
Finding Software Supply Chain Attack Paths
with Logical Attack Graphs

Luís Soeiro1[0009-0003-8609-1352], Thomas Robert1[0000-0002-4423-5720], and

Stefano Zacchiroli1[0000-0002-4576-136X]

LTCI, Télécom Paris, Institut Polytechnique de Paris, France
https://www.ip-paris.fr

{luis.soeiro,thomas.robert,stefano.zacchiroli}@telecom-paris.fr

Abstract. Cyberattacks are becoming increasingly frequent and sophis-
ticated, often exploiting the software supply chain (SSC) as an attack
vector. Attack graphs provide a detailed representation of the sequence of
events and vulnerabilities that could lead to a successful security breach
in a system. MulVal is a widely used open-source tool for logical at-
tack graph generation in networked systems. However, its current lack
of support for capturing and reasoning about SSC threat propagation
makes it unsuitable for addressing modern SSC attacks, such as the XZ
compromise or the 3CX double SSC attack. To address this limitation,
we propose an extension to MulVal that integrates SSC threat propaga-
tion analysis with existing network-based threat analysis. This extension
introduces a new set of predicates within the familiar MulVal syntax,
enabling seamless integration. The new facts and interaction rules model
SSC assets, their dependencies, interactions, compromises, additional se-
curity mechanisms, initial system states, and known threats. We explain
how this integration operates in both directions and demonstrate the
practical application of the extension.

Keywords: software supply chain · logical attack graph · threat prop-
agation · security mechanisms

1 Introduction

Advances in information technology have consistently been shadowed by the
proliferation and rising complexity of cyberattacks. The widespread adoption
of Free and Open Source Software (FOSS), driven by scientific, industrial, and
economic motivations [19], has further expanded the attack surface due to its
distributed and resource-constrained development model [12]. Within this con-
text, the Software Supply Chain (SSC) has emerged as a critical target. Its global
interconnectedness and limited transparency enable threat actors to exploit vul-
nerabilities (e.g., Log4Shell) or introduce malicious code, bypassing traditional
defenses and propagating attacks across dependent systems [31].

SSC attacks can also be combined. In the 2023 case of the 3CX attack [1],
two SSC attacks had to be carried out in a sequence of events. First, the server

https://www.ip-paris.fr

2 L. Soeiro et al.

that distributed Trading Technologies’ software was compromised, leading to the
injection of a backdoor in the X_Trader software, which was then available for
download. Then, an employee of the 3CX company downloaded the X_Trader
software and executed it on his personal computer. The malicious software then
helped threat actors connect to the 3CX systems using the employee’s authen-
ticated VPN connection. The attackers ultimately compromised the 3CX build
environment, injecting malicious code into the signed Windows and macOS ver-
sions of the 3CXDesktopApp, which affected the company’s customers.

Many models exist to capture threat knowledge and the progression of at-
tacks on a network. Attack trees and attack graphs are used to decompose and
understand the steps involved in complex attack scenarios [13]. Moreover, such
models can be automatically generated from system introspection or from Cy-
ber Threat Intelligence streams of data [10]. While attack trees capture a single
attack goal, attack graphs can capture multiple attack goals [24] and multiple
attack paths [10]. The Logical Attack Graph (LAG) formalism introduced in
the seminal work of MulVal [18] is widely used and has been regularly extended
over the past two decades [29]. However, neither MulVal nor its extensions are
prepared to reason about SSC threats [4]. This paper introduces a new MulVal
extension that integrates SSC threat propagation reasoning. A full replication
package containing all the code presented in this work is available from Zen-
odo [27].

The following research questions will be answered in this work:
RQ1: To what extent is it possible to formalize knowledge of SSC attacks

into LAG?
RQ2: To what extent does such a formalism uncover non-trivial attack sce-

narios?
This paper is organized as follows: Section 2 presents related work; Section 3

provides background on MulVal; Section 4 introduces our contribution and ap-
proach; Section 5 details how the extension rules integrate with MulVal; Section 6
presents scenarios demonstrating real-world use; Section 7 revisits the research
questions; Section 8 discusses limitations and possible mitigations; and Section 9
concludes with closing remarks and future work.

