Determining the Intrinsic Structure of Public
Software Development History: an Exploratory
Study

Antoine Pietri’”, Guillaume Rousseau?” and Stefano Zacchiroli®®

"nria, Paris, France.
2 Laboratoire Matieres et Systémes Complexes (MSC),UMR 7057, CNRS
& Université Paris Cité, 10 rue Alice Domon et Léonie Duquet, F-75013,
Paris Cedex 13, France
3LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France.

*Corresponding author(s). E-mail(s): antoine.pietri@softwareheritage.org;
guillaume.rousseau@u-paris.fr; stefano.zacchiroli@telecom-paris.fr;

Abstract

Collaborative software development has produced a wealth of software source
code artifacts (source files and directories, commits, releases, etc.) that have
been studied for decades by researchers in empirical software engineering. Due to
code reuse and the fork-based development model, those artifacts form a globally
interconnected graph of a size comparable to the graph of the Web. Little is
known yet about the network structure of this graph; such knowledge is useful to
determine the best practical approaches to efficiently analyze very large subsets
of it (if not all of it) in a methodologically sound manner.

In this paper we determine the most salient network topology properties of the
global public software development history as captured by state-of-the-art version
control systems (VCS). As our corpus we use Software Heritage, one of the largest
and most diverse publicly available archives of VCS data—encompassing 9 billion
unique source code files and 2 billion unique commits coming from about 150
million projects or, as a graph, 19 billion nodes and 221 billion edges.

We explore topology characteristics such as: degree distributions; distribution
of connected component sizes; and distribution of shortest path lengths. We
characterize these topology aspects for both the entire graph and relevant
subgraphs.

Keywords: source code, open source, version control system, graph structure,
complex network, statistical mechanics

1 Introduction

1.1 The global graph of public software development

The rise in popularity of Free/Open Source Software (FOSS) [1] and collaborative
development platforms [2] over the past decades has made publicly available a wealth
of software source code artifacts (source code files, commits with all associated meta-
data, tagged and annotated releases, etc.), which have in turn benefited empirical
software engineering (ESE) and mining software repository (MSR) research [3]. Ver-
sion control systems (VCS) [4] in particular have been extensively analyzed [5] due to
the rich view they provide on software evolution [6-8] and their ease of exploitation
with the advent of distributed version control systems.

Since the early days of empirical research on FOSS, initiatives [9-12] have been
established to gather VCS data in a single logical place, easing access to software
artifacts and mitigating selection bias. Over time, the scale at which such collections
have been attempted has increased [13-15], with the goal of building an infrastructure
that enables research on the global properties of the FOSS ecosystem.

The entire body of public code is not a collection of distant islands of software
artifacts, but rather a single very entangled object. This is because modern software
products are built by reusing third-party components from other projects, rather than
being completely independent pieces of work. This organic code reuse happens through
different means, either by simply copying source code across projects (also known as
“software vendoring”) or by explicitly forking [16, 17] an existing project and then
building upon its preexisting development history to evolve it in a novel direction.
Modern VCSs also allow one to explicitly reference external repositories (e.g., via Git
submodules or Subversion externals) to be fetched as dependencies, which further
binds separate software projects together.

Gathering as much publicly available source code artifacts together and repre-
senting them in some canonical and deduplicated data model is a way to represent
the global graph of public software development history: an immense interconnected
network of artifacts of various kinds (files, directories, commits, repositories), linking
together all derivative works, shared code bases and common development histories,
down to the level of the individual source code file. As of today, little is known about
the network structure of this entangled graph at this massive scale. This is in con-
trast with what is known about other large graphs that are obtained as byproducts
of technology-related human activities, such as the graph of the Web [18] or social
network graphs [19, 20].

To fill this gap, in this paper we conduct the first systematic exploratory study
on the intrinsic structure of public software development history as an interconnected
graph, and its most salient topological properties [21]. To conduct this study we use
Software Heritage, one of the largest and most diverse publicly available archives of
VCS data—encompassing, in its snapshot analyzed for this paper, 9 billion unique
source code files and 2 billion unique commits coming from about 150 million reposi-
tories. A dataset of such a scale can be used to approximate the entire body of public
software development history.

1.2 Motivations and relevance

Understanding the graph structure of public software development is important for a
number of reasons, which we detail below.

Improving our understanding of daily objects of study

Empirical Software Engineering (ESE) focuses on using empirical evidence, such as
experiments, observations, and measurements, to understand and improve the soft-
ware development process. The daily object of ESE studies can vary based on research
goals and questions, but it generally involves studying artifacts that are by-products
of collaborative software engineering.

While it is widely acknowledged that the raw data of artifacts capture information
needed for ESE studies, the tools and platforms employed within developer commu-
nities, particularly various source code versioning tools, use different models that lead
to data with various degrees of heterogeneity. To build comprehensive datasets that
accurately reflect the variety of practices and situations, it is necessary to define ad-
hoc representations. This raises the question of which of the representations are the
most meaningful (cf. [22] for a similar discussion in a different context).

Many initiatives in aggregating data and artifacts from public software devel-
opment history result in graphs, but these graphs and their representations exhibit
variations and their topological properties may differ wildly. As an illustration, a
common practice when studying complex networks is to assess whether degree distri-
butions, at least in part, follow a power law [23, 24]. This characteristic relies on the
local properties of the graph and is highly contingent on the chosen graph representa-
tion. A key question then becomes: what properties of a given graph representation of
public software development history can be abstracted to the level behind the graph
and therefore considered intrinsic? Beyond the efficiency of a specific representation
for a given study, attributing and discussing the intrinsic properties of these ad-hoc
graphs as properly reflecting the system’s properties requires a careful examination.
The present study represents a significant step in this direction.

In the near future, it is likely that we will be able to fully access and routinely
work with several representations from different platforms and easily go back and
forth between them. This will facilitate the comparison of results, the identification of
possible biases induced by these representations, and then the discussion of potential
threats to validity.

Awvoiding methodological pitfalls

A better understanding of the intrinsic structure of public software development
history is needed to avoid making overly strong assumptions on what constitutes
“typical” VCS data. These pitfalls have been warned against since the early days of
GitHub mining [25], but they have been neither quantified nor described at the scale
we consider in this paper yet.

The extent to which repositories on popular forges correspond to “well-behaved”
development repositories, as opposed to being outliers that are not used for software
development or are built just to test the limits of hosting platforms or VCS technology,

remains unknown. In our experience GitHub alone contains repositories with very
weird artifacts: commits with one million parents' or artificially built to mimic bitcoin
mining in their identifiers,? the longest possible paths, bogus timestamps [26, 27], etc.

Outliers are common and of diverse nature. They have already been observed
while studying topological properties of public software development history in the
context of a clone detection study applied to file clone detection in the FreeBSD Ports
Collection [28]. They usually refer to parts of the data that are not relevant to a
given study, that are likely to negatively impact its results, and that one ideally seeks
to eliminate during data preprocessing. However, whether or not a piece of data is
considered relevant is study-dependant. Since our exploratory study aims to produce
general-purpose results, we will use the term “outlier” in a narrowly-defined way from
now on. Specifically, we assume that the topological properties we measure are well
described for the bulk of the data by a “regular” (though discrete in most cases)
distribution, and we call outliers data points that differ so much from the distribution
that their occurrence in a dataset of this size would be statistically very unlikely.

How many outliers of this kind exist is unknown and needs to be documented
as reference knowledge to help researchers in the interpretation of their empirical
findings.

Determining the most appropriate large-scale analysis approach

Most “large-scale” studies of VCS fall short of the full body of publicly available source
code artifacts and either resort to random sampling from existing collections or focus
on popular repositories. This is understandable for practical reasons, but remains a
potential source of experiment bias.

To enable studies on larger samples of public software development history (up to
its fullest extent), in addition to suitable archival and compute platforms [13, 15, 29],
we also need an understanding of its intrinsic structure to choose the most appropriate
large-scale analysis approach depending on the study needs. For instance, if the graph
turns out to be easy to partition into disconnected or at least loosely-connected com-
ponents, then a scale-out approach with several compute nodes each holding graph
(quasi-)partitions would be best. Conversely, if the graph is highly connected then a
scale-up approach based on large-scale graph databases, ad-hoc derived graphs [26] or
in-memory graph compression [30] would be preferable. Similarly, knowing that most
nodes are part of a single giant connected component (CC) would help in avoiding
algorithmic approaches with high complexity on the size of the largest CC.

Note that these topological properties partly depend on implementation choices
such as deduplication granularity or the decomposition of the graph into different
layers. In the data model used here and for the purpose of this work, deduplication
pertains to all layers and is carried out up to the level of source code files, a choice
that is consistent with what modern version control systems do and facilitates impact
and traceability analyses. It should be noted that this deduplication granularity would
not necessarily be the most relevant to study development practices such as snippet
reuse or minor code changes that do not impact code semantics (e.g., in spacing) but

Lhttps://github.com /cirosantilli/test-commit- many- parents- 1m, accessed 2021-09-29.
Zhttps://github.com/pushrax/round660, accessed 2022-10-21.

https://github.com/cirosantilli/test-commit-many-parents-1m
https://github.com/pushrax/round660

still results in different files. To study those one would need, for example, to hash indi-
vidual code tokens or snippets to capture (or ignore) fine-grained changes in spacing,
comments, and ordering [31]. And to conduct studies that need both representations
one would need to maintain them both and bear the extra costs.

This is ultimately a trade-off between data completeness and genericity. For this
study we rely upon the data model of Software Heritage (described in Section 3) and
study the topological properties of the graph it engenders. Studying the topological
properties of the same corpus (public code) using different large-scale analysis plat-
forms might lead to different results. Conducting a comparative benchmark of these
results is outside the scope of this work. Nevertheless we detail in Section 2 some of
the consequences of the choices made by Software Heritage and other platforms.

With this work, we pave the way to further network studies of the corpus of
software artifacts that (open source) software developers produce and augment daily
as a result of their work.

1.3 Study protocol and research questions

In this paper, we conduct the first comprehensive exploratory study on the
intrinsic structure of source code artifacts stored in publicly available
version control systems.

Study protocol

To avoid methodological pitfalls such as publication bias, hypothesizing after the
results, and data dredging, we have preregistered a study protocol [32] (phase 1)
that this paper implements (phase 2). The consistency between the two phases is
documented in Section 6.2. We briefly recall below the research questions and other
main aspects of the study protocol; we refer the reader to [32] for full details.

As a corpus we use Software Heritage and its dataset [29, 33], which is one of the
largest and most diverse collections of source code artifacts. We analyze a snapshot
of the Software Heritage archive consisting of 9 billion unique source code files and
2 billion unique commits archived from about 150 million projects (see Section 4.1
for exact figures). We assess the most salient network topology properties [21] of
the Software Heritage corpus represented as a graph consisting of 19 billion nodes
of different types (source code files and directories, commits, releases and repository
snapshots) and 221 billion edges (or arcs) connecting them.

Software Heritage has coverage from a wide array of sources, among which a full
copy of software forges such as GitHub, Bitbucket or GitLab.com, language pack-
age managers such as PyPI and NPM, and packages from GNU/Linux distributions
such as Debian and NixOS. This variety in coverage allows us to identify hetero-
geneous properties that appear when doing analyses across different version control
systems and different hosting platforms, even though data from GitHub remains highly
predominant in the studied dataset.

The extensive deduplication within Software Heritage (SWH) datasets and their
associated graph representations, as detailed in Section 3, facilitates the study of prop-
erties related to the reuse and cloning of software artifacts. Furthermore, it enables

measurements such as the shortest path length across a software development project’s
file system or its history. However, for these non-local measurements, it is imperative
to address potential biases and, if needed, consider the availability of more suitable
representations, as we do in Section 6.

Research Questions

On this corpus we perform an exploratory study, with no predetermined hypotheses,

and answer the following research questions:

RQ1 What is the distribution of indegrees, outdegrees and local clustering of the
public VCS history graph? Which laws do they fit?
How do such distributions vary across the different graph layers—file system
layer (source code files and directories) vs. development history layer (commits
and releases) vs. software origin layer?

RQ2 What is the distribution of connected component sizes for the public VCS
history graph? How does it vary across graph layers?

RQ3 What is the distribution of shortest path lengths from roots to leaves in the
recursive layers (file system and development history layers) of the graph of
public VCS history?

Relevance and exhaustiveness of the metrics

This exploratory study is a first step, based on a limited number of metrics, of the
intrinsic structure of public software development history as captured by Software
Heritage. Other metrics and properties are interesting and relevant, but fall outside
the scope of this study. In particular, the betweenness distribution, the degree-degree
correlation and degree-grouping correlation have been studied in other works that
analyze large-scale systems using complex network theory (cf. Section 2). This study
is not intended to be a study of the graph structure of public software development
history from the perspective of complex systems theory, although some of the metrics
shown are particularly important in this framework.

Because of the uncertainty at the end of phase 1 about the feasibility of analyzing at
this scale the proposed metrics, we prioritized metrics associated with local properties
for which regular distributions can be observed (RQ1), and those whose analysis could
provide useful insights into efficient ways to traverse the different layers of this graph
(RQ2) and (RQ3), independently of the measurements performed on them.

Further work will be needed to explore the implications of the results presented
here, in particular to understand how they impact dynamic evolution and maintenance
(including refactoring, reuse and optimization).

1.4 Paper structure

We discuss related work in Section 2. We detail the data model of the graph that
is our main object of study in Section 3. Our analysis methodology is presented in
Section 4. The main findings about the graph are in Section 5. Before concluding we
discuss them, including threats to validity and deviations from the phase 1 protocol,
in Section 6.

2 Related work

Two classes of related work are most relevant for this article. First, there is an extensive
body of work in empirical software engineering and mining software repositories about
large-scale analyses of source code artifacts. Second, there are comparable studies of
the structure of large graphs and complex networks both in computer science and
other fields, which provides important tools and methodological considerations which
are applicable to the domain of source code artifacts.

2.1 Large-scale analyses of source code artifacts

A few different approaches have been proposed in the past to gather and study large
bodies of software and associated development history in a single logical place. Boa [13]
does not offer a unified graph view of all stored artifacts, but on the other hand reaches
down to the level of abstract syntax trees, allowing fine-grained source code analyses.
The graph we study in this paper stops at the granularity of individual files, but is fully
deduplicated. All the byte-identical files, directories and commits are deduplicated
into a single object. However, similar files (e.g., two files with a difference of a single
whitespace) are never deduplicated and considered as separate entities, contrary to
Boa or similar approaches such as DejaVu [31]. The dataset we consider in this paper
is also about 20 times larger, in terms of the number of contained repositories, than
what is available in the largest Boa dataset.

The first large-scale analysis of the Software Heritage archive graph has been con-
ducted in [26, 34]. The transposed version of the graph has been studied in that work,
characterizing its various layers showing the existence of a heterogeneous structure
within the full graph. The analysis of efficient models for tracking the provenance
of source code artifacts at a very large scale was a key aspect of this work. For this
use case, queries exclusively involve the transposed version of the graph (obtained by
reversing the direction of all edges in the original graph — see Section 3). This earlier
work identified potential bottlenecks associated with defining technically transposable
graph representations, at the (very) large scale of the public software development
history. On one hand, it demonstrated that the entire graph of the SWH project
was transposable without loss using finite adjacency lists compatible with most cur-
rent production databases. On the other hand, it showed that the primary limitation
when traversing the transposed graph stemmed from the time required to execute join
queries, for ‘directory’ and ‘file’ nodes in particular (these nodes being duplicated in
the core database of the SWH project).

Followup works focused on specific layers [17], different approaches [30], and/or
different datasets [35]. This study is performed on a dataset twice as large as the initial
study in [34] and is more exhaustive in terms of measured variables and analyzed
layers.

