018. Adapting
Neural Text Classification for Improved Software Categorization. In 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
Madrid, Spain, 461–472. https://doi.org/10.1109/ICSME.2018.00056 ISSN: 2576-
3148.

[S44] Jun-Tao Liang and Xiao-Yuan Jiang. 2008. A Software Component Classification
Based on Facet and Neural Network. In 2008 International Symposium on Intel-
ligent Information Technology Application Workshops. IEEE, Shanghai, China,
1121–1123. https://doi.org/10.1109/IITA.Workshops.2008.277

[S45] Mario Linares-Vásquez, Collin McMillan, Denys Poshyvanyk, and Mark
Grechanik. 2014. On using machine learning to automatically classify software
applications into domain categories. Empirical Software Engineering 19, 3 (June
2014), 582–618. https://doi.org/10.1007/s10664-012-9230-z

[S46] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre Baldi.
2007. Mining concepts from code with probabilistic topic models. In Proceedings
of the twenty-second IEEE/ACM international conference on Automated software
engineering. ACM, Atlanta Georgia USA, 461–464. https://doi.org/10.1145/
1321631.1321709

[S47] Yuzhan Ma, Sarah Fakhoury, Michael Christensen, Venera Arnaoudova, Waleed
Zogaan, and Mehdi Mirakhorli. 2018. Automatic classification of software
artifacts in open-source applications. In Proceedings of the 15th International
Conference on Mining Software Repositories. ACM, Gothenburg Sweden, 414–425.
https://doi.org/10.1145/3196398.3196446

[S48] Girish Maskeri, Santonu Sarkar, and Kenneth Heafield. 2008. Mining business
topics in source code using latent dirichlet allocation. In Proceedings of the 1st
India software engineering conference. ACM, Hyderabad India, 113–120. https:
//doi.org/10.1145/1342211.1342234

[S49] Collin McMillan, Mario Linares-Vásquez, Denys Poshyvanyk, and Mark
Grechanik. 2011. Categorizing software applications for maintenance. In
2011 27th IEEE International Conference on Software Maintenance (ICSM). IEEE,
Williamsburg, USA, 343–352. https://doi.org/10.1109/ICSM.2011.6080801 ISSN:
1063-6773.

[S50] N Nalini, S Rishabh, Bhargav D Bhat, Vaibhav Jamwal, and Aayush Kumar. 2023.
Github Recommendation System And User Analytics. In 2023 9th International
Conference on Smart Computing and Communications (ICSCC). IEEE, Kochi,
India, 582–587. https://doi.org/10.1109/ICSCC59169.2023.10334939

[S51] Mathieu Nassif and Martin P. Robillard. 2023. Identifying Concepts in Software
Projects. IEEE Transactions on Software Engineering 49, 7 (July 2023), 3660–3674.
https://doi.org/10.1109/TSE.2023.3265855 Conference Name: IEEE Transactions
on Software Engineering.

[S52] Peter Pickerill, Heiko Joshua Jungen, Mirosław Ochodek, Michał Maćkowiak,
and Miroslaw Staron. 2020. PHANTOM: Curating GitHub for engineered
software projects using time-series clustering. Empirical Software Engineering
25, 4 (July 2020), 2897–2929. https://doi.org/10.1007/s10664-020-09825-8

[S53] Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E. Papalexakis,
and Michalis Faloutsos. 2020. {SourceFinder}: Finding Malware {Source-Code}
from Publicly Available Repositories in {GitHub}. In 23rd International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID 2020). USENIX
Association, Donostia, Spain, 149–163. https://www.usenix.org/conference/
raid2020/presentation/omar

[S54] Md Omar Faruk Rokon, Pei Yan, Risul Islam, and Michalis Faloutsos. 2021.
Repo2Vec: A Comprehensive Embedding Approach for Determining Repository

Similarity. In Proceedings of 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, Luxembourg, 355–365. https://doi.
org/10.1109/ICSME52107.2021.00038

[S55] Cezar Sas, Andrea Capiluppi, Claudio Di Sipio, Juri Di Rocco, and Davide Di Rus-
cio. 2023. GitRanking: A ranking of GitHub topics for software classification
using active sampling. Software: Practice and Experience 53, 10 (Oct. 2023),
1982–2006. https://doi.org/10.1002/spe.3238