2 Related work

There is substantial research on SSC attack and countermeasure elicitation [12],
including work on malware enabling such attacks [17,16] and SSC technical
processes [7]. However, these analyses cover only the SSC assets without clear
links to the systems that depend on them. The log model [28] proposes threat
propagation reasoning for the SSC, but it lacks modeling of available security
mechanisms, making its analysis pessimistic, and it does not address the extra
complexity of modeling cyberattacks against networked systems. Attack trees
and attack graphs generalize complex scenarios [13] and have been applied to
SSCs [11]; attack graphs (LAGs) better support multiple goals and paths [10].
To our knowledge only two works attempt to bridge SSC and networked-system

Finding Software Supply Chain Attack Paths with Logical Attack Graphs 3

scopes: the Hardening Framework for Substations offers interactive countermea-
sures but models Software Supply Chain Attacks (SSCA) as a simple Boolean
state [4], and CORAL extends MulVal LAGs for container risks [30] yet does
not capture the full range of SSCA tampering scenarios.

MulVal cannot compute SSC threat propagation because it lacks predicates
for SSC graphs and propagation rules, requires a priori vulnerability declara-
tions (so emergent paths are missed), cannot model vulnerabilities that enable
unintended network connections, and has no malicious-software constructs.

3 Background

MulVal is a widely used open-source tool for generating logical attack graphs for
networked systems. In these graphs, nodes represent logical statements about
system state or attacker capabilities. MulVal models and reasons about those
statements using Datalog, a declarative logic language (a safe subset of Pro-
log) for defining and querying deductive databases. It relies on five concepts:
variables, constants, predicates, formulae, facts and inference rules. A predicate
formula is an expression pred1(t1, . . . , tn) where pred1 is the predicate name and
ti are the terms it applies to. A formula declared true is a fact; otherwise it is used
to define inference rules. An inference rule is a Horn clause, P0 : −P1, . . . , Pn,
such that the predicate formula P0 is true when the conjunction of P1 ∧ · · · ∧Pn

is true. The terms used in the predicate formula can be constants (strings used
as identifiers of the problem modeled) or variables. Variables are used to de-
scribe the constraints binding the parameters among P0, . . . , Pn. The deductive
database is the combination of the facts and all the inference rules. It can be
queried to determine if some predicate formulae are true. The interpreter of these
queries can provide the trace of all the rules used. MulVal encodes system state as
facts and attacker behaviors as inference rules, so analyses produce attack-graph
derivations that show exactly which facts and rules lead to a compromise.

4 A MulVal extension for SSC

We extend MulVal to capture and reason about the core elements of the SSC
graph: host (H), build environment (BE), transformer (T), and software artifact
(SA) [28]. These assets of the SSC depend on each other. The dependencies define
an SSC graph, in which the assets are the vertices.

4.1 Approach

In this section, we introduce new predicates to capture SSC assets and their
dependencies. Then, we introduce new predicates to capture some previously
uncovered aspects of attack behavior. Finally, we introduce predicates and in-
ference rules to capture security mechanisms in the SSC. This work paves the
way for Section 5, which presents their integration into MulVal and the resulting
threat propagation analysis framework.

4 L. Soeiro et al.

To compute the SSC contributions to the threat level on a given vertex
e of the SSC graph we need to trace the contributions of all other vertices
on paths that reach e. For instance, the threat level of a software artifact sa
depends on the threat levels of all the SSC vertices that are on paths leading to
sa, e.g., hosts, build environments, and other software artifacts used as input.
Conversely, taking advantage of tools like MulVal to capture usual attacks (e.g.,
principal compromise, vulnerability exploit) on hosts (either virtual or physical)
contributes to a better assessment of threats for those vertices in the SSC.

4.2 Modeling SSC assets and their interactions

The SSC assets (i.e., the SSC-graph core elements), their dependency organiza-
tion, and their initial known unsafe state (i.e., vulnerable or compromised) are
modeled by the newly introduced predicates:

– vulNetworkProperty(vulID, protocol, port, user) – binds a vulnera-
bility identifier vulID to a network protocol, port, and user. This enables
the system to model the case where a vulnerability transforms a piece of
software not intended to provide a network service into an access point for
a remote attacker (e.g., exposure of the RMI protocol on port 1099 in the
Log4Shell vulnerability [6]);

– signed<X>(key, e), X ∈ {C,SA} – declares that key was used to sign
certificate or software artifact e.