World of Code (WoC) [15] is another recent attempt at creating a mutualized
infrastructure of VCS artifacts to enable large-scale analysis. The WoC dataset, reach-
able through public API, is structured differently than Software Heritage: while WoC
does contain information needed to build a graph view of all retrieved source code
artifacts, they are “flattened” in a set of mappings between object types, e.g., to

quickly find all commits and files belonging to a project without having to perform
graph traversals. This approach shares similarities with some previous implementa-
tions [28], and WoC could be employed to conduct analyses akin to those presented
in this article since all Git objects (commits, tree, blob, and associated metadata) are
archived there too. Indeed, with WoC, mapping precomputations accelerate certain
analyses, provided they are based solely on available relationships. However, disparity
in dataset coverage, which have no reason to be strictly identical, may yield distinct
results and differences in design decisions may impede feasibility of some analyses. For
example, constructing indegree and outdegree distributions requires access to git tree
objects (i.e., source code directories and files) and thus to the git object archive. A
comprehensive comparison of WoC and SWH is beyond the scope of this exploratory
study.

LISA [36] is a framework to analyze VCS-stored source code at a fine-grained level,
reaching down to abstract syntax tree nodes. LISA also deduplicates software artifacts
as a way to reduce redundancy and speed up analyses albeit only at the granularity
of files and not across all artifact types as in our study. But LISA introduces an
additional deduplication technique based on vertex compression using commit ranges.
This leads to a reduction of the memory and computational resources required of 50%
to 99% depending significantly on language and project size®. These measurements
are however based on a small set of 4,000 projects and warrant further investigation
on a larger scale to assess LISA’s vertex compression efficiency across corpus like
Software Heritage and WoC. The graph representation employed by LISA would also
need to be compared in detail to earlier models like the compact model [26] which
involves vertex compression of the path vertex between commits and files. Yet these
works give an indication that vertex compression, when applied to graphs representing
the public software development history, may be efficient at larger scales. In practice,
graph representations based on vertex compression may prove a worthy alternative to
the model employed in this study. For example, it could offer enhanced effectiveness
when measuring the distribution of the shortest paths in the filesystem layer, where,
in our case, sampling became necessary.

A recent work [37] by Trujillo et al. highlighted representativeness issues when
only using popular platforms like GitHub as a convenience sample, by showing large
disparities in the characteristics of projects stored in these centralized platforms and
those existing outside them. The representativeness problem outlined in this study is
one of the main motivations for characterizing topological structure at the scale of
the entire graph, including taking into account and analyzing outliers [28].

2.2 Complex network analyses of software artifacts

The study of complex networks [21, 38, 39] is dedicated to the analysis and charac-
terization of graphs that exhibit non-trivial topological properties. Large graphs that
emerge naturally as byproducts of human activities have been common objects of
study in the field for several decades now. One of the best examples and most studied
complex network is the graph of the World Wide Web [40]. The understanding of it

3For example, one of the instances provided, representing 7,947 revisions of the Reddit project using
vertex compression, requires only about 0.3% of the space needed to represent all revisions individually.

obtained from complex network studies has given valuable practical insights to design
crawling engines, searching and ranking methods, compact representation techniques,
as well as sociological insights into its growth, social structure, and communities.

Studying the topology of the graph of the Web using large corpuses has been done
as early as 2000 in [41] at a large scale: 200 million nodes (Web pages), 1.5 billion
edges (hyperlinks between them). In this paper we apply a similar analysis approach,
including the study of indegree and outdegree distributions, as well as the distribution
of connected component sizes.

Further analyses of the graph of the Web have been pursued more recently in [18],
which extends previous work characterizing different aggregation levels (pages, hosts,
and domains). This study — which uses the WebGraph compression framework [42, 43]
as we do — is particularly relevant in the context of this work, because the size of the
analyzed corpus is comparable to ours (3.5 billion nodes, 128 billion edges). Among
the notable findings are 1. the challenging of previous characterizations of various
distributions as matching power laws, and 2. the realization that the “bow-tie” struc-
ture, previously described for this network, is strongly dependent on the crawling
process and consequently cannot be seen as an intrinsic property of the underlying
real-world system. This underscores the importance of empirically challenging a pri-
ori assumptions about properties of large-scale graphs. And in turn it explains the
more conservative methodology used in this paper (Section 4) regarding the study
of the tails of distributions and why we favor a more explicit multiscale analysis of
connected component aggregation mechanisms across layers, which was previously
introduced [17].

Other computer-related graphs that have been widely studied as complex net-
works are social network graphs, in which nodes correspond to users and edges to
“friendship” or “follower” relationships. All major commercial social networks have
been studied under these optics, including the social graphs of Facebook [19] and
Twitter [20].

In the realm of interconnected software-related artifacts, software dependency
graphs have also been studied and characterized as complex networks. [44] looked at
the basic properties of the dependency graphs of Debian and BSD packages, again
with a methodology similar to the web graph studies, albeit on a much smaller graph.
[45] is a different take on characterizing the graph of software dependencies in Debian,
considering semantic rather than merely semantic dependencies. On the same graph,
[46] adds the time dimension to the analysis by studying its dynamic growth and
trying to fit it to a Zipf law model. The Software Heritage graph is known to grown
exponentially over time [26], with different growth rates for different layers. We do
not look into dynamic growth of the graph in the present article; it hence remains a
relevant research direction for future work.

The designs of specific software systems have also been studied as complex net-
works, mainly by looking at the relationships between related software modules and/or
classes in object-oriented systems [47—49].

Several works have highlighted the importance of topological properties, in par-
ticular to build predictors of bug severity, high-maintenance parts of software, and
failure-prone versions [50], and have studied different approaches combining graphs

at several scales [51] to characterize the evolution of systems producing software
artifacts [52, 53]. That includes collaboration between software developers [54] and
software engineering researchers [55] has also been analyzed using similar techniques.
In this paper we do not look at collaboration graphs (which would be graphs derivable
from, rather than natively represented in, our data model) and neither dig archived
software projects to establish their dependencies. Both remain interesting areas for
further exploration, but are out of the scope for this study.

This paper provides a fundamental stepping stone for those further analyses, pro-
viding a topological characterization of one of the largest available representations of
the global VCS graph of public code.

3 Data model

Before jumping into the analysis methodology in the next section, we detail in this
section the object of our study. The public software development history is here rep-
resented by a directed acyclic graph with typed nodes, where different node types
correspond to distinct source code artifacts in the real world. The acyclic nature is
guaranteed by construction, relying on Merkle graphs and the use of intrinsic identi-
fiers. Additionally, both nodes and edges can carry named properties associated to a
value. Formally the graph can be interpreted as a property graph [56, 57], a generic
graph data model that is popular in the field of (graph) databases.

In the following we describe the various kinds of nodes and edges that compose
the graph, what real-world version control system (VCS) data they stand for, and
the rules that govern the construction of the graph. Those rules impose topological
constraints on the graph (e.g., a file content node has no outgoing edge), a fact to
keep in mind to avoid pursuing implausible research questions.

3.1 Nodes and edges

The graph of public software development contains nodes of different types, depicted
in Figure 1. Each type of node corresponds to a different kind of software artifacts
that can be found in real-world VCS.

Blobs

File blobs (or “file contents”) represent the raw content of source code files, as recorded
in modern VCS. A blob contains only the data stored in a file as a raw sequence
of bytes. File names and other properties normally associated to the more abstract
notion of “file” are not associated to blob nodes. Other types of nodes, and most
notably directories, attach such directory-dependent information to blobs.

Blobs are identified by a cryptographic hash computed from the full binary data
they contain. An illustration of a blob object is shown in Figure 2.

Directories

Directories represent source code trees. Fach directory is a list of named direc-
tory entries, each entry pointing (with an outgoing edge) to either blob nodes (“file

10

origins

Merkle DAG

snapshots

releases

revisions

directories

contents

Fig. 1: Data model for the graph of public software development: a directed acyclic
graph (DAG) linking together deduplicated software artifacts shared across the entire
body of (archived) public code.

<Blob>
3ac7d980

+data =
#include <stdio.h>
int main(void) {
printf("Hello!");
}

Fig. 2: Example of a blob object.

entries”), directory nodes (“directory entries”), or revision nodes (“revision entries”).
Each outgoing edge from a directory is associated to a local name (i.e., a relative
path without any path separator) and permission metadata (i.e., a Unix permission
mode like 00755 for an executable file). While file and directory entries are the most
common to form nested source code trees, revision entries also exist and are used to
represent sub-directories that reference specific revisions from external repositories,
as it is permitted by VCS like Git (to reference so called “git submodules”) and SVN
(with “subversion externals”). Permission metadata is also used to recognize symbolic
links from regular files.

A directory node is identified by a cryptographic hash of a canonical textual rep-
resentation of all outgoing edges, which includes the identifier of target nodes. An
illustration of a directory node is shown in Figure 3.

Commits

Commits (or “revisions”) are point-in-time captures of the state of the entire source
code tree of a project. Each commit has an outgoing edge to the directory node that

11

< Directory>>

< Directory>>
7178d6cc b97c9c58
+entries = <Blob>
(007881 doc/ /7| da960397

[00644] README.md
[00644] hello.c
<Blob>

libopenssl \
ala3772c
< Revision>>

cbc528b6

Fig. 3: Example of a directory object.

represents the “root” directory of the versioned project at the time the commit is/was
recorded. The following properties are associated to commit nodes:

e commit message: a descriptive, human-targeted message explaining the reasons for
the change;

e quthor: the name and e-mail of the person who authored the commit;

* date: the timestamp at which the commit was authored, including timezone
information;

* committer /committer date: two properties analogous to author/date, but capturing
the person who actually committed the change (who is not always the person who
authored it, in particular in development workflows that rely on code reviews) and
when the commit happened.

Finally, each revision points via outgoing edges to an ordered list of parents: zero
parent for the first commit in a given development history (e.g., first commit in a VCS
repository); one parent for non-merge commits; two or more parents for commits that
merge together several development branches.

Commit nodes are identified by an intrinsic hash of a canonical textual mani-
fest containing all their metadata, their parent identifiers, and the identifier of the
directory node denoting the root of the source tree at the time of the commit. An
illustration of a commit node is shown in Figure 4.

< Revision>

9215efc5
+author = “Linus Torvalds <torvalds@>” <Directory>>
+message = “Fix missing return values” c54d14d1

~+timestamp = “Sat Apr 9 00:25:22 2005 -0700”
+directory = Directory
+parents = Revision list

< Revision>
f0df6963

Fig. 4: Example of a revision object.

12

Releases

Releases (or “tags”) denote marker objects that label specific commit nodes as relevant
project milestones, e.g., commits that were distributed to the user base, as well as other
steps in a release cycle (“alpha”, “beta”; etc.). Releases are marked with a specific
and usually mnemonic short name (e.g., 2.0). Aside from this name and an outgoing
edge to the target commit node, releases are associated to additional properties:

* message: analogous to commit messages, generally used to include release changel-
ogs;

* author/date: analogous to the homonym properties for commit nodes, but used here
to identify the developer making a release.

Releases are identified by a cryptographic hash taken on a canonical text manifest
containing release name, release properties, and the identifier of the commit node they
reference. An illustration of a release node is shown in Figure 5.

< Release>>

e05dae84
4author = “Guido van Rossum <guido@>" < Revision>
+name = “3.0” 3afc8cb8

+message = “3.0 release”
+timestamp = “Sat Mar 5 15:09:43 2011 +0100”
+target = Revision

Fig. 5: Example of a release object.

Snapshots

Snapshots are point-in-time captures of the full state of a project development repos-
itory. Unlike revisions, which capture the state of a single development branch,
snapshots capture the state of all the branches and releases in a repository. Snapshots
do not represent source code artifacts that are found in VCS per se, but rather a “pic-
ture” of a VCS repository at the time it is visited (or archived, in the case of Software
Heritage).

Each snapshot has an outgoing edge for each branch present in a repository, labeled
with the branch name (e.g., “main”, “refactoring”, or “v0.1.2”), and pointing to the
most recent node in that branch (which is usually either a commit or release node).
The data model also supports branch aliasing: some branches stored in snapshots do
not point to a specific artifact, but rather reference another branch name in the same
snapshot. These are to be treated as symbolic links to the target of the branch they
reference. Even if the canonical model does not associate specific nodes in the graph
to each of the branches that co-exist at a given time, as some representations might
do, the information about the branches is preserved and such representations can
therefore be reconstructed a posteriori if needed.

13

< Revision>>
< Snapshot> fd262af8
acf6b31f -
~+entries = < Revision>>
HEAD / cdcb9c¢35
refs/heads/master
refs/tags/1.0 | <Release>
84d3a02f

Fig. 6: Example of a snapshot object.

Snapshot nodes are identified by a cryptographic intrinsic hash, computed on a
canonical textual manifest that associates to each branch name the identifier of the
target node. An illustration of a release node is shown in Figure 6.

Origins

Software origins represent the specific places from which source code artifacts were
retrieved by a Software Heritage crawler. Each origin is represented by a canonical
URL (e.g., https://github.com/octocat/Hello-World for a Git repository or https:
//pypi.org/project/black/ for a source package archived from a package manager
repository).

Each origin can be “visited” multiple times by a crawler of a given type, e.g., Git
repositories will be repeatedly visited by Git crawlers. At each visit the state of the
repository will be associated to a snapshot object, possibly a new one if the repository
state has changed since the last visit, possibly the same if it has not.

< Origin>
https://github.com/psf/black

< Snapshot>

+entries =
1, git, 16 January 2022, 18:32:11 UTC 0861db5e
2, git, 13 February 2022, 14:36:27 UTC

3, git, 04 March 2022, 09:54:24 UTC < Snapshot>>
510aa88b

f————>

Fig. 7: Example of an origin object.

Each origin node in the graph has outgoing edges to snapshot nodes observed there,
one for each visit performed on the corresponding repository (or source package).
Edges from origin to snapshot nodes have as properties the visit timestamp, the
involved crawler (e.g., git, svn, etc.), and a sequential visit number. An illustration of
an origin node is given in Figure 7.

Note that the visit frequency of an origin is not only correlated to project activity
(larger and/or active projects are expected to be visited and updated more frequently)
but also depends on the specific crawling processes deployed by the platform responsi-
ble for content aggregation and updates. While a detailed description and comparison
of such processes is beyond the scope of this study, it is important to acknowledge
that they may introduce significant biases concerning certain intrinsic properties of

14

https://github.com/octocat/Hello-World
https://pypi.org/project/black/
https://pypi.org/project/black/

the software development project history. These biases will be discussed in detail in
Section 6.

3.2 Merkle properties

With the notable exception of origin nodes (which are not identified by intrinsic cryp-
tographic hashes, but by URLs), the rest of the graph forms by construction a Merkle
structure [58]. Specifically this graph representation of public software development
history forms a Merkle direct acyclic graph (or “Merkle DAG” for short).

Like all Merkle structures, this graph enjoys interesting and useful properties. In
particular it is worth noting that as long as two Merkle DAGs are complete (i.e.,
no node is missing), one can efficiently determine if they are identical or not by
simply comparing the identifiers of all their root nodes, which in our case are snapshot
nodes. Also, in case they differ, one can efficiently identify the topmost differences by
performing a parallel visit on the two graphs.

Furthermore, Merkle structures of the graph representation used natively dedupli-
cate all artifacts stored in it. As node identifiers are not assigned but rather computed
intrinsically on the content of the nodes and their outgoing edges, adding a node to
a Merkle structure is an idempotent operation. Trying to add to our data model the
same source code blob or tree multiple times (e.g., because it is found in multiple com-
mits in the same repository) will result in adding it only once; the same applies to all
types of nodes, so a commit that occurs in multiple branches or repositories will be
stored only once, and even a full unmodified repository state (i.e., a snapshot node)
found across multiple repository forks will be present in the graph at most once.