[S56] Huajie Shao, Dachun Sun, Jiahao Wu, Zecheng Zhang, Aston Zhang, Shuochao
Yao, Shengzhong Liu, Tianshi Wang, Chao Zhang, and Tarek Abdelzaher. 2020.
paper2repo: GitHub Repository Recommendation for Academic Papers. In
Proceedings of The Web Conference 2020 (WWW ’20). Association for Computing
Machinery, New York, NY, USA, 629–639. https://doi.org/10.1145/3366423.
3380145

[S57] Abhishek Sharma, Ferdian Thung, Pavneet Singh Kochhar, Agus Sulistya, and
David Lo. 2017. Cataloging GitHub Repositories. In Proceedings of the 21st
International Conference on Evaluation and Assessment in Software Engineering
(EASE ’17). Association for Computing Machinery, New York, NY, USA, 314–319.
https://doi.org/10.1145/3084226.3084287

[S58] Marcus Soll and Malte Vosgerau. 2017. ClassifyHub: An Algorithm to Classify
GitHub Repositories. In KI 2017: Advances in Artificial Intelligence (Lecture
Notes in Computer Science), Gabriele Kern-Isberner, Johannes Fürnkranz, and
Matthias Thimm (Eds.). Springer International Publishing, Cham, 373–379.
https://doi.org/10.1007/978-3-319-67190-1_34

[S59] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. 2009. Using Latent Dirichlet
Allocation for automatic categorization of software. In 2009 6th IEEE Interna-
tional Working Conference on Mining Software Repositories. IEEE, Vancouver,
Canada, 163–166. https://doi.org/10.1109/MSR.2009.5069496 ISSN: 2160-1860.

[S60] Secil Ugurel, Robert Krovetz, and C. Lee Giles. 2002. What’s the code?: auto-
matic classification of source code archives. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
Edmonton Alberta Canada, 632–638. https://doi.org/10.1145/775047.775141

[S61] Tao Wang, Huaimin Wang, Gang Yin, Charles X. Ling, Xiang Li, and Peng Zou.
2013. Mining Software Profile across Multiple Repositories for Hierarchical
Categorization. In 2013 IEEE International Conference on Software Maintenance.
IEEE, Eindhoven, Netherlands, 240–249. https://doi.org/10.1109/ICSM.2013.35
ISSN: 1063-6773.

[S62] Tao Wang, Huaimin Wang, Gang Yin, Charles X. Ling, Xiao Li, and Peng Zou.
2014. Tag recommendation for open source software. Frontiers of Computer
Science 8, 1 (Feb. 2014), 69–82. https://doi.org/10.1007/s11704-013-2394-x

[S63] TaoWang, Gang Yin, Xiang Li, andHuaiminWang. 2012. Labeled topic detection
of open source software fromminingmass textual project profiles. In Proceedings
of the First International Workshop on Software Mining (SoftwareMining ’12).
Association for Computing Machinery, New York, NY, USA, 17–24. https:
//doi.org/10.1145/2384416.2384419

[S64] Ratnadira Widyasari, Zhipeng Zhao, Thanh Le Cong, Hong Jin Kang, and
David Lo. 2023. Topic Recommendation for GitHub Repositories: How Far Can
Extreme Multi-Label Learning Go?. In 2023 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, Taipa, Macao,
167–178. https://doi.org/10.1109/SANER56733.2023.00025 ISSN: 2640-7574.

[S65] Wenyuan Xu, Xiaobing Sun, Xin Xia, and Xiang Chen. 2017. Scalable Rele-
vant Project Recommendation on GitHub. In Proceedings of the 9th Asia-Pacific
Symposium on Internetware (Internetware ’17). Association for Computing Ma-
chinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3131704.3131706

[S66] Yueshen Xu, Yuhong Jiang, Xinkui Zhao, Ying Li, and Rui Li. 2023. Personalized
Repository Recommendation Service for Developers with Multi-modal Features
Learning. In 2023 IEEE International Conference on Web Services (ICWS). IEEE,
Chicago, USA, 455–464. https://doi.org/10.1109/ICWS60048.2023.00064 ISSN:
2836-3868.