– issued(Cert1, Cert2) – declares that Cert1 has been used to issue Cert2;
– compromised<X>(e), X ∈ {H,BE, T,K,C} – declares that a given element

of type X is compromised. H, BE, T , K, and C denote, respectively, host,
build environment, transformer, signing key, and certificate;

– maliciousSA(sa) – declares that software artifact sa is known to be mali-
cious;

– isolationEscapeBE(BE) – used to infer situations where there is an escape
from an isolation mechanism;

– hosted(h,be), executed(be,t), wasInputTo(sa,t), wasBuildToolTo(sa,t),
wasPresent(sa,h), generated(t,sa), wasPublishedTo(sa,h), and trans-
ferred(sa, h), with sa, h, be, and t denoting software artifact, host, build
environment (where software builds occur), and transformer (the set of oper-
ations that take software artifacts and build tools as input and generate new
software artifacts), respectively – derived from the Log Model edges [28].
Figure 1 shows an example of an SSC graph that contains all edge types and
all elements.

4.3 Malicious software artifacts

It has been observed that the complexity (e.g., lines of code, number of source
files) of malicious software increases roughly at one order of magnitude per
decade [2]. The number of malicious software artifacts being uploaded to popular

Finding Software Supply Chain Attack Paths with Logical Attack Graphs 5

h1

h2

h3

sa1

be1 t1

transferred

sa2

transferred

wasPresent

sa3 sa4

sa5 sa6

h5h4

transferredtransferred

wasBuildToolTo wasInputTowasPresenthosted

generated generated

wasPublishedTo wasPublishedTo

executed

sa1sa1

Host

Software artifact

Build environment

Transformer

Fig. 1. The software supply chain for software artifacts sa5 e sa6

programming-language repositories (e.g., PyPI, CRAN, npm) has surpassed the
number of vulnerable software [23]. While malicious software can have many dif-
ferent behaviors [15], they share one common trait: the ability to autonomously
perform actions. That changes the way attack progress is usually modeled in Mul-
Val. Thus, we introduce the execBatchCode predicate that models this attack
behavior to MulVal’s reasoning system. Similarly to execCode, we define inter-
action rules that state the conditions under which the system will autonomously
execute malicious code. Listing 1.1 shows one execBatchCode interaction rule.
If a software artifact SA was observed executing on host Host, was classified
as malicious (determined via maliciousSA(SA)), and executed under principal
User (with canAccessFile(...) used to determine the principal under which

6 L. Soeiro et al.

Listing 1.1. Interaction rule that shows one effect of a malicious software artifact

1 execBatchCode (Host , SA, User) :−
2 wasPresent (SA, Host) ,
3 malic iousSA (SA) ,
4 canAcces sF i l e (Host , User , Access , SA) �

SA ran), then SA can autonomously execute code as principal User on host
Host without human interaction.

4.4 Modeling security mechanisms in SSC

Security mechanisms act as countermeasures for attacks (e.g., a working firewall
prevents an outside connection to a vulnerable internal service). In the absence of
a reachable privilege-escalation vulnerability or credential theft, the operating-
system access-control mechanism prevents a malicious software artifact running
as one principal from injecting code into another artifact running as a different
principal. When computing possible attack paths for a scenario we consider the
preventive nature of the existing security mechanisms that are deployed. This
consideration makes the threat-propagation analysis more accurate by removing
unreachable attack paths.

MulVal already models many security mechanisms, and our extension takes
advantage of them. However, two mechanisms broadly used in SSC are missing
in MulVal: build-environment isolation and authenticity verification of software
artifacts.

Isolation of build environments We consider existing security mechanisms that
can prevent the propagation of threats. Isolation of a build environment prevents
the flow of threats from it or to it. For instance, let a host H1 provide isolation for
its build environments BE1 and BE2. Then a malicious software artifact running
in BE1 cannot propagate malicious code to the BE2 asset or to assets that
depend on it. Yet, if the isolation mechanism is compromised or if dependencies
exist between the assets in BE2 and those produced in BE1, propagation can
still occur. We define predicates to cover a reasonable set of cases.

Different isolation mechanisms for computer systems are available (e.g., pro-
cesses, containers, virtualization), each with trade-offs between security and per-
formance overheads [26]. Independently of the underling isolation mechanism,
we model the possible isolation outcomes using the concepts of isolated build
environment and MulVal access control. We show two scenarios. In the first,
there is no isolation of the build environment be1; only access control is used
to prevent one build run from interfering with other build runs on the same
host h1. In this case we model it by declaring a single be1 in h1, hosted(h1,
be1), and one transformer ti for each build run that is executed. Let N be
the number of independent builds. We declare the predicates executed(be1,
ti) and localFileProtection(be1, useri, accessi, pSAi) for i ∈ {1 . . . N},

Finding Software Supply Chain Attack Paths with Logical Attack Graphs 7

Listing 1.2. Interaction rule that shows the conditions for an escape of the build-
environment isolation