3.3 Cardinality

One immediate property to draw from this data model is that the different node types
are arranged hierarchically in “layers” and are linked together in a way that induces
typing rules on graph edges. For instance, a directory cannot reference, neither directly
nor transitively, a release or an origin; and a blob node cannot reference any other
graph node at all. More generally, artifacts have descendants from lower hierarchical
layers in the graph structure.

Figure 8 shows a cardinality diagram of the relationships between the different
types of nodes in the graph, which allows one to visualize the construction constraints
that apply to graph edges. A few observations are in order:

* Most relationships are many-to-many. Only release — commit and commit — direc-
tory relationships are many-to-one, as they can only point respectively to a single
commit and a single directory.

e Commit and directory nodes are parts of recursive relationships. Commits point to
their parent commits, while directories point to their children (sub)directories and
files. These two node types are thus what gives the DAG an arbitrary depth, as
all the other layers have a fixed maximum height. Note however that this cycle in
the graph cardinality diagram does not induce cycles in the graph itself, because
graph nodes are created bottom-up and need to know in advance the cryptographic

15

Fig. 8: Cardinality diagram of the edge types the graph of software development, with
the usual notation conventions: * — * arrows denote many-to-many relationships, * —
1 many-to-one relationships. Dashed arrows represent rare relationships supported by
the data model but ignored in the study.

identifiers of target nodes (which hence need to exist before their parents) in order
to be identifiable.

¢ Commits and directories are also mutually recursive, as commits point to directories
and directories can occasionally point to commits (for submodules/externals). This
is the only case in which a node can point to a node from an upper layer in the
cardinality diagram of Figure 8.

Note: in the wild one can encounter (and we have encountered) VCS reposito-
ries that contain relationships between source code artifacts that are not depicted in
Figure 8. For instance, Git allows you to tag blobs and directories as releases or to
use blobs as branch destinations. These are anomalies that in most cases result in
non usable VCS data. We measured these occurrences in our corpus and verified that
they are rare and unconventional (less than 0.0004% of the total number of edges
from releases and snapshots) and thus, even if they can be represented in the Soft-
ware Heritage data model, we have excluded them from our discussion for the sake of
simplicity of presentation.

3.4 Layers

While each relationship can be analyzed independently, it is useful to regroup nodes
and edges by type into logical layers that are conceptually meaningful. To that end
we define the following subgraphs of the global public software development graph:

e Full graph: the entire graph of public software development;
e Filesystem layer: subset of the full graph consisting of blob and directory nodes
only, and edges between them;

16

Hosting
layer

History
layer Full graph
Commit

layer

Filesystem
layer

Fig. 9: Logical layers used to analyze subsets of the graph.

e History layer: subset of the full graph consisting of commit and release nodes only,
and edges between them;

e Commit layer: subset of the history layer consisting of commit nodes only, and
edges between them;

e Hosting layer: subset of the full graph consisting of origins and snapshot nodes only,
and edges between them.

Figure 9 shows the various layers, which types of nodes belong to each of them, as
well as how edges connect them. In the following we will study properties of both the
full graph of public software development and the specific subgraphs named above.

4 Datasets and methodology

Now that we have identified the object of our study—the global graph of public
software development, as captured by Software Heritage—we present in this section
our methodology for analyzing it. We describe first the exact data corpus from which
the graph was extracted and how we obtained it; then we detail the methodology used
for the actual analyses.

4.1 The Software Heritage graph dataset

All research questions require analyzing a specific representation and version of the
public VCS history graph. Software Heritage provides periodic dumps of the archive
under the name of the Software Heritage graph dataset [33]. The graph dataset con-
tains the entire fully deduplicated development graph with all associated metadata,
but not the actual content of archived source code files, which are much more volu-
minous and should be retrieved separately. This exclusion is not problematic for our

17

Table 1: Node (top) and edge (bottom) statis-
tics of the studied graph dataset.

Layer | Node type | Nodes Y%
hosting origins 147,453,557 0.76%
snapshots 139,832,772 0.72%
history releases 16,539,537 0.09%
commits 1,976,476,233 10.22%
filesystem | directories 7,897,590,134 40.86%
contents 9,152,847,293 47.35%
Total nodes ‘ 19,330,739,526 100%
Layer | Edge type | Edges %
hosting origin — snapshot 776,112,709 0.35%
snapshot — commit 1,358,538,567 0.61%
snapshot — release 700,823,546 0.32%
history release — commit 16,492,908 0.01%
commit — commit 2,021,009,703 0.91%
commit — directory 1,971,187,167 0.89%
filesystem | directory — directory 64,584,351,336 29.16%
directory — commit 792,196,260 0.36%
directory — blob 149,267,317,723 67.39%
Total edges [221,488,073,659 100%

needs as all research questions revolve around studying the structure of the VCS
graph, without having to mine the content of individual source code files.

The experiments we present here are based on the data export dated 2020-12-15
— see Section 6.2 for a discussion on the quality of the dataset. In terms of size, this
export contains 19 billion nodes and 221 billion edges in total. Table 1 gives a detailed
breakdown of each node and edge types. At first glance we can see that the filesystem
layer of the graph contains most of the nodes (88%) and edges (97%) in the graph: new
versions of source code files and directories in public code are produced in much higher
volumes than other source code artifacts such as commits and releases. The number
of visits and origins on the other hand depend only on the crawling throughput of the
Software Heritage archive and its coverage of real-world collaborative development
platforms.

Tables 2 and 3 give an overview of such coverage in the studied corpus*, broken
down along various dimensions: the mechanism used to retrieve the source code arti-
facts (for the most part a VCS or a source package format), the domain of the forge
or package repository where they were hosted, and the number of origins and visits of
them present in the archive. We can notice that Git dominates the corpus as a source
code distribution mechanism, and that GitHub is the dominant forge. Nonetheless

4Platform coverage information are not directly stored in the representation used for this study. Data
from Tables 2 and 3 are extracted from [59] and correspond to the SWH dataset published three months
after the one targeted in this study (2021-03-23 vs. 2020-12-15). The number of origins varies by about
2% between the two snapshots, and no significant difference is expected between the two datasets in that
respect.

18

Table 2: Crawling statistics: number of origins and visits by
origin type (“< &” denotes percentages below 0.01%).

Origin type | No. of origins % | No. of visits %
git 136,684,905 98.0% 545,124,995 53.9%
npm 1,533,346 0.9% 300,806,714 29.7%
svn 575,952 0.3% 735,135 0.07%
hg 381,058 0.2% 6,105,706 0.60%
pypi 239,522 0.1% 147,102,654 14.5%
deb 72,303 <e 10,894,679 1.07%
cran 18,019 <e 29,596 <e
ftp 1,205 <e€ 1,205 1.19%
deposit 900 <e 1,277 1.26%
tar 385 <e 955 9.44%
nix/guix 2 <e 445 4.40%
Total 139,507,597 100% 1,010,810,868 100%

Table 3: Crawling statistics: number of origins and visits by forge
domain, for domains with at least 1,000 origins (“< &” denotes percent-

ages below 0.01%).

Forge domain No. of origins % | No. of visits %
github.com 147,881,630 96.1% 546,877,021 54.1%
bitbucket.org 2,058,279 1.33% 10,871,128 1.07%
WWW.Nnpmjs.com 1,534,976 0.99% 300,808,344 29.7%
gitlab.com 990,334 0.64% 5,022,358 0.49%
pypi.org 239,620 0.15% 147,102,752 14.5%
gitorious.org 120,380 0.07% 120,392 0.01%
Debian 38,414 0.02% 10,661,918 1.05%
salsa.debian.org 33,617 0.02% 105,690 0.01%
snapshot.debian.org 33,044 0.02% 33,044 <e
git.launchpad.net 19,571 0.01% 21,198 <e
framagit.org 18,433 0.01% 132,803 0.01%
cran.r-project.org 18,019 0.01% 29,596 <e
hdiff.luite.com 13,861 <e 191,570 0.01%
gitlab.gnome.org 8,016 <e 21,837 <e
gitlab.freedesktop.org 4,752 <e 1,172,842 0.11%
gitlab.inria.fr 3,628 <e 9,921 <e
codeberg.org 3,623 <e 3,733 <e
git.savannah.gnu.org 2,959 <e 7,008 <e
git.baserock.org 2,912 <e 4,687 <e
anongit.kde.org 2,488 <e 7,389 <e
code.google.com 2,240 <e 2,240 <e
phabricator.wikimedia.org 2,224 <e 631,835 0.06%
git.kernel.org 2,083 <e 4,224 <e
fedorapeople.org 1,691 <e 4,173 <e
ftp.gnu.org 1,590 <e 2,160 <e
gitlab.ow2.org 1,119 <e 3,111 <e
phabricator.kde.org 1,030 <e 6,269 <e
Debian-Security 1,028 <e 199,900 0.02%
git.torproject.org 1,014 <€ 2,503 <e
Total 153,838,272 100% 1,010,810,868 100%

19

there is a long tail of both source code distribution mechanisms® and hosting plat-
forms® that are also present in the corpus. They account for a very diverse corpus,
even though it is quantitatively dominated by the popular technological choices of the
day among developers.

4.2 Graph processing approach: graph compression

The Software Heritage graph dataset is available as a set of relational tables in a
columnar format. These tables define the nodes of the graph and the edges that link
them, as well as their metadata (including the node type, cf. Section 3.1).

One of the available representations of this graph is the “edge dataset”, an enor-
mous list of edges in compressed CSV format”, with one source/destination pair of
node identifiers per row, looking like this:

swh:1:snp:0c89dafb2703f1ba544f4b3d6ceed77ede26bf60 swh:1:rev:ec5b32b2bf01f8736df11a55aeae5b2f070claac
swh:l:rev:ec5b32b2bf01£8736df11a55aeae5b2f070claac swh:1l:rev:0£f£853c564c0760132430d037bee26608572cb05
swh:l:rev:ec5b32b2bf01£8736df11a55aeae5b2f070claac swh:1:dir:2d95effdef99af584d46a3b88285fb62ff0ad243
1
1

swh:1:dir:2d95effdef99af584d46a3b88285fb62ff0ad243 swh:1:cnt:8d83a613b56£7583dd79dff917de4236195d9172
swh:1:dir:2d95effdef99af584d46a3b88285fb62ff0ad243 swh:1:dir:1271bfc7aaf29f91bd3c65df24ce439d3e6elc76

Graph nodes are identified in the edge dataset by their Software Heritage Identifiers
(SWHID) [60] (starting with “swh:1:...”), which are standardized textual represen-
tations of the intrinsic cryptographic identifiers of each Merkle DAG node, together
with node type information: snp for snapshots, rev for commits (“revisions”), rel
for releases, dir for directories, and cnt for blobs (“file contents”). The flatness and
simplicity of this format make it appropriate to study the topology of the graph, as
it is the de facto standard format used as the input of most graph analysis pipelines.

Some of the analyses we require could easily be performed in a scale-
out/distributed fashion (e.g., degree measurements, for RQ1), others benefit more
from a scale-up/centralized approach (e.g., connected components for RQ2 and path
lengths for RQ3) to avoid incurring the price of costly synchronization points. For
uniformity, and also because there is no real drawback in doing all analyses with
a scale-up approach since we have to do at least some of them in that fashion, we
adopted a centralized approach for all analyses.

In particular, based on previous work on large VCS graphs [30], we decided to
use the pre-existing swh-graph pipeline to load and then analyze the entire graph
structure in memory on a single machine. swh-graph is a set of tools based on the
graph compression and analysis framework WebGraph [42], used to analyze other large
graphs such as the graph of the Web and the graphs of large social networks. Note
that the version of swh-graph used to carry out this study does not preserve some
of the relationships between nodes, with the benefit that it improves the compression
factor but at the cost of the irreversibility of the transformation (see the discussion
in Section 6.2).

50Other popular and historical VCS; Debian, NPM, PyPI, CRAN, Nix, and Guix source packages.

6Several popular and historical forges, various self-hosted instances of GitLab and other forges, as well
as GNU/Linux distribution and package manager repositories.

7 At the time of writing the CSV format has been replaced by Apache ORC, which allows efficient parallel
processing. The CSV files are still available for the version of the dataset used for this paper (2020-12-15)
at the Amazon S3 public bucket s3://softwareheritage/graph/2020-12-15/edges/.

20

s3://softwareheritage/graph/2020-12-15/edges/

According to [30], and as of 2020, using swh-graph both the direct and transposed
graphs can be loaded into main memory occupying =200 GiB of RAM (a2 100 GiB
for each graph “direction”) and then processed efficiently: a full breadth-first search
(BFS) visit with a single-thread requires 2-3 hours, whereas the amortized cost of
accessing a single random edge in the graph is close to the cost of a single memory
access.

The compression pipeline included in swh-graph is able to compress the original
7.4 TiB edge dataset given as its input into a few different files:

* graph.graph: a 134 GiB file containing a random access compressed representation
of the edges in direct order;

* graph-transposed.graph: a 107 GiB file, using the same format as the previous
file, but containing the transposed edges;

e graph.node2type.map: a 7 GiB file containing a random access mapping between
node identifiers and their type.

Once memory-mapped by swh-graph, these files together give access, via a Java
API, to all the required primitives to perform computations on the topological struc-
ture of the graph: iterating on all graph nodes, iterating on the predecessors and
successors of a given node, as well as efficiently looking up the indegree and outdegree
of a node. As the files obtained have a relatively reasonable size (less than 250 GiB,
or about 4% of the edge dataset before compression), they can be loaded in memory
on server-grade commodity hardware equipped with a few hundred GiB of RAM.

Layer sub-datasets

Most of the conducted analyses needed to be run both on the graph as a whole and on
the various layers described in Section 3.4, each of which is a subgraph of the initial
corpus. After trying out different options to export these layer subgraphs, we settled
on a solution based on a lazy lightweight wrapper, as it offers reasonable performance
and flexibility and reduces the complexity of the pipeline. In practice, this means that
only the main graph is stored in memory, and the “layers” are implemented as virtual
wrappers which reimplement the graph access primitives by checking whether the
node types belong to the current layer in use; when they do not, the corresponding
nodes and the edges that connect them are hidden and hence excluded from analysis.

4.3 Analysis methodology

We now present the algorithmic and practical approaches we have implemented to
extract from the graph the raw data needed to answer our research questions, as well
as the analysis protocol followed to process it.

4.3.1 Graph directionality

The graph of software development is a directed acyclic graph (DAG). While its direc-
tionality has an important semantic meaning (e.g., parenthood relationships between
revisions or directories do not commute), taking it into account is appropriate for

21

some of the observables we are after (e.g., indegree/outdegree) but not for others. For
instance, all strongly connected components in a DAG have a size of one.

As such, it is sometimes useful to consider the graph as being undirected by “sym-
metrizing” it, that is, computing the union of the directed graph and its transposition.
Conceptually, doing so corresponds to studying how the nodes are linked together by
the underlying relationships, rather than the relationships themselves. Symmetriza-
tion can always be performed lazily and in constant memory using a directed graph
and its transposition. Each observable of interest is computed on both graphs, then
the results are added together.

4.3.2 Degree distributions

To analyze degree distributions we measure the indegree and outdegree distributions
of each layer of the graph. That is, for each node, we count the number of edges
pointing to it (indegree) and the number of edges starting from it (outdegree). This
can be done performing a single pass on the graph in O(|V| + |E|) while maintaining
a frequency histogram of negligible size (a few megabytes) per layer.

A single pass is sufficient to compute the degree distributions of all layers. As we
iterate on the edges adjacent to each node, we check the node type of their source
and destination, and only increment the frequency counter of a specific layer if these
types belong to the layer.