[S67] Yuhanis Yusof and Omer F. Rana. 2010. Classification of Software Artifacts
Based on Structural Information. In Knowledge-Based and Intelligent Information
and Engineering Systems, Rossitza Setchi, Ivan Jordanov, Robert J. Howlett, and
Lakhmi C. Jain (Eds.). Springer, Berlin, Heidelberg, 546–555. https://doi.org/10.
1007/978-3-642-15384-6_58

[S68] Lingxiao Zhang, Yanzhen Zou, Bing Xie, and Zixiao Zhu. 2014. Recommending
relevant projects via user behaviour: an exploratory study on github. In Pro-
ceedings of the 1st International Workshop on Crowd-based Software Development
Methods and Technologies (CrowdSoft 2014). Association for Computing Machin-
ery, New York, NY, USA, 25–30. https://doi.org/10.1145/2666539.2666570

[S69] Yu Zhang, Frank F. Xu, Sha Li, YuMeng, XuanWang, Qi Li, and Jiawei Han. 2019.
HiGitClass: Keyword-Driven Hierarchical Classification of GitHub Repositories.
In 2019 IEEE International Conference on Data Mining (ICDM). IEEE, Beijing,
China, 876–885. https://doi.org/10.1109/ICDM.2019.00098 ISSN: 2374-8486.

[S70] Yuming Zhou and Baowen Xu. 2008. Predicting the maintainability of open
source software using design metrics. Wuhan University Journal of Natural
Sciences 13, 1 (Feb. 2008), 14–20. https://doi.org/10.1007/s11859-008-0104-6

https://doi.org/10.1007/s10664-021-09976-2
https://doi.org/10.1007/s10664-021-09976-2
https://doi.org/10.1007/s10664-022-10272-w
https://doi.org/10.1007/s10664-022-10272-w
https://doi.org/10.1145/3077136.3080753
https://doi.org/10.1109/IWPSE.2003.1231227
https://doi.org/10.1109/APSEC.2004.69
https://doi.org/10.1109/APSEC.2004.69
https://doi.org/10.1007/s00500-016-2357-x
https://doi.org/10.1007/s00500-016-2357-x
https://doi.org/10.1109/BCD2018.2018.00015
https://doi.org/10.1109/ICSME.2018.00056
https://doi.org/10.1109/IITA.Workshops.2008.277
https://doi.org/10.1007/s10664-012-9230-z
https://doi.org/10.1145/1321631.1321709
https://doi.org/10.1145/1321631.1321709
https://doi.org/10.1145/3196398.3196446
https://doi.org/10.1145/1342211.1342234
https://doi.org/10.1145/1342211.1342234
https://doi.org/10.1109/ICSM.2011.6080801
https://doi.org/10.1109/ICSCC59169.2023.10334939
https://doi.org/10.1109/TSE.2023.3265855
https://doi.org/10.1007/s10664-020-09825-8
https://www.usenix.org/conference/raid2020/presentation/omar
https://www.usenix.org/conference/raid2020/presentation/omar
https://doi.org/10.1109/ICSME52107.2021.00038
https://doi.org/10.1109/ICSME52107.2021.00038
https://doi.org/10.1002/spe.3238
https://doi.org/10.1145/3366423.3380145
https://doi.org/10.1145/3366423.3380145
https://doi.org/10.1145/3084226.3084287
https://doi.org/10.1007/978-3-319-67190-1_34
https://doi.org/10.1109/MSR.2009.5069496
https://doi.org/10.1145/775047.775141
https://doi.org/10.1109/ICSM.2013.35
https://doi.org/10.1007/s11704-013-2394-x
https://doi.org/10.1145/2384416.2384419
https://doi.org/10.1145/2384416.2384419
https://doi.org/10.1109/SANER56733.2023.00025
https://doi.org/10.1145/3131704.3131706
https://doi.org/10.1109/ICWS60048.2023.00064
https://doi.org/10.1007/978-3-642-15384-6_58
https://doi.org/10.1007/978-3-642-15384-6_58
https://doi.org/10.1145/2666539.2666570
https://doi.org/10.1109/ICDM.2019.00098
https://doi.org/10.1007/s11859-008-0104-6

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research questions
	2.2 Selection of primary sources
	2.3 Data extraction

	3 Results
	3.1 RQ1: Where and when was the research published?
	3.2 RQ2: What is the goal of the classification?
	3.3 RQ3: What kind of raw information is used for the classification?
	3.4 RQ4: What features are computed for classification?
	3.5 RQ5: What are the output classes for the classification?
	3.6 RQ6: What is the training process?
	3.7 RQ7: What is the evaluation process?

	4 Discussion
	5 Threats to validity
	6 Conclusion
	References
	Primary sources