1 i so lat ionEscapeBE (BE) :−
2 execBatchCode (BE, SA, User) ,
3 wasPresent (VulnSA , BE) ,
4 vu lEx i s t s (BE, _, VulnSA , l o c a lExp l o i t , i s o l a t i onEs cape)
5

6 i so lat ionEscapeBE (BE) :−
7 execBatchCode (BE, SA, User) ,
8 hosted (H, BE) ,
9 wasPresent (VulnSA , H) ,

10 vu lEx i s t s (H, _, VulnSA , l o c a lExp l o i t , i s o l a t i onEs cape) �
where useri, accessi, and pSAi are, respectively, the principal, the access type
(e.g., read, write), and the logical path of the software artifacts used by each
build run.

The second scenario aligns with current expectations of isolation that come
from using build platforms. Users are relying more on services that offer Contin-
uous Integration/Continuous Deployment (CI/CD) workflows for building soft-
ware [22]. In this scenario, each build environment is isolated from the others.
We model it by declaring multiple build environments, each with only one trans-
former. Let h1 be the host and N be the number of independent builds. We de-
clare the predicates hosted(h1, bei) and executed(bei, ti) for i ∈ {1 . . . N}.
We assume that each bei is isolated.

Since vulnerabilities may allow for process escape (i.e., privilege escalation),
container escape [14] or virtualization escape [20], we add new rules to MulVal
to capture those interactions in the context of the SSC. We define the pred-
icate isolationEscapeBE(BE) to cover both virtualization and container es-
cape. Listing 1.2 shows two interaction rules that allow modeling the situation
where a malicious software artifact escapes from the isolating container or vir-
tual machine. The first rule is triggered by a vulnerable software artifact located
inside the build environment (container or virtual machine) and the second rule
is triggered by an artifact located on the host that hosted the build environ-
ment. For both escapes to succeed, there must be a software artifact that has re-
ceived the propagation of a vulnerability with the property vulProperty(vulID,
localExploit, isolationEscape).

Authenticity of software artifacts Several SSC attack paths rely on hijacking
the secure dissemination of software [11]. To improve software dissemination,
distribution systems either started to rely on digital signatures [3] or proposed
them [9,4]. Modeling authentication mechanisms within the SSC is complex; to
keep the analysis tractable, we model attacks limited to software-artifact tam-
pering and trust-chain compromises. Because signing adoption varies widely [25],
we account for cases where data authenticity is enforced or absent for different
objects. For example, a system may obtain software from official repositories,

8 L. Soeiro et al.

Listing 1.3. Interaction rule that shows SA vulnerability propagation

1 compromisedK (PrivateKey) :−
2 compromisedH (H) ,
3 wasPresent (PrivateKey , H)
4

5 compromisedC (C e r t i f i c a t e) :−
6 compromisedK (PrivateKey) ,
7 signedC (PrivateKey , C e r t i f i c a t e)
8

9 malic iousSA (SA) :−
10 compromisedC (C e r t i f i c a t e) ,
11 val idateSA (Ce r t i f i c a t e , SA) �

verified by the operating-system package manager, or from unverified sources
(e.g., PyPI).

Data authentication relies heavily on certificates and signing keys. They build
a trust chain from a root of trust through root anchors up to the certificate used
to validate a software artifact. Yet, threat actors are compromising code-signing
mechanisms to distribute malicious software as legitimate (e.g., XZ, SolarWinds,
3CX) [8]. We introduce rules to identify the effects of key compromises at any
stage of trust chains. Modeling certificate chains is done through the predicate
issued(Cert1, Cert2). It captures trust dependencies along the chain. We iden-
tify keys and signed objects with the predicates signedSA(Key, Sa) (signing
software artifacts) and signedC(Key, Cert) (signing certificates). This allows
the rules to identify the effects of key compromises at any stage of the trust
chain. We introduce the predicate validateSA(Cert, Sa) to declare that au-
thenticity is checked for Sa using the public key bound to Cert along the SSC
(e.g., for all packages from a Debian GNU/Linux distribution). These predicates
are sufficient to cover the basics of SSC data-authenticity mechanisms.

Compromises of private keys or corresponding certificates are defined using
the predicates compromisedK(key) and compromisedC(Cert). Our extension
then considers all software artifacts that were signed by a compromised private
key as malicious and propagates the consequences. Listing 1.3 shows some of
the rules that account for violations of privacy or integrity of signing keys. The
first rule states that the private key PrivateKey is compromised if it was stored
on a compromised host. The second rule states that a certificate signed by a
compromised key is also compromised. The third rule states that a software
artifact signed with a compromised key is compromised.