4.3.3 Scaling factor

A common and useful way to quantitatively characterize degree distributions in
complex networks is to focus on their “tails”, notably by estimating the exponent
associated with the best power law fitting the distribution tail. A pure power law dis-
tribution p(d;) o< d; ® has a well-defined mean if the scaling factor o« > 2 and has a
finite variance if o > 3, due to the behavior of its first and second moments at the
limit [61].

Determining precisely whether any of the tails of the distributions we obtained
correspond to a power law is beyond the scope of this particular study. However,
getting an indication about the behavior of the mean and variance when considering
the most extreme statistical events (such as the highest degrees or the longest chains
of revisions) of this information is nevertheless useful from the point of view of large-
scale empirical software engineering, as it can help to determine the most appropriate
analysis approaches (cf. supra).

We follow the approach proposed in Clauset et al. [62], limiting ourselves to the
first two steps (out of the three) of their methodology. We use the estimator &(dmn)
of the best power law exponent, which depends on an arbitrary degree threshold d,,;,
below which the behavior of the distribution is ignored:

&(dmin) =1+ Z n; log

d .
d;2dmin men

where n; is the number of nodes with a value equal to d;.

22

In the first step of the methodology, the value d,,;, corresponds to the “beginning”
of the tail of the distribution for which & is the power law exponent o maximizing
the likelihood of the observed tail of the distribution. The second step — following the
method proposed by Clauset et al. [62] — aims to find the best cut-off value dyyin.
It is done by computing the Kolmogorov-Smirnov distance for all possible d,;, and
picking the one minimizing this distance between the distribution and the power law
tail. The last step consists in testing the relevance of the whole procedure determining
the p-value, which is the probability of observing the same deviation between a power
law with the exponent & (Step 1) for d; greater than the best d,,;, value found (Step
2), and synthetic samples of equal size N =}, -, n; (Step 3).

Since (as per the registered study protocol) we do not evaluate the impact of the
outliers on the reliability of the method [63], and in particular on Steps 2 and 3,
we stop short of determining whether the distributions actually correspond to power
laws, and we show, for each distribution in this study, the best power law fit according
to Steps 1 and 2 of this method. Consequently, we will limit the discussion of the
characteristics of the distributions by identifying those whose decay for the largest
values is sufficiently slow to rule out an exponential decay. We will then speak of
“heavy tailed” distributions and will use the measured exponents only as an indication
of this behavior, leaving to future studies the finer analysis when it seems relevant.

4.3.4 Clustering statistics

To get an overall sense of how the nodes in the different layers tend to cluster together
in high-density groups, we estimate the global undirected clustering coefficient [64] of
the entire graph. As getting an exact value of the clustering coefficient has a complexity
of O(|V|?), which is impractical at this scale, we use the approximation heuristic
described in [65], which is based on uniform random sampling.®

At a finer-grained level, we also analyze the local undirected clustering distribution:
for each node, the number of edges between nodes pointing to or from it. This is
equivalent to the local clustering coefficient without dividing it by the number of
possible triangles in the undirected graph. As before, to estimate this distribution we
resort to uniform sampling of the nodes of each layer.

4.3.5 Connected components

We compute connected components on (various layers of) the undirected graph
obtained by “symmetrizing”, as discussed above, the original Merkle DAG. The dis-
tribution of connected component sizes is a crucial metric to understand whether the
global corpus of public code development can be divided in reasonably-sized partitions,
potentially as a way to perform large-scale analyses of it in a distributed fashion.
We can assign each node to a connected component using a BFS traversal of each
layer, and then compute the size of each component by simply counting the number
of nodes in it. The traversal has linear complexity of O(|E|) time and O(|V|) memory,
which allows us to get an exact result for the entire graph. During traversal the frontier

8See the complexity discussion in Section 6.2.

23

of nodes still to be visited is maintained as an on-disk queue in order to lower RAM
usage.

We give particular attention to the giant components of the different layers: large
connected components which contain a significant fraction of all the nodes in the
graph. The relative size of these giant components are the main indication as to
whether the graph can be partitioned in isolated clusters. Our expectation is that the
deeper we go in the layers of the graph, the more the nodes will be connected together
in giant components.

For the top layers of the graph, connected components intuitively capture the
notion of “repository forks” [17]. If two origins are in the same connected compo-
nent when considering the hosting and history layers, it means that they share some
amount of development history (e.g., they both contain the same commit). Therefore,
the distribution of connected component sizes in this case will correspond to the dis-
tribution of fork network sizes, and the giant components will contain projects with
large numbers of forks.

When the filesystem layer is included in the connected component analysis how-
ever, common artifacts such as the empty file or the empty directory tend to connect
together a large number of unrelated origins in the same component. The quantita-
tive analysis will help measure the extent to which this process connects the nodes
together in giant components as we include deeper layers.

In order to analyze how the connected components merge together as deeper lay-
ers are included, we also report these distributions in terms of the number of software
origins they contain, which remains invariant. To compare the distributions, we cal-
culate the Kolmogorov-Smirnov distance, i.e., the difference between the weighted
partition functions. We note f;(s) the probability of having a connected component
of size s within the layer L1, and f142(s) the same probability considering layers L
and Lo together.

We then compute Fy, (s, f1, fi12) = Zs,;<s 3i(f1(s;) — fi+2(si)), whose maximum
absolute value is equal to the Kolmogorov-Smirnov distance of the size distributions of
the components to which the origin nodes belong. Note that F,,(1) = 0 and F, (Smaz+
1) = 0, where S,,4, is the size of the largest existing component (i.e., the largest s,
such that f1y2(s) # 0). The F,, function measures a fluz, which describes how origins
from separate components get aggregated in a single component as additional layers
are included. When the difference is positive, the sum includes mostly origins which
were in small components within L; and are now in larger components within L o.
This approach is similar to other analyses of aggregation mechanisms of connected
components such as [18], although with a more accurate way of measuring it.

The aggregation process of connected components can thus be characterized layer
after layer, until the largest components are formed. One of the questions we will
address is whether this aggregation mechanism only contributes towards the largest
giant component or, conversely, if the entire distribution is affected by the aggregation
of smaller extant components (see Section 5.3).

24

4.3.6 Path length distribution

For the filesystem and history layers, we compute the distribution of the length of
the shortest paths between all root nodes (i.e., nodes with indegree 0) and all leaves
(outdegree = 0) in the given layer.

This is a common measure of network topology and, in the context of collabo-
rative development, gives an idea of the difficulty of finding the provenance of an
artifact (either “on the fly” as allowed by the graph representation we used, or via
pre-computation, as done by WoC, cf. Section 2). Indeed, given a leaf artifact in a
given layer, such as a file in the filesystem layer or a commit in the history layer, the
computational cost of finding a root node (e.g., a commit containing a given file or
an origin containing a commit) will be impacted by the average length of the shortest
paths leading from the roots to the leaves.

Computing this metric requires one breadth-first search per root node, making its
complexity superlinear in time, which is potentially unfeasible on our entire corpus
(without resorting to approximate algorithms and sampling). However, as the degree
distribution will show in Section 5.1, commit chains are generally long and degenerate,
allowing us to run an exact algorithm on the entire commit layer. For the filesystem
layer on the other hand, we resort to uniform sampling of root nodes.

The computation of the shortest paths between nodes of the graph is also necessary
to determine other properties related to the connectivity of the graph, such as the
betweenness distribution, whose study, feasible at least by limiting itself to a sampling
of the graph, was not anticipated in the registered study protocol and is therefore left
as a matter for further study.

5 Experimental results

We can now present our findings about the most salient topological properties of the
global graph of public software development.

5.1 Degree distributions
Average degrees

The first indicator that is commonly used to indicate how “dense” a graph is is its
average degree, that is the ratio between the number of edges and the number of
nodes it contains. The higher the average degree, the closer the graph is to being fully
connected, i.e., having an arc between any two pairs of nodes. In the entire Software
Heritage graph, there is an average of 11.0 edges per node, making it a relatively
sparser graph in comparison to other large graphs studied in the literature: the graph
of public code is around 5 times sparser than the graph of the Web and 15 times
sparser than the social graph of Facebook.

Table 4 shows a breakdown of the average degree of each layer of the public code
graph, as well as a comparison with various other networks generated by human
activities, showing how the graph density lies in the lower range of other real-world
networks.

25

Table 4: Average degree (|E|/|V]) for the graph of public software
development, its layers, and other large graphs.

Graph Description Average degree
swh-2020-history public code — history layer 1.021
swh-2020-commit public code — commit layer 1.022
swh-2020-hosting public code — hosting layer 3.39
bitcoin-2013 [66] Bitcoin transactions 6.4
dblp-2011 CS paper citation network 6.8
swh-2020 public code — full graph 11.0
swh-2020-filesystem public code — filesystem layer 12.1
twitter-2010 [67] Twitter followers 35.2
cluewebl12 [68] 733 M web pages in English 43.1
uk-2014 [69] .uk web pages 60.4
fb-2011 [70] Facebook friends 169.0

Because most commits generally only have one parent, with the exception of occa-
sional merge commits which can have more, it is not surprising that the commit layer
has a density only slightly larger than 1. The commit chains conform to the general
structure of degenerate trees. The history layer adds a relatively low number of releases
to the commit layer and each release always adds one node and one edge. The host-
ing layer still has a low density, although around three times denser than the commit
layer, because its contents are arranged as a bipartite graph: each vertex connects one
origin and one snapshot, which limits graph density by construction.

The filesystem layer has a higher density, with an average degree of 12.1. Being
the dominant component of the graph, it drives the average of the entire graph up to
11.0. The filesystem layer can be seen as a forest of directory trees, with deduplication
of identical subtrees. When a new commit changes a file at a depth of h in the tree, a
new tree will be created with h new nodes, corresponding to the path from the root
of the original tree to the modified file. All the other nodes of the tree are shared with
the previous tree thanks to deduplication, which increases the density of the graph
by adding new edges to the shared nodes without creating new nodes. The more
deduplication there is in the filesystem layer, the higher we can expect its density
to be. While the filesystem layer is the densest part of the graph, since it still is a
directed acyclic graph, it is by nature sparser than cyclic or undirected graphs (e.g.,
social networks).

Full graph

Figure 10 shows the frequency and cumulative frequency plots of indegrees and out-
degrees of the entire graph in log-log scale. These plots respectively show, for each
degree d on the x-axis, the number of nodes that have a degree of exactly d, and a
degree of d or more. Using the methodology described in Section 4.3.3, we fit a power
law to the tail of the distributions. We obtain a scaling factor of =~ 1.9 for both dis-
tributions for degrees below 10*. We notice that the indegree distribution is “heavy
tailed” for degrees above this value, showing a slow and regular decrease which could
indicate a power law tail with scaling factor closer to 3.

26

H ® Frequency (= z) ® Frequency (= v)
100 4 ® Cumulative freq. (>) 10° 4 ® Cumulative freq. (>)
—— Power law fit (o = 1.9) Power law fit (o = 1.9)
£ 107 8 1071
: :
z 10° 5 107
[[
£ 2
5 5
Z 103 Z 108
10" A 10" 4
10! 10® 10° 107 10° 10! 10% 10° 10 10° 100
Degree Degree
(a) Indegrees (b) Outdegrees

Fig. 10: Degree distributions: full graph.

® Frequency (= 2) ® Frequency (=)
1004, © Cumulative freq. (> z) 10° 4 © Cumulative freq. (> z)
) —— Power law fit (o = 1.9) Power law fit (o = 1.9)
£ 107+ 8107
g 2
3 3
5 10° 1 5 10°
-1 2
: :
Z 10% Z 10°
10 1 10" 1 2o
10! 10* 10° 107 10° 10! 102 10° 10 10° 100
Degree Degree
(a) Indegrees (b) Outdegrees

Fig. 11: Degree distributions: filesystem layer.

Filesystem layer

Figure 11 shows the frequency distributions for the filesystem layer. Its similarity
with Figure 10 underscores that the filesystem layer largely dominates the frequency
distribution of the entire graph.

The outdegree distribution gives an idea of the number of objects present in the
archived directories. Most directories seem to contain less than ten entries, with a
threshold effect at around ten files after which the frequency drops at a faster pace.
The points at the end of the tail are gigantic directories containing millions of entries.
These are mostly binary files generated by scripts or the result of user errors (e.g., the

27

® Frequency (= z)
Cumulative freq. (> z)
—— Power law fit (o = 5.8)

1004 ¢ ® Frequency (=)
Cumulative freq. (> z)
—— Power law fit (o = 2.2)

10° 4

Number of nodes
Number of nodes
=
2

10°% A

10! 4
o . 10!

T T T T T — — T T — T
10° 10! 102 10° 10* 10° 109 10° 10! 10? 10% 10* 10°
Degree Degree

(a) Indegrees (“fork-degrees”) (b) Outdegrees (“merge-degrees”)

Fig. 12: Degree distributions: commit layer.

largest directory in the corpus® contains millions of generated shaders for an amateur
video game, in a now deleted branch).

The indegree distribution of the filesystem layer represents the number of direc-
tories referencing some specific directory or file content and gives some insights on
the deduplication process of directories and contents (as the indegree would always
be one with no deduplication). The extreme values at the end of the distribution are
peculiar objects that are omnipresent in software repositories: the empty file and the
empty directory. Other remarkable outliers are directories containing an empty .keep
or .gitkeep file, which is a common workaround to the fact that the Git version
control system cannot store empty directories.

It is also interesting to look at the “bumps” in the indegree distribution that break
its regularity, as they are generally not isolated anomalies but consistent deviations
centered around a range of values. In the filesystem layer indegree distribution (visible
in the raw data available in the replication package), there is a bump at around
d = 92,000 which can be explained by the CocoaPods/Specs GitHub repository,'® a
package manager that uses GitHub as a CDN. This repository contains more than
368k commits, each of which edits a single file in a giant directory containing all the
packages of the distribution. Another “bump” can be observed in Figure 11a for values
around 454,050.

As in the full graph case, we also observe here in both the indegree and outdegree
distributions a transition between two heavy-tailed ranges around degrees 10%.

Commit layer

The degree distributions for the commit layer are shown in Figure 12. As the par-
ent/children terminology can be confusing when dealing with commits (since parent
commits are children nodes in the DAG), we refer to the indegree of commits as the

9This directory could be found in the lorow/Beabest GitHub project and was archived in Software Heritage
under its SWHID: swh:1:408689dbd61c9e7888b6556ee5b0ada72935871d.
Ohttps://github.com/CocoaPods/Specs, accessed 2021-09-29.

28

https://github.com/CocoaPods/Specs

“fork-degree”, that is the number of commits that were based on a specific commit,
and to the outdegree as the “merge-degree”, i.e., the number of commits that were
merged together into a specific commit. The fork-degree distribution is very smooth
with no notable threshold effect. This can be explained by common development pat-
terns: forks (in the commit graph) are generally feature branches based on the latest
revision in the main development branch, which is generally random, so we do not
observe any notable threshold effect or regime change in the distribution.

The merge-degree distribution has a large threshold effect at d = 2. The vast
majority of commits only have one parent, but occasionally two branches are merged
back together, which creates a merge commit with two parents. These are the two most
common cases, separated by one order of magnitude (=~ 10° simple commits, ~ 10%
merge commits). Commits with more than one parent—called “octopus merges” in
Git terminology—are exceedingly rare occurrences, not part of standard development
workflows, which explains the gap of three orders of magnitude between d = 2 and
d = 3. We expect most of these octopus merges with large degrees to be generated by
scripts in very peculiar environments (e.g., large continuous integration pipelines), so
the irregularities observed in the tail of the distribution are not particularly surprising.

The distribution for incoming degree values greater than 100 appears to be well
described by a regular power-law behavior for more than two decades (between 102
and 10%), with an estimated scaling factor slightly greater than 2. This measure is
likely impacted by the presence of many outliers around 5 10*, corresponding to the
gap of the cumulative frequency visible in Figure 12a. If we exclude these outliers, the
scale invariant regime would likely cover four decades instead of two.

The outdegree distribution is very different, showing a clear first cutoff between
2 and 3 and a second one between 200 and 300, where the cumulative frequency is
divided by a factor of 100 (Figure 12b), aside from a few outliers leading to some
very large values between 10% and 10°. The largest degree is at d = 10°; it comes
from a GitHub repository called test-commit-many-parents-1m,!! which contains
two commits linked together by one million of edges. It is the most forked commit in
the Software Heritage archive.

History layer

The degree distributions of the history layer, shown in Figure 13, are extremely similar
to those of the commit layer as the history layer is largely dominated by commit nodes.
However, it is still interesting to look at the indegree distribution of the commit layer
from the releases, i.e., the distribution of the number of releases that point to a given
commit. It is shown in Figure 14.

There is a noticeable threshold effect between d = 1 and the rest of the distribution,
attributable to development practices. Releases, or named tags, are generally used
to denote specific versions of a software. It makes little sense to have two different
versions pointing at a single commit, since there would be no code change to justify
the version increment. Occasionally releases can be used to annotate some specific
milestones in a project in addition to its current version, so commits pointed by more

Hhttps://github.com /cirosantilli/test-commit- many- parents- 1m accessed 2021-09-29.

29

https://github.com/cirosantilli/test-commit-many-parents-1m

® Frequency (= z)
Cumulative freq. (> z)
—— Power law fit (o = 5.8)

1004 ¢ ® Frequency (=)
Cumulative freq. (> z)

—— Power law fit (o = 2.1) 101 4
107 4

10° 4

Number of nodes
Number of nodes
—
=3
L

T T T T T T - T N T T T T . T
10° 10! 102 10° 10* 10° 109 10° 10! 10? 10% 10* 10°
Degree Degree

(a) Indegrees (b) Outdegrees

Fig. 13: Degree distributions: history layer.

109 4 ® Frequency (= z)

Cumulative freq. (> z)
—— Power law fit (o = 2.1)
1074 ¢

10° 4

Number of nodes

10% 4

10" 4

T T T T
10° 10! 10? 10° 104
Degree

Fig. 14: Indegrees of commits from releases.

than two releases do have some significance, although their importance diminishes
rapidly in the distribution.

Hosting layer

The distribution of the hosting layer is shown in Figure 15. Since within the history
layer of the graph an origin cannot have ancestors and a snapshot cannot have descen-
dants, the two distributions show very different things. The outdegree distribution
describes the number of snapshots associated with each origin. This is not an intrin-
sic property of development workflows because it is highly dependent on the crawling
process of Software Heritage: if a repository changes constantly, but is only visited
once every month, the distribution will not capture how frequently the repository is
updated, but rather how often the crawlers visit it.

On the other hand, the indegree distribution describes the number of origins asso-
ciated to each snapshot, that is, the number of “exact forks” ever recorded of a given

30

10° A 10° 4
® Frequency (=) : ® Frequency (= z)

Cumulative freq. (> z) . Cumulative freq. (> z)
107 A : —— Power law fit (o = 2.8) 107 4 . —— Power law fit (o = 2.2)

Number of nodes
Number of nodes

10" 4

T T T T T T T T T T
10! 103 10° 107 10° 10* 10? 10% 104 10°
Degree Degree

(a) Indegrees (b) Outdegrees

Fig. 15: Degree distributions: hosting layer.

repository. This happens anytime someone makes an exact copy of a repository, for
instance by clicking on the “fork” button in GitHub, without then updating it with
new commits or branches: a new origin is created, but it points to the same repository
state as the first origin.

We can notice here a transition of the incoming degrees around 3 10% and a cut-off
of the outgoing degrees between 5 10* and 10°. We can also underline the presence of
outliers in the outdegree distribution between 200 and 300.

5.2 Clustering

We compute the local clustering distribution on the different layers of the undirected
graph, which describes the extent to which the nodes tend to cluster together in
tight cliques. In the original DAG, which is directed, the local clustering coefficient is
always 0 since a closed triangle corresponds to a cycle which cannot exist in a DAG.
However, the distribution of the number of closed triangles in the undirected version
of the graph, shown in Figure 16a, can be interpreted meaningfully.

Again, the distribution for the full graph is completely dominated by the filesystem
layer and cannot be interpreted on its own; each layer has to be looked at individually.
In the filesystem layer, a closed triangle corresponds to a file being both in a directory
D and in a subdirectory D’ of D. A common instance of this happening is when
developers copy the contents of a directory in a backup/ or old/ directory to take a
snapshot of a previous version of the directory, rather than relying on version control
system capabilities. Figure 16b shows the frequency of these triangles forming in the
filesystem layer, with an apparent scale-invariant regularity.

In the commit and history layers a closed triangle corresponds to a merge com-
mit C with two parents A and B, with B being a parent of A. When using the Git
version control system, for example, this often happens when merging multiple com-
mits using the “no fast-forward” strategy (git merge -no-ff). Here, the distribution
(Figure 16¢) displays a similar pattern to what we observed in the outdegree distribu-
tion of the commit layer (Figure 12b): the two common cases are having one or two

31

107 4 ® Frequency (= z) 107 4 ® Frequency (= z)
. Cumulative freq. (> z) 5 Cumulative freq. (>)

10° 4 —— Power law fit (a = 2.1) 10°4 —— Power law fit (o = 2.1)
2 10° 5 3 10° 4
= B
£ 1044 £ 1011
i<} o
- Tl
2 10% 2 1034
5 §
Z 102 4 Z 102 4

10" 4 10!

10° 4 cmece e 100 4

T T T T T T T T T T
10! 10? 10° 10 10° 10 102 10% 10* 10°
Number of closed triangles in neighborhood Number of closed triangles in neighborhood
(a) Full graph. (b) Filesystem layer.
107 4 ® Frequency (= z)
5 Cumulative freq. (> z)
10° 3 —— Power law fit (o = 2.5)

10° +

Number of nodes

T T
10t 10%
Number of closed triangles in neighborhood

(¢) Commit and history layers.

Fig. 16: Clustering distributions, computed on uniform 0.1% node samples of each
(sub-)graph.

closed triangles, while having more triangles requires an octopus merge and is rela-
tively rare in most development workflows, which explains the important threshold
effect for local clustering value greater than 2.

Being a bipartite graph, the undirected hosting layer cannot contain closed
triangles and its local clustering distribution is not shown.

5.3 Connected components

For this part of the analysis, we symmetrize the graph to analyze it as an undirected
graph and use a breadth-first traversal to compute the sizes of its weakly connected
components (WCC). Table 5 shows a breakdown of the number of components and
sizes of the largest components for each layer.

32

Table 5: Connected components per layer.

Layer # of WCC # of isolated Size of % of nodes in

nodes largest WCC largest WCC
Full graph 33,104,255 22,710,547 18,902,683,142 97.79%
Filesystem layer 46,286,502 79,293 16,565,521,611 97.16%
Commit layer 88,031,649 38,150,369 51,543,944 2.61%
History layer 88,040,059 37,687,392 52,176,239 2.62%
Hosting layer 108,342,722 22,768,378 13,841,855 4.82%

Full graph

In the entire graph, we find a giant component of 18.9 billion nodes, in which a whole
97.8% of the nodes in the graph are reachable from one another by following undirected
edges. The size distribution for the full graph shown in Figure 17a clearly indicates
the extent to which the largest connected component is an outlier that dominates the
entire distribution, being 8,345 times larger than the second largest WCC.

One could wonder whether this high connectivity results from a few highly-
connected nodes, like the empty file which is present in millions of repositories.
Surprisingly, this turns out not to be the case: repeating the same WCC experiment
after removing the top 1 million nodes with the largest indegrees from the graph
still yields a giant component of about the same order of magnitude (only about 5%
smaller). This implies that the connectivity of the graph is highly resilient and does
not depend on the existence of a few high-degree nodes, and that those highly reused
software artifacts exist in a graph that is already well-connected without them. This
finding is similar to what has been shown for the graph of the Web, where removing
pages which are central hubs and have a high PageRank does not significantly reduce
the connectivity of the graph [41].

These observations apply similarly to the WCC size distribution for the filesystem
layer (shown in Figure 17b) which again dominates the distribution of the full graph.

Commit and history layers

On the other hand the distributions of the commit and history layers shown in
Figure 17c and Figure 17d exhibit a very different graph connectivity. The largest
component encompasses less than 3% of the graph, which indicates that the history
layer can be partitioned into reasonably sized units. Furthermore, an in-depth inves-
tigation of this large component reveals that most of the commits it contains belong
to various forks of the Linux kernel, which is suspected to be the largest open source
software by number of commits across all its different forks. We can infer from this
observation that the connected components of the history layer delineate structures of
“fork networks” [17] in the graph, by clustering together projects that have a shared
development history.

Hosting layer

The largest component in the hosting layer (see Table 5 and Figure 17e) contains
a relatively small share of the layer’s nodes (around 5%). Yet it has 2,051 times

33

Number of components

Number of components

® Frequency (= z)
® Cumulative freq. (>)

Number of components

Number of components

107 4 —— Power law fit (o = 2.4)
10° 1 '.
10°
101 4
10! 10° 10° 107 10°
Size of each component
(a) Full graph
® Frequency (= z)
N ® Cumulative freq. (>)
107 4 . . —— Power law fit (o = 2.1)
10° 1
107 1
10" A
5w w W

Size of each component

(¢) Commit layer

107 4

10° 4

103 4

10! 4

® Frequency (= 1)
® Cumulative freq. (> z)
—— Power law fit (o = 2.3)

10t

103 10° 107 107

Size of each component

(b) Filesystem layer

107 4

10° 4

103

10" 1

® Frequency (= z)
® Cumulative freq. (>)
—— Power law fit (o = 2.1)

10t 10°
Size of each component

(d) History layer

10°

107 4

—

=)
=
L

Number of components
-
<
=
N

_
A
L

® Frequency (= z)
® Cumulative freq. (> 2)
—— Power law fit (a = 3.0)

10

10%

10°

Size of each component

(e) Hosting layer

107

Fig. 17: Connected components distributions.

34

more nodes than the second-largest component so may be considered an outlier when
compared to the other regular points of the distribution.

The presence of this giant connected component is particularly noteworthy, espe-
cially when compared to the history and commit layers, where one expects to observe
numerous forked projects sharing at least one revision. In the hosting layer, for two
origin nodes to belong to the same giant connected component, the corresponding ori-
gins must have been traversed by the Software Heritage’s crawlers in the same state
at different times. This implies that they were pointing to the same list of branches,
with identical names, and in the same state. Essentially, they were pointing to the
intrinsic identifiers of the same commits and releases.

This scenario may be indicative of projects that are no longer actively maintained,
involving a substantial number of developers/users utilizing a distributed version con-
trol tool such as Git. In such instances, the deliberate discontinuation of a project
leading to its fragmentation into sub-projects could account for the existence of mul-
tiple identical “views” (i.e., an origin linked to the snapshot node) with distinct
visit dates recorded by the crawler. This pattern is also observed in projects char-
acterized by a low commit count but frequent forking. A notable example is the
GitHub repository jtleek/datasharing!? (accessed on 2022-10-04), which has been
forked more than 244,000 times. Some forks of this project like the GitHub repository
1louder/datasharing!?® (accessed 2022-10-04) only contain commits prior to Novem-
ber 25, 2013. If the Software Heritage crawlers have traversed the original repository
at least once between November 25, 2013 and November 6, 2016 (which is very likely),
all forks created during this period belong to the same connected component, provided
they were visited before any modifications were made.

By walking random paths in the giant component, it is possible to see other pat-
terns that could explain the size of this component. One such pattern appears to
be that some developers sometimes fork well-known repositories then rewrite their
history to replace them with a completely different content. Again, if the Software
Heritage crawlers visited this project before modifications were made, it explains its
inclusion in the same connected component. Each occurrence of this scenario inter-
links unrelated networks of forks, consolidating them within a larger component. This
seemingly improbable situation can be quite prevalent, especially if crawlers priori-
tize a list of newly created projects for initial visits, which includes treating new forks
as distinct projects. Subsequent studies could provide a quantitative analysis of the
relative impact of the aforementioned mechanisms and potentially unveil additional
contributing factors.

Aggregation across layers

In Figure 18 we show the distribution of component sizes measured as the number
of software origins they contain. In Figure 19 we show their Kolmogorov-Smirnov
distances, as discussed in Section 4.

The first point of interest concerns the gap for size s = 2, which corresponds
to the percentage of isolated origins (i.e., connected components containing a single

12}1ttps://github.com/jtleek/datasharing.
Lhttps://github.com/1louder/datasharing.

35

https://github.com/jtleek/datasharing
https://github.com/1louder/datasharing

® Frequency (= z) ® Frequency (=)
® Cumulative freq. (>) ® Cumulative freq. (> z)
L1074 —— Power law fit (a = 2.9) LU —— Power law fit (o = 2.7)
= N -~ .
; 5 :
g 5
2 05 | 2 105 4
g 10 g 10
5 S
3 k]
g‘) 3 $ 3
,.g 10° ,:E: 10
S]
Z 4
10* A 10! 4
T T T l. T T T T
10 10° 10° 107 10! 10% 10° 107
Number of origins in each component Number of origins in each component
(a) Hosting layer only (b) Hosting and history layers only
. ® Frequency (=)
107 4 ® Cumulative freq. (>)
. —— Power law fit (o = 2.8)
K
o
g .5
2, 10° 4
g
S
S
IS
5 10°
g
=
Z
10" 1

T T T T
10* 10% 10° 107
Number of origins in each component

(c) Full graph

Fig. 18: Connected component size distributions as the number of software origins
(e.g., Git repositories, distribution packages, etc.) in each component.

030 09
*— KS [(ori+snp)-{ori+snp+rel+rev)] 08 *= KS [(ori+snp+rel+rev)-(full}]
0.25
07
020 06 —
.\ 05 /__
015
04
010 03 "'
02
005
o1
0.00) 0.0
100 10° 10 10° 10° 100 107 10* 10° 10¢
(a) Hosting vs. Hosting+History layers (b) Hosting+History layer vs. full graph

Fig. 19: Kolmogorov-Smirnov distance between weighted connected component size
distribution functions.

36

101 4

1004

107 A

10° A A

Number of paths
Number of paths

10° L4

® Frequency (= z) VoS, ® Frequency (= z)
s 4

100] Cumulative freq. (> z) A 10! Cumulative freq. (> z)
Power law fit (a = 2.3) S Power law fit (o = 1.5) fep— ;'“
T T T —_—— T T T T T T T
10° 10! 10% 10° 10! 10? 10° 10* 10° 106
Size of each shortest path Size of each shortest path
(a) Filesystem layer (10% sample) (b) Commit layer

Fig. 20: Shortest path length distributions.

origin) which are then found in components containing several origins when we include
the next layer. Out of a total of 147 million origins, 71.6% are isolated origins in
separate connected components in the hosting layer. This number decreases by 17%
when merging this layer with the history layer (Figure 19a) and by 30% when taking
into account the complete graph (Figure 19b). The sharp decreases at the right of
these figures correspond to the number of origins that form the giant component in
the initial layer, plus the number of origins that integrate the giant component when
the next layer is included (respectively 10.2% + 8.8% = 18.9%, and 57.8% + 18.9% =
76.8%) This means that the growth of the giant component does not occur by mere
aggregation of components containing isolated origins. This phenomenon is further
confirmed by the progressive decrease of the curve at intermediate sizes (left figure),
which indicates that the components of these sizes include more origins, previously
included in components of smaller sizes. This aggregation phenomenon concerns all
layers and all component sizes, limiting the usefulness of attempting to partition the
graph based on these two criteria alone.

5.4 Shortest paths

The last topological property we look at is the average length of the shortest
paths between root and leaf nodes in the filesystem (Figure 20a) and commit layer
(Figure 20b), as defined in Section 4.3.6.

These properties of the various graphs have directly transposable meanings in soft-
ware development. In the filesystem layer, they correspond to the minimum directory
depth at which a given file content can be found on average. In the commit layer,
they are the lengths of the commit chains from the first commit of the project to the
heads of the branches (again, on average). These are particularly interesting alongside
the degree distributions, as they help us understand the shape of the graph given its
density.

We saw in Section 5.1 that the filesystem layer was dense, with nodes in close
proximity with each other. The distribution obtained in Figure 20a gives an idea

37

of the depth of the files in the directory trees, which interestingly appear in a very
characteristic configuration. Typically, most files are located at a depth of less than
10. The most common depths are 3 (27%), 4 (22%) and 5 (16%). This makes intuitive
sense, as the source files which are modified by developers tend to be organized inside
(not too deep) directory hierarchies, and rarely reside at the top level.

For values beyond the maximum, two regimes should be distinguished. The first
one corresponds to an exponential decay from ~ 2 10! to ~ 2 10? from lengths 4 and
up to lengths of about 40. This very fast decay means that in this value range the
probability of observing a file 4 folders down in the filesystem layer is divided by 10.
Beyond a depth of 30 or 40 directories, we observe a second regime corresponding to
a slower decrease, strongly marked by the presence of numerous outliers at 41, 44, 60,
between 94 and 99, ..., as well as for the number of path occurrences where the values
56 and 60 are over-represented and form a clearly distinguishable horizontal line for
depths above 100. The existence of these two regimes has direct practical consequences
on all measures requiring to efficiently traverse the whole graph. For example, the first
traversal of the whole graph produced in the scope of the Software Heritage project —
in order to obtain a global analysis identifying the first occurrences of all the directory
and file nodes of the graph [34] — was obtained combining the sharding of the revisions
based on their intrinsic identifier, a breadth-first search (BFS) on the first 10 depths
of the filesystem layer, coupled with a depth-first search (DFS) on depths higher than
10. Very long chains, even on small number of paths between revisions and files, made
a BFS on all depths inefficient. Inversely, a DFS required traversing all the existing
paths without benefiting from deduplication. This empirical optimization finds its
explanation in the results we present in this study.

In contrast, Section 5.1 showed that the history layer was sparse with an average
degree close to one, indicating that it was mainly constituted of degenerate commit
chains. Figure 20b shows the distribution of the lengths of these chains. Outliers
are also present in the tail of the distribution, mostly test projects like the GitHub
repository test-many-commits-1im'# which contains 2 million commits, but also for
intermediate lengths. They justify more detailed studies (outside the scope of this
exploratory study) of the outliers of the commit layer, and of their probably important
influence on the measure of the scaling factor (especially, for lengths around 400, for
particular values 557, 561, 571, 653, 922, ..., see raw data in the replication package).
The observed excesses are very significant and can explain the observed variations of
the slope of the cumulative distribution and, consequently, induce important biases
in the measurement of the scaling factor (cf. Section 6).

The distribution of commit chain lengths shows a cutoff for chains longer than 10°
commits, but a very large variance and a very large mean, characterized by a scaling
factor of about 1.5. We thus expect both the variance and the mean to diverge as the
size of the graph increases. Further study is needed to understand the origin of this
cutoff, which might be related to such factors as: distribution of project longevity;
number of developers involved; or other mechanisms such as changes of version man-
agement tools, hosting platforms, and development practices, particularly regarding
branch management.

Mhttps://github.com/cirosantilli/test-many-commits-1m, accessed 2021-09-29.

38

https://github.com/cirosantilli/test-many-commits-1m

Table 6: Frequency distributions of metrics computed on the graph of soft-
ware development, and their main characteristics.

Metric Layer Events Exponent X decades Y decades
Full 1.93 x 1010 1.86 8.47 10.14
Filesystem 1.70 x 101° 1.86 8.47 10.02
Indegrees Commit 1.97 x 10° 2.20 5.84 9.23
History 1.99 x 10° 2.14 5.84 9.23
Hosting 2.87 x 108 2.76 7.03 8.16
Full 1.93 x 100 1.94 6.01 9.96
Filesystem 1.70 x 10° 1.94 6.01 9.96
Outdegrees Commit 1.97 x 10° 5.80 5.00 9.24
History 1.99 x 10° 5.80 5.00 9.24
Hosting 2.87 x 108 2.20 4.98 8.22
Full 3.31 x 107 2.37 10.27 7.35
Connected Filesys.tem 4.62 x 10: 2.25 10.21 7.54
components Commit 8.80 x 10 2.10 7.71 7.58
History 8.80 x 107 2.10 7.71 7.57
Hosting 1.08 x 108 2.97 7.14 7.67
Full 1.37 x 107 2.06 5.25 7.11
Clustering Filesystem 1.37 x 107 2.10 5.25 7.12
coefficient Commit 1.37 x 107 2.52 1.95 7.13
History 1.37 x 107 2.52 1.95 7.13
Filesystem 5.86 x 1011 2.27 2.71 11.20

Shortest path Commit 1.72 x 108 1.53 6.62 7.58

The value of this scaling factor is significantly less than 2, which is an exception
among the other measurements done in this study. Contingent on measurement uncer-
tainty, it would mean that the observed average length of commit chain is only limited
by the finiteness of the sample and by phenomena directly related to the dynamics of
the projects.

5.5 Summary

Table 6 summarizes all the metrics computed on the graph of software development
and its layers, as part of our exploratory study. Each distribution is characterized by
its number of observed events (i.e., number of objects they represent), the amplitude of
its values on both axes expressed in decades, as well as the scaling factor (or ezxponent)
obtained when fitting a power law. Numerical values are truncated at the second digit.

6 Discussion

6.1 Key findings and their relevance

Our results shed light on some properties of the public software development history
which have important implications for empirical research, in particular for large-scale
analyses.

39

6.1.1 Existence and implications of a giant connected component

The first salient characteristic is the large topological disparity between the different
layers that constitute the graph, both at the local level and in their global structure.
If we break down the graph in three layers—hosting, history, filesystem—we see that
they have dramatically different shapes, densities and connectivity.

The filesystem layer contains 90% of the nodes and 97% of the edges of the full
graph, and thus largely dominates its high-level topological properties. This layer is
dense and highly connected, due to the high amount of deduplication of the software
artifacts it contains. This high connectivity naturally leads to the existence of a giant
weakly-connected component, containing more than 97% of all the files and directories
in the graph that are all reachable from each other by simply following directory
hierarchy vertices. The degree distributions in the filesystem layer are heavy-tailed
and exhibit a clear transition between two different regimes. The directory trees have
a characteristic depth with a converging mean, characteristic of a first regime observed
for depths below 20, then a second regime closer to the heavy-tailed distributions, the
relative weight of which is less than 0.01%.

By contrast, the history layer has almost exactly opposite topological properties.
It is sparse and mildly connected, mainly consisting of degenerate commit chains,
with relatively low deduplication compared to the filesystem layer. Its largest weakly-
connected component is less than 3% the size of the entire graph, which implies that
the nodes are well separated within the layer. Commits have a characteristic outdegree,
with very few of them merging more than 3 commits together. However, the commits
chain lengths show large fluctuations characterized by a very high mean and variance.

This discrepancy between the topological properties of the filesystem and the
history layers is illustrated in Figure 21.

Finally, the hosting layer is a bipartite graph containing a small fraction of the
nodes in the graph. It is also sparse and minimally connected, with some deduplication
for identical forks, which are frequently found in modern collaborative code hosting
platforms like GitHub.

A first important practical implication of these findings is that because the filesys-
tem vertices largely aggregate in a giant weakly-connected component, it is not
possible to apply strict component separation to easily partition the entire graph in
smaller tightly connected clusters in order to perform scale-out computations. How-
ever, because the hosting and history layers are sparse, have low connectivity and
smaller giant components, it is possible to easily separate them into multiple parti-
tions that can be processed in parallel while retaining the performance advantages of
exploiting node locality within them. In so doing, empirical researchers should keep
in mind that distributed/parallel processing of separate development history compo-
nents will eventually lead to common source code artifacts; they will either have to
be re-analyzed multiple times, or will require some distributed caching mechanism to
share analysis results across distributed /parallel workers.

40

2
£
%ﬁ

Arbitrary
depth
E E E depth
v
~—

Arbitrary Characteristic
outdegree outdegree
(a) Filesystem layer (b) Commit layer

Fig. 21: The filesystem and commit layers have drastically different topological
properties: the filesystem layer has a characteristic depth (generally under 20 directo-
ries) but no characteristic outdegree (very large mean/variance), whereas the commit
layer has a characteristic outdegree (generally two parent commits or less) but no
characteristic depth.

6.1.2 Generalization to other graph representations

The file system layer can be viewed as a dense network of highly duplicated soft-
ware artifacts. The density of this network depends on the chosen representation.
For instance, representations derived from deduplication of paths between commits
and files aim to find the best trade-off by limiting themselves to file and root direc-
tory nodes. It has been previously shown (see [26, Figs. 3, 4, and 6, for instance])
that the distribution of incoming degrees between files and commits is highly simi-
lar to what is presented here — exhibiting a heavy tail over many decades, numerous
outliers, and more. In the scope of this exploratory study, this observation suggests
that heavy-tailed distributions are commonly found in exploitable graph representa-
tions at this scale, constituting an intrinsic property of the graph structure of public
software development history. While fine-grained characteristics, such as cutoff val-
ues and scaling factors (assuming they are well defined), are expected to potentially
vary among different graph representations, this aspect is a point of consideration for
further analysis.

The presence of heavy-tailed degree distributions alone does not necessarily imply
the existence of a giant connected component. Scale-free networks, a subset of heavy-
tailed distributions that follow power laws for extreme values, are known for their
resilience to random failures, primarily due to the presence of a giant component.
However, in the case of an attack targeted at hubs (nodes with the highest degrees),
we anticipate a threshold phenomenon beyond which the giant connected component
would disappear [71, 72]. In the context of this study, a test was conducted by removing

41

the 1 million most connected nodes (as mentioned earlier). However, given that this
represents only a small fraction of the nodes, it does not provide conclusive evidence
of the existence of a threshold beyond which the giant component would disappear.
This leaves open the possibility of partitioning strategies where only a few million or
tens of millions of nodes would be duplicated.

The observed dual regime with two scaling factors in the filesystem layer (one close
to 2, then a second closer to 3) complicates analysis. Without a finer understanding
of the nature of this transition, such as the potential role of deduplication of both
file and directory nodes, and its dependence on graph representations, the analysis
remains challenging. Additionally, the observed variation in the scaling factor with
characteristics such as file size ([26, Fig. 3]) suggests that partitioning strategies not
solely based on the node degrees criterion might prove to be efficient.

To study the partitioning of the entire graph, we have highlighted in this study
an aggregation mechanism that merges connected components of various sizes from
distinct layers. Despite prior discussions on different representations and partitioning
strategies within the same layer of the graph, implementing a measure that encom-
passes several layers presents a greater challenge. There is no guarantee that an
efficient partitioning, if it exists on a layer-by-layer basis, will also hold for two lay-
ers together. For a more detailed understanding of the mechanisms at play, it will be
necessary, for example, to study degree correlations between nodes of different types.

6.1.3 Implications regarding feasibility of large-scale measurements

Another key consideration for empirical software engineering studies is that the distri-
butions examined in this paper often exhibit slow variations across multiple decades
(see Table 6), in line with the characteristics of heavy-tailed distributions. The
observed maxima of topological properties directly influence the feasibility of certain
measurements at this scale, as detailed below.

Those distributions for which the values of the scaling factor are between 2 and 3
correspond to (sub)networks that are in a scale-free regime. This has a direct impact
on graph processing algorithms whose complexity depends on intrinsic properties of
the network structure. Distributions in the scale-free regime have a defined mean and
an undefined standard deviation as the sample size increases [61]. Since the graph of
public software development grows (exponentially) over time, the value of the scal-
ing factor « of each distribution can be used to forecast how various graph metrics
are expected to increase with the number of nodes. For power-law distributions, the
maximums of a distribution characterizing a system of size N will tend to vary as
NY(e=1 Tf a distribution has an « value of 2, its expected maximum will grow
linearly; if o = 3, then it will grow proportionally to v/N.

While an algorithm-by-algorithm discussion is beyond the scope of this study, we
have mentioned the practical consequences for optimizing studies that combine BFS
and DFS. The computation of local clustering coefficient distributions in this study is
based on an optimized implementation of the simplest algorithm, with a complexity
of at most O(Nd2,,,), where N is the number of nodes in the graph and d,,4. is
the maximal degree. The existence of large ranges of values over several decades, and
the likely variation of maximums based on scaling factors, will therefore introduce a

42

variation in O(N?) — or even in O(N?) — for the simplest algorithm calculating the
clustering coefficient as a function of the graph size N (see [65] for details and the
used approximation).

This challenging situation may impede the feasibility of certain large-scale mea-
surements. It can be addressed by using a graph representation more tailored to the
computations at hand. Note however that a different representation may simultane-
ously reduce the number of nodes and increase the number of edges or result in a
partial loss of information; although a representation may be more suitable for certain
experiments, we cannot rule out, at this stage, that this won’t come at the expense of
poorer performance for other experiments. Comparing the efficiency of different graph
representations requires benchmarks beyond the scope of the current study.

6.1.4 Existence and implications of outliers

Outliers are also a common feature of most of the observed distributions, not only
located at the end tail of the distributions but also at early values. It can be par-
ticularly difficult to disentangle rare events, i.e., extreme events at the end of the
tail created due to legitimate development practices, and outliers, i.e., unusual events
that are disconnected from the underlying distribution. In the scope of this study, we
have discussed the potential influence of outliers, such as when assessing the scaling
factors in the distribution of shortest paths in the commits layer (Figure 20b). This
consideration likely extends to the size distribution of connected components on the
filesystem layer (Figure 17b) and the entire graph (Figure 17a).

This highlights the need to systematically document the methods used to filter
outliers in extant and future empirical software engineering studies (e.g., to build
subgraphs or derived graphs), as these can have a significant impact on the results
and their interpretation.

6.2 Threats to validity
6.2.1 Internal validity

Computational complexity challenges

This study is an implementation of the preregistered phase 1 study protocol described
in [32]. Starting from the Software Heritage graph dataset as a raw corpus, we have
analyzed it using the algorithms and statistical tools described in the phase 1 protocol,
without any significant change to the methodology. However, at the time of designing
the phase 1 protocol, we underestimated the execution time of two algorithms, which
we were therefore not able to run on the entire graph.

According to our estimates, the path length distribution of the filesystem layer
would have taken around two months to compute on an expensive server, exceeding our
available resources. Thus, we restricted ourselves to compute path length distribution
on a uniform sample of 10% of the nodes (n = 2 billion nodes) of the filesystem layer.
On the other hand, we were able to compute the path length distribution in full on
the entire commit layer in around 3 hours, without having to resort to sampling.

We also underestimated the time required to compute the clustering coefficient of
the entire corpus as an undirected graph, which would have taken several years to

43

complete on the resources we had at our disposal. Instead we have analyzed a uniform
sample of 0.1% of the entire graph (n = 20 million nodes), which is in line with the
sample sizes of clustering coefficient estimates in other analyzes of large networks [65].
This misestimation stems from the fact that it is not possible to check in O(1) whether
some node is in the neighborhood of another node using the adjacency data structures
of the compressed graph.

As this study was exploratory in nature with no preconstructed hypotheses or
comparable experiences, we had anticipated the possibility of having to resort to
sampling in the protocol [32, Section 7]. Also, the graph subsamples we ended up
analyzing are on par with other analyses of large networks. Hence, we do not consider
this sampling to be a significant threat to experiment validity.

Simple graph vs. multigraph

As discussed in Section 3, an appropriate metamodel for the global VCS graph of
public code are property graphs, where both nodes and edges are associated to proper-
ties that are meaningful from the point of view of software engineering. For example,
edges between directories and file blobs have a property denoting local path names,
and edges between commits have a property denoting the branching order in merges.
In graph theory a property graph is not a simple graph, where at most one edge can
exist between two vertices, but a multigraph, where multiple edges can be incident to
the same two vertices. Consider for instance the case of a single directory "test/"
containing twice the same file blob (e.g., the empty file), under two different names
(e.g., "a" and "b"). The simple graph view of such a VCS will represent it as a single
edge "text" — empty file, while the multigraph view will represent it as two edges
between the same nodes.

swh-graph implements the compression of adjacency lists, known for its effective-
nesss with the graph of the Web; it addresses previously identified bottlenecks of the
Software Heritage dataset [26, 73], specifically: (a) the removal of the file/entry_ file
and directory/entry__dir subtypes existing in the SWH project reference model;
(b) the use of an adjacency list for the graph and its transpose; and (c¢) a unified
representation that connects nodes of different types!'®.

In the version of swh-graph used for this work, certain relationships between
nodes are not preserved. The effect of this deduplication is particularly notable for
edges to and from snapshot nodes (hosting layer), as well as for some edges between
directory and file nodes. This results in a reduction of 75% and 15% of edges whose
source or target is a snapshot node respectively. From a methodological standpoint,
these deduplications are not very concerning as the removed multiple edges stem
from crawling processes, reflecting the number of visits to these origins and how often
crawlers have ‘seen’ these snapshots.

The results reported in Section 5 therefore concern the simple graph view of the
global VCS graph rather than the multigraph. This should be taken into account when
interpreting results; for instance, the outdegree distribution of a directory should be

5 Note that any approach that overcomes these bottlenecks should be able to reproduce the obtained
results.

44

interpreted as the number of unique objects present in a directory, and not the num-
ber of directory and file entries. The impact of edge compression on the number of
edges is limited overall, amounting to a few percentage points (as we have quantified
using integrity criterion #2, see the corresponding script in the dataintegrity note-
book of the replication package). Note however that this difference — which cannot
be attributed to crawling processes as with the hosting layer — may seem small or
negligible compared to the total number of nodes or edges, but is not necessarily so
when compared to the weight of the tails of the distributions, the characteristics of
which have been extensively discussed in the context of this study. The log-log scale
produces a magnifying effect, as evident in Figure 14, where one can observe that the
tail of the distribution for incoming degrees with a degree greater than or equal to
10 represents 10° nodes, approximately 1% of the total of 107 edges. As a result, it
cannot be ruled out that the results presented in this study may be impacted.

In practice, we have not attempted to measure the impact of edge compression on
the studied distributions, but it is likely to have a quantitative impact too on some of
the results presented in this study (such as the estimates of the scaling factors, ranges
and means, or properties of the shortest paths for instance), without invalidating them
qualitatively.

Recent versions of the graph compression pipeline now support multigraphs [59],
making it possible to characterize both the graph and multigraph views of the global
VCS graph, and better quantify their differences. Doing so is left as future work.

Multiple representations

As recalled in Section 2, different representations of the global VCS graph exist.
Each representation may be more amenable to a specific analysis than the others.
The practical choice of a representation involves well-known trade-offs between the
complexity of certain operations (such as querying the first or last version in the
history) and the resources required to store the software development history. In
addition, the tools available to carry said analysis may impose constraints on the
representation and may necessitate simplifying/compressing the representation to lift
some bottlenecks, in a way that is potentially not reversible. Both of these points have
started to be illustrated by the simple graph vs. multigraph discussion of the previous
section.

Particular attention has been given to discussing the potential transferability of
the results obtained in this study to other representations of the global VCS graph,
or in other words to the intrinsic nature of the results. Some of our results are indeed
intrinsic. An example is the distribution of the shortest paths between all files found
in a commit which holds true regardless of the chosen filesystem layer representation
(as long as the definition of path length is the same). Some other results are impacted
by the edge vs. multiedge limitation of the previous section — as indegree/outdegree
distributions — and may therefore not be regarded as really intrinsic, even though some
version of them probably hold regardless of representation at least in a qualitative
manner. Further work will be needed to fully assess the extent to which the results
obtained in this study reflect the intrinsic nature of the global VCS graph of public
code.

45

In the same vein, the layer structure used here has its drawbacks as it may be
insufficient to study some interesting topological properties, independently of their
dependence on a specific graph representation. For example, the indegree/outdegree
distributions aggregate edges from file and directory nodes. For directory nodes, out-
degrees include both outgoing edges pointing to files and those pointing to directories.
This aggregation by layer, rather than by type of edges, is likely to have influenced
some of the results we obtained.

We would like to emphasise here that using a protocol based on the prior publica-
tion of a Registered Report was key for this study to better account for the existence
of diverse representations of the same graph. It enhanced the consideration and under-
standing of the dependence of the study results on the chosen representation and
lead to a more detailed and relevant analysis of the intrinsic properties of the public
software development history.

Quality of “real-world” datasets

Another potential internal threat is the validity of the dataset itself. Because this study
is the first of its kind ever performed on the graph of software development, there is no
existing dataset to which its properties can be cross-compared. We performed a series
of quality and integrity checks (documented in the replication package) to ensure that
the properties were consistent to our own expectations or to the raw original graph,
which allowed us to iteratively find and correct errors in both the dataset export
pipeline and the implementation of our experiments.

Note first that our experiments are based on the Software Heritage data export
dated 2020-12-15. This constitutes a minor deviation from what was announced in the
execution plan of the Registered Report. Indeed the latest export that was available at
the time we started our experiments, dated 2018-09-25, turned out to have a corrupted
snapshot layer and we had to restart with a more recent export.

But even dataset version 2020-12-15 suffers from some data quality issues. In
particular there are nodes without ancestors with, for example, 1% of the revisions
not linked to any snapshot or release (see Criterion #4 in the replication package and
associated script, as well as a list of such nodes). The replication package includes a
discussion of potential causes and ways to verify them.

The Software Heritage dataset is a real-world dataset (as opposed to synthetic
datasets), and it is unavoidable to have this kind of inconsistency. Moreover, it is not
possible to guarantee that the checks we performed were exhaustive, especially since
we are handling a data set of several billion nodes. Although we cannot rule it out,
we have no evidence that these data quality issues have a significant impact on the
results presented in this study.

6.2.2 External validity

While our data corpus is the largest dataset of software development history and aims
to be as exhaustive as materially possible, it remains a subsample of the full software
commons, and as such the way it is constructed is a source of various potential biases.

46

Ezxhaustiveness of VCS and package managers

Software Heritage covers the most popular DVCS (Git, Mercurial, Subversion, ...)
as well as distribution and language-specific packages (dpkg-source, Nix, Python,
NodelJS, ...), and regularly adds support for new systems. The Software Heritage
snapshot we used as dataset did not cover less commonly used systems, like Bazaar,
Darcs and CVS for example. If software development patterns on these platforms are
significantly different, this study cannot properly capture them in a representative
manner.

Ezxhaustiveness of data sources

Likewise, the representativeness of the study is limited by the extent of the data source
coverage of Software Heritage. The archive contains the main centralized software
forges and package repositories (GitHub, GitLab, Bitbucket, PyPI, Debian, NixOS,
..), as well as instances of decentralized forges (e.g., various self-hosted GitLab or
Phabricator instances). As the archive cannot realistically cover the long tail of smaller
self-hosted forges, this is another source of popularity bias in the input dataset.

Archival process

The process of listing data sources and loading repositories and software packages in
the Software Heritage archive is heterogeneous across data sources, which can skew
the representativeness of the data. Data sources are crawled at varying frequencies
depending on multiple factors: for instance, some forges support subscription-based
APIs that allow the crawlers to archive repositories as soon as a change is pushed to
them. Some repositories are considered more critical to software infrastructures and
are crawled daily. Other scheduling heuristics are in place to maximize resource usage
efficiency of data crawlers. Overall, this means that the topology of the “hosting”
layer is endogenous to the archival process, rather than being an intrinsic property
of software development happening there. This is mainly reflected in the number
of snapshots that neighbor a given origin, since more frequent crawling generally
produces more snapshots.

Non-software data

We acknowledge the habit of developers to use software development platforms and
hosts for non-software projects (e.g., collaborative writing, websites, open datasets,
art assets, etc.). However, we expect software development to be the dominant content
hosted in these platforms. We also assume that the results of this work would be most
useful for researchers when applied to similar corpuses, which would contain the same
kind of non-software data, as opposed to carefully curated ones.

7 Conclusion

This article describes the first exploratory study on the intrinsic structure of the ver-
sion control system (VCS) graph of public software development. We use the Software
Heritage graph dataset as a corpus, which is the largest public archive of source code
and gives us a unified view of public software development. This graph encodes the

47

fundamental relationships between the 20 billion software artifacts it contains (source
code files and directories, commits, releases, repository states) and materializes them
as an immense complex network of VCS data.

The ambition of this study is to lay the groundwork for future large-scale analyses
in the graph of development history by comprehensively documenting its structure,
and to draw a few key implications for empirical software mining. For that purpose,
we systematically analyzed robust and classic measures of network topology (indegree
and outdegree distributions, connected component sizes, shortest path lengths, and
clustering coefficient) and discussed their intrinsic or non-intrinsic nature.

We reached the following conclusions:

e There is a large disparity between the topological properties of the different layers in
the graph. The three main layers (filesystem, history, and hosting) have dramatically
different shapes, densities and connectivities, and they take up very uneven shares
of the total size of the graph. The properties of the full graph are largely dominated
by those of the filesystem layer, which represents the vast majority of nodes (90%)
and edges (97%) in the graph.

— The filesystem layer is dense, with an average degree of ~ 12, and highly con-
nected with more than 97% of the nodes aggregated in a single giant connected
component. Files have a characteristic depth of less than 20 directories.

— The history layer is sparse, with an average degree of ~ 1, presenting itself
as a collection of degenerate strings of commits. It has a comparatively lower
connectivity, with the largest connected component containing 3% of its nodes.

* Most of the distributions are heavy-tailed, which can jeopardize the feasibility of
some algorithms in future studies as the VCS graph grows exponentially.

¢ The entangled nature of the graph as a whole, highlighted by the multiscale aggre-
gation process of the connected components, makes it difficult to use naive sharding
approaches for scale-out processing of its full extent or large shares of it, as it can-
not be easily partitioned into clusters of connected components. The history layer
itself, having a lower connectivity, can be partitioned in reasonably sized groups of
connected clusters.

There are several ways in which the present study could be refined and expanded
in the future. In particular, we could investigate other topological properties (such as
the betweenness distribution, not originally planned in the registered study protocol
so left out here), explore the implications of the results presented here on such aspects
as dynamic evolution and maintenance, and further delve into the pros and cons of
the different known models and representations to determine the intrinsic structure
of the graph of public software development history.

Acknowledgements

The authors would like to thank the reviewers for their insightful comments, and S.
Petitjean for his thorough review of the revised version of the manuscript and his
suggested amendments, that led to a much improved and focused version of this work.

48

Declarations

Funding
Not applicable.

Ethical approval
Not applicable.

Informed consent

Not applicable.

Re-use of material

Some of the results presented in this study appeared in preliminary form in the PhD
thesis of Antoine Pietri [59].

Data Awvailability Statement

A replication package for this study is available on Zenodo: https://zenodo.org/
records/15038707. It contains the raw data of the experiment results, as well as
detailed instructions for how to reproduce the experiments. We also provide several
Jupyter notebooks to plot the graphs shown in Section 5 and run quality/integrity
tests discussed in Section 6.2.

Conflict of Interest

The results of this study are based on the use of a representation of the Public Software
Development History made available by Software Heritage. At the time this study
was initiated, the authors were members of Software Heritage.

Clinical Trial Number
Not applicable.
References

[1] Feller, J., Fitzgerald, B., et al.: Understanding Open Source Software Develop-
ment, (2002). Addison-Wesley London

[2] Begel, A., Herbsleb, J.D., Storey, M.-A.: The future of collaborative soft-
ware development. In: Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work Companion, pp. 17-18 (2012)

[3] Hassan, A.E.: The road ahead for mining software repositories. In: Frontiers of
Software Maintenance, 2008. FoSM 2008., pp. 48-57 (2008). IEEE

[4] Spinellis, D.: Version control systems. IEEE Software 22(5), 108-109 (2005)

49

https://zenodo.org/records/15038707
https://zenodo.org/records/15038707

[5]

[13]

[15]

Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of
software maintenance and evolution: Research and practice 19(2), 77-131 (2007)

Demeyer, S., Mens, T.: Software Evolution, (2008). Springer

Pan, W., Li, B., Ma, Y., Liu, J.: Multi-granularity evolution analysis of software
using complex network theory. Journal of Systems Science and Complexity 24(6),
1068-1082 (2011)

Wittern, E., Suter, P., Rajagopalan, S.: A Look at the Dynamics of the JavaScript
Package Ecosystem. In: 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), pp. 351-361 (2016)

Howison, J., Conklin, M., Crowston, K.: Flossmole: A collaborative repository for
FLOSS research data and analyses. International Journal of Information Tech-
nology and Web Engineering (IJITWE) 1(3), 17-26 (2006). https://doi.org/10.
4018/jitwe.2006070102

Gao, Y., VanAntwerp, M., Christley, S., Madey, G.: A research collaboratory
for open source software research. In: Proceedings of the First International
Workshop on Emerging Trends in FLOSS Research and Development, FLOSS’07
(2007). IEEE

Van Antwerp, M.V., Madey, G.: Advances in the SourceForge research data
archive. In: Workshop on Public Data About Software Development (WoPDaSD)
at The 4th International Conference on Open Source Systems, Milan, Italy (2008)

Mockus, A.: Amassing and indexing a large sample of version control systems:
Towards the census of public source code history. In: Proceedings of the 6th
International Working Conference on Mining Software Repositories, MSR, 2009,
pp. 11-20 (2009). https://doi.org/10.1109/MSR.2009.5069476. IEEE Computer
Society. https://doi.org/10.1109/MSR.2009.5069476

Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: A language and infras-
tructure for analyzing ultra-large-scale software repositories. In: Proceedings of
the 2013 International Conference on Software Engineering, pp. 422-431 (2013).
IEEE Press

Di Cosmo, R., Zacchiroli, S.: Software Heritage: Why and how to preserve
software source code. In: Proceedings of the 14th International Conference
on Digital Preservation, iPRES 2017 (2017). https://hal.archives-ouvertes.fr/
hal-01590958/

Ma, Y., Dey, T., Bogart, C., Amreen, S., Valiev, M., Tutko, A., Kennard, D.,
Zaretzki, R., Mockus, A.: World of code: enabling a research workflow for mining
and analyzing the universe of open source VCS data. Empir. Softw. Eng. 26(2),

50

https://doi.org/10.4018/jitwe.2006070102
https://doi.org/10.4018/jitwe.2006070102
https://doi.org/10.1109/MSR.2009.5069476
https://doi.org/10.1109/MSR.2009.5069476
https://hal.archives-ouvertes.fr/hal-01590958/
https://hal.archives-ouvertes.fr/hal-01590958/

[16]

22 (2021). https://doi.org/10.1007/s10664-020-09905-9

Robles, G., Gonzalez-Barahona, J.M.: A comprehensive study of software forks:
Dates, reasons and outcomes. In: Hammouda, I., Lundell, B., Mikkonen, T., Scac-
chi, W. (eds.) Open Source Systems: Long-Term Sustainability - 8th IFIP WG
2.13 International Conference, OSS 2012, Hammamet, Tunisia, September 10-13,
2012. Proceedings. IFIP Advances in Information and Communication Technol-
ogy, vol. 378, pp. 1-14 (2012). https://doi.org/10.1007/978-3-642-33442-9 1.
Springer. https://doi.org/10.1007/978-3-642-33442-9_ 1

Pietri, A., Rousseau, G., Zacchiroli, S.: Forking without clicking: on how to
identify software repository forks. In: Proceedings of the 17th International Con-
ference on Mining Software Repositories, pp. 277-287 (2020). https://doi.org/10.
1145/3379597.3387450

Meusel, R., Vigna, S., Lehmberg, O., Bizer, C.: The graph structure in the web—
analyzed on different aggregation levels. The Journal of Web Science 1 (2015)

Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook
social graph. arXiv preprint arXiv:1111.4503 (2011)

Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social net-
work? the structure of the twitter follow graph. In: Proceedings of the 23rd
International Conference on World Wide Web, pp. 493-498 (2014)

Albert, R., Barabdsi, A.-L.: Statistical mechanics of complex networks. Reviews
of modern physics 74(1), 47 (2002)

Coutinho, B.C., Hong, S., Albrecht, K., Dey, A., Barabési, A.-L., Torrey, P.,
Vogelsberger, M., Hernquist, L.: The Network Behind the Cosmic Web. arXiv
(2016)

Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-laws in a large object-
oriented software system. IEEE Transactions on Software Engineering 33(10),
687-708 (2007)

Louridas, P., Spinellis, D., Vlachos, V.: Power laws in software. ACM Trans.
Softw. Eng. Methodol. 18 (2008)

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian,
D.: The promises and perils of mining github. In: Proceedings of the 11th Working
Conference on Mining Software Repositories, pp. 92-101 (2014). ACM

Rousseau, G., Di Cosmo, R., Zacchiroli, S.: Software provenance tracking at the

scale of public source code. Empirical Software Engineering 25(4), 2930-2959
(2020). https://doi.org/10.1007/s10664-020-09828-5

o1

https://doi.org/10.1007/s10664-020-09905-9
https://doi.org/10.1007/978-3-642-33442-9_1
https://doi.org/10.1007/978-3-642-33442-9_1
https://doi.org/10.1145/3379597.3387450
https://doi.org/10.1145/3379597.3387450
https://doi.org/10.1007/s10664-020-09828-5

[27]

[33]

Flint, S.W., Chauhan, J., Dyer, R.: Escaping the time pit: Pitfalls and guide-
lines for using time-based git data. In: 18th IEEE/ACM International Conference
on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021,
pp. 85-96 (2021). https://doi.org/10.1109/MSR52588.2021.00022. IEEE. https:
//doi.org/10.1109/MSR52588.2021.00022

Sasaki, Y., Yamamoto, T., Hayase, Y., Inoue, K.: Finding file clones in FreeBSD
Ports Collection. In: 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), pp. 102-105 (2010). IEEE Press

Abramatic, J.-F., Di Cosmo, R., Zacchiroli, S.: Building the universal archive of
source code. Communications of the ACM 61(10), 29-31 (2018). https://doi.org/
10.1145/3183558

Boldi, P., Pietri, A., Vigna, S., Zacchiroli, S.: Ultra-large-scale repository anal-
ysis via graph compression. In: SANER 2020: The 27th IEEE International
Conference on Software Analysis, Evolution and Reengineering (2020). IEEE

Lopes, C.V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny, J., Sajnani, H.,
Vitek, J.: DéjaVu: a map of code duplicates on GitHub. Proceedings of the ACM
on Programming Languages (OOPSLA) (2017)

Pietri, A., Rousseau, G., Zacchiroli, S.: Determining the intrinsic structure of
public software development history. In: MSR 2020: The 17th International
Conference on Mining Software Repositories (2020). https://doi.org/10.1145/
3379597.3387506. IEEE. OSF registration available online at: https://osf.io/
Tr2w4

Pietri, A., Spinellis, D., Zacchiroli, S.: The Software Heritage graph dataset:
public software development under one roof. In: Storey, M.D., Adams, B., Haiduc,
S. (eds.) Proceedings of the 16th International Conference on Mining Software
Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada., pp. 138-142 (2019).
IEEE / ACM. https://dl.acm.org/citation.cfm?id=3341907

Rousseau, G., Di Cosmo, R., Zacchiroli, S.: Growth and duplication of pub-
lic source code over time: Provenance tracking at scale. Technical report, Inria
(2019). https://hal.archives-ouvertes.fr/hal-02158292

Mockus, A., Spinellis, D., Kotti, Z., Dusing, G.J.: A complete set of related
git repositories identified via community detection approaches based on shared
commits. In: MSR ’20: 17th International Conference on Mining Software Repos-
itories, pp. 513-517 (2020). https://doi.org/10.1145/3379597.3387499. ACM.
https://doi.org/10.1145/3379597.3387499

Alexandru, C.V., Panichella, S., Proksch, S., Gall, H.C.: Redundancy-free anal-
ysis of multi-revision software artifacts. Empirical Software Engineering 24(1),
332-380 (2019). https://doi.org/10.1007/s10664-018-9630-9

52

https://doi.org/10.1109/MSR52588.2021.00022
https://doi.org/10.1109/MSR52588.2021.00022
https://doi.org/10.1109/MSR52588.2021.00022
https://doi.org/10.1145/3183558
https://doi.org/10.1145/3183558
https://doi.org/10.1145/3379597.3387506
https://doi.org/10.1145/3379597.3387506
https://osf.io/7r2w4
https://osf.io/7r2w4
https://dl.acm.org/citation.cfm?id=3341907
https://hal.archives-ouvertes.fr/hal-02158292
https://doi.org/10.1145/3379597.3387499
https://doi.org/10.1145/3379597.3387499
https://doi.org/10.1007/s10664-018-9630-9

[37]

[38]

[39]

[48]

Trujillo, M.Z., Hébert-Dufresne, L., Bagrow, J.P.: The penumbra of open source:
projects outside of centralized platforms are longer maintained, more academic
and more collaborative. ArXiv preprint abs/2106.15611 (2021)

Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks.
Nature 393(6684), 440-442 (1998). https://doi.org/10.1038/30918. Accessed
2021-12-05

Barabdsi, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Sci-
ence 286(5439), 509-512 (1999). https://doi.org/10.1126/science.286.5439.509.
Publisher: American Association for the Advancement of Science. Accessed
2021-12-05

Albert, R., Jeong, H., Barabasi, A.-L.: Diameter of the World-Wide Web. Nature
401(6749), 130-131 (1999). https://doi.org/10.1038/43601. Accessed 2021-12-05

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Computer networks 33(1-6),
309-320 (2000)

Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In:
Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E. (eds.) Proceedings of the 13th
International Conference on World Wide Web, WWW 2004, New York, NY, USA,
May 17-20, 2004, pp. 595-602 (2004). https://doi.org/10.1145/988672.988752.
ACM. https://doi.org/10.1145/988672.988752

Boldi, P., Vigna, S.: The WebGraph framework II: codes for the world-wide web.
In: 2004 Data Compression Conference (DCC 2004), 23-25 March 2004, Snow-
bird, UT, USA, p. 528 (2004). https://doi.org/10.1109/DCC.2004.1281504. IEEE
Computer Society. https://doi.org/10.1109/DCC.2004.1281504

LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. arXiv preprint ¢s/0411096 (2004)

Abate, P., Di Cosmo, R., Boender, J., Zacchiroli, S.: Strong dependencies between
software components. In: 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pp. 89-99 (2009). IEEE

Maillart, T., Sornette, D., Spaeth, S., von Krogh, G.: Empirical tests of zipfs law
mechanism in open source linux distribution. Physical Review Letters 101(21),
218701 (2008)

Myers, C.R.: Software systems as complex networks: Structure, function, and
evolvability of software collaboration graphs. Physical Review E 68(4), 046116
(2003)

Valverde, S., Solé, R.V.: Hierarchical small worlds in software architecture. arXiv

53

https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1038/43601
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/988672.988752
https://doi.org/10.1109/DCC.2004.1281504
https://doi.org/10.1109/DCC.2004.1281504

[49]

[52]

[53]

[54]

preprint cond-mat/0307278 (2003)

Wen, L., Kirk, D.;, Dromey, R.G.: Software systems as complex networks. In:
Zhang, D., Wang, Y., Kinsner, W. (eds.) Proceedings of the Six IEEE Interna-
tional Conference on Cognitive Informatics, ICCI 2007, August 6-8, Lake Tahoe,
CA, USA, pp. 106-115 (2007). https://doi.org/10.1109/COGINF.2007.4341879.
IEEE Computer Society. https://doi.org/10.1109/COGINF.2007.4341879

Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis
and prediction for software evolution. In: Proceedings of the 34th International
Conference on Software Engineering. ICSE ’12, pp. 419-429 (2012). IEEE Press

Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-Laws in a Large Object-
Oriented Software System. IEEE Transactions on Software Engineering 33(10)
(2007)

Chaikalis, T., Chatzigeorgiou, A.: Forecasting Java Software Evolution Trends
Employing Network Models. IEEE Transactions on Software Engineering 41(6)
(2015)

Fortuna, M.A., Bonachela, J.A., Levin, S.A.: Evolution of a modular software
network. Proceedings of the National Academy of Sciences 108(50) (2011)

Singh, P.V.: The small-world effect: The influence of macro-level properties of
developer collaboration networks on open-source project success. ACM Trans.
Softw. Eng. Methodol. 20(2), 6-1627 (2010). https://doi.org/10.1145/1824760.
1824763

Hassan, A.E., Holt, R.C.: The small world of software reverse engineering. In:
11th Working Conference on Reverse Engineering, WCRE 2004, pp. 278-283
(2004). https://doi.org/10.1109/WCRE.2004.37. IEEE Computer Society. https:
//doi.org/10.1109/WCRE.2004.37

Angles, R.: The property graph database model. In: Olteanu, D., Poblete, B.
(eds.) Proceedings of the 12th Alberto Mendelzon International Workshop on
Foundations of Data Management, Cali, Colombia, May 21-25, 2018. CEUR
Workshop Proceedings, vol. 2100 (2018). CEUR-WS.org. http://ceur-ws.org/
Vol-2100/paper26.pdf

Bonifati, A., Fletcher, G.H.L., Voigt, H., Yakovets, N.: Querying Graphs.
Synthesis Lectures on Data Management, (2018). https://doi.org/10.2200/
S00873ED1V01Y201808DTMO051. Morgan & Claypool Publishers. https://doi.
org/10.2200/S00873ED1V01Y201808DTMO051

Merkle, R.C.: A digital signature based on a conventional encryption function.

In: Pomerance, C. (ed.) Advances in Cryptology - CRYPTO ’87, A Conference
on the Theory and Applications of Cryptographic Techniques, Santa Barbara,

54

https://doi.org/10.1109/COGINF.2007.4341879
https://doi.org/10.1109/COGINF.2007.4341879
https://doi.org/10.1145/1824760.1824763
https://doi.org/10.1145/1824760.1824763
https://doi.org/10.1109/WCRE.2004.37
https://doi.org/10.1109/WCRE.2004.37
https://doi.org/10.1109/WCRE.2004.37
http://ceur-ws.org/Vol-2100/paper26.pdf
http://ceur-ws.org/Vol-2100/paper26.pdf
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051

California, USA, August 16-20, 1987, Proceedings. Lecture Notes in Computer
Science, vol. 293, pp. 369-378 (1987). https://doi.org/10.1007/3-540-48184-2
32. Springer. https://doi.org/10.1007/3-540-48184-2 32

Pietri, A.: Organizing the graph of public software development for large-scale
mining. (organisation du graphe de développement logiciel pour l'analyse a
grande échelle). PhD thesis, University of Paris, France (2021). https://tel.
archives-ouvertes.fr /tel-03515795

Di Cosmo, R., Gruenpeter, M., Zacchiroli, S.: Identifiers for digital
objects: the case of software source code preservation. In: Proceedings of
the 15th International Conference on Digital Preservation, iPRES 2018,
Boston, USA (2018). https://doi.org/10.17605/OSF.IO/KDE56. https://hal.
archives-ouvertes.fr/hal-01865790

Newman, M.E.: Power laws, pareto distributions and zipf’s law. Contemporary
physics 46(5), 323-351 (2005)

Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical
data. SIAM review 51(4), 661-703 (2009)

Stumpf, M.P., Porter, M.A.: Critical truths about power laws. Science 335(6069),
665-666 (2012)

Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. nature
393(6684), 440442 (1998)

Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity.
Journal of Graph Algorithms and Applications 9(2), 265-275 (2005)

Maesa, D.D.F., Marino, A., Ricci, L.: Data-driven analysis of bitcoin properties:
exploiting the users graph. International Journal of Data Science and Analytics
6(1), 63-80 (2018)

Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a
news media? In: Proceedings of the 19th International Conference on World Wide
Web, pp. 591-600 (2010)

Callan, J.: The lemur project and its clueweb12 dataset. In: SIGIR 2012 Workshop
on Open-Source Information Retrieval (2012)

Boldi, P., Marino, A., Santini, M., Vigna, S.: BUbiNG: Massive crawling for the
masses. In: Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web, pp. 227-228 (2014). International World Wide
Web Conferences Steering Committee

55

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://tel.archives-ouvertes.fr/tel-03515795
https://tel.archives-ouvertes.fr/tel-03515795
https://doi.org/10.17605/OSF.IO/KDE56
https://hal.archives-ouvertes.fr/hal-01865790
https://hal.archives-ouvertes.fr/hal-01865790

[70]

Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of sep-
aration. In: Proceedings of the 4th Annual ACM Web Science Conference, pp.
33-42 (2012)

Albert, R., Jeong, H., Barabési, A.-L.: Error and attack tolerance of complex
networks. Nature 406(6794), 378-382 (2000)

Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond.
IEEE Circuits and Systems Magazine 3(1), 6-20 (2003)

Rousseau, G., Di Cosmo, R., Zacchiroli, S.: Software provenance tracking at the

scale of public source code. Empirical Software Engineering 25(4), 2930-2959
(2020). https://doi.org/10.1007/s10664-020-09828-5

56

https://doi.org/10.1007/s10664-020-09828-5

	Introduction
	The global graph of public software development
	Motivations and relevance
	Study protocol and research questions
	Paper structure

	Related work
	Large-scale analyses of source code artifacts
	Complex network analyses of software artifacts

	Data model
	Nodes and edges
	Merkle properties
	Cardinality
	Layers

	Datasets and methodology
	The Software Heritage graph dataset
	Graph processing approach: graph compression
	Analysis methodology
	Graph directionality
	Degree distributions
	Scaling factor
	Clustering statistics
	Connected components
	Path length distribution

	Experimental results
	Degree distributions
	Clustering
	Connected components
	Shortest paths
	Summary

	Discussion
	Key findings and their relevance
	Existence and implications of a giant connected component
	Generalization to other graph representations
	Implications regarding feasibility of large-scale measurements
	Existence and implications of outliers

	Threats to validity
	Internal validity
	Computational complexity challenges
	Simple graph vs. multigraph
	Multiple representations
	Quality of ``real-world'' datasets

	External validity
	Exhaustiveness of VCS and package managers
	Exhaustiveness of data sources
	Archival process
	Non-software data

	Conclusion
	Funding
	Ethical approval
	Informed consent
	Re-use of material
	Data Availability Statement
	Conflict of Interest
	Clinical Trial Number