5 Integration of SSC threat propagation with MulVal

We introduced new predicates to capture SSC assets, their dependencies, and
their threat states. Yet, we need to introduce new predicates that bridge our
new rules and MulVal’s existing rules.

Finding Software Supply Chain Attack Paths with Logical Attack Graphs 9

Listing 1.4. Interaction rule that shows SA vulnerability propagation

1 vulnerableSA (SA, VulID) :−
2 vulnerableSA (SA_input , VulID) ,
3 wasInputTo (SA_input , T) ,
4 generated (T, SA)
5

6 vulnerableSA (SA, VulID) :−
7 vu lEx i s t s (Host , VulID , SA) �

5.1 Vulnerable software propagation

We introduce the predicate vulnerableSA(...) to encode vulnerability-
inference rules derived from SSC interactions. Consider Figure 1. Let sa4 be a
vulnerable Java-language software artifact (e.g., the Log4J library version 2.14.1,
which contains the Log4Shell vulnerability [6]). It was input to the transformer
t1, which generated software artifacts sa5 and sa6. Listing 1.4 shows two rules
for vulnerability propagation. The first rule states that a SA is vulnerable if it
was generated by the transformer T and T used a vulnerable SA as input. The
second states that an SA is vulnerable if it was declared vulnerable in the initial
state (e.g., vulExists(h2, vulLog4Shell, sa4).). The rules allow the system
to infer an arbitrarily long chain of SSC vertices that propagate vulnerable soft-
ware artifacts (i.e., vulnerableSA(...) appears on both the left and right sides
of the first rule).

An automated SCA analysis of sa5 and sa6 would detect the presence of
the library sa4 in this case because, in Java, the binary library dependencies
are copied to the resulting binary software package. However, this is not always
the case. For other scenarios where the dependency is statically linked into the
generated binaries, simple scanning for artifacts will not identify the original
libraries. Let sa4 be a vulnerable C-language software artifact (e.g., the OpenSSL
library version 1.0.1, which contains the Heartbleed vulnerability [5]) that is
compiled, statically linked, and included by the transformer t1 in the binary
code of sa5 and sa6. As in the previous case, the extension would also infer
that sa5 and sa6 are vulnerable and use this information to further propagate
threats.

The effects of vulnerability propagation in the SSC are perceived when the
affected software artifacts are executed. Then, their vulnerabilities are ready to
be exploited. Listing 1.5 shows some of the rules that allow MulVal to reason
about inferred or declared vulnerabilities of software artifacts that come from
the SSC. The first inference rule states that if there was a vulnerable software
artifact SA present (i.e., observed to be executing) on host Host, then MulVal’s
vulExists(...) is true. This allows MulVal rules to infer its consequences.

In the second inference rule of Listing 1.5, the extension signals to MulVal
the outcome of the vulnerable software artifact SA found on host Host by SSC
vulnerability propagation. The effect of the vulnerability is the provision of a
network service (i.e., it is ready to receive network connections) on port Port,

10 L. Soeiro et al.

Listing 1.5. Interaction rule that shows SSC vulnerability propagation as input to
MulVal reasoning rules

1 vu lEx i s t s (Host , VulID , SA, Range , Consequence) :−
2 vulnerableSA (SA, VulID) ,
3 wasPresent (SA, Host) ,
4 vulProperty (VulID , Range , Consequence)
5

6 networkServ i c e In fo (Host , SA, Protocol , Port , User) :−
7 vulnerableSA (SA, VulID) ,
8 vulNetworkProperty (VulID , Protocol , Port , User) ,
9 wasPresent (SA, Host) ,

10 vulProperty (VulID , remoteExploit , p r i vEs ca l a t i on) �
Listing 1.6. Interaction rules for SSC compromise propagation

1 compromisedH (H) :− malic iousSA (SA) , wasPresent (SA, H)
2 compromisedBE (BE) :− compromisedH (H) , hosted (H, BE)
3 compromisedT (T, BE) :− compromisedBE(BE) , executed (BE, T)
4 malic iousSA (SA) :− compromisedT (T, BE) , generated (T, SA)
5

6 compromisedT (T, BE) :−
7 executed (BE, T) ,
8 execBatchCode (BE, SA, User) ,
9 canAcces sF i l e (BE, User , write , SA_build) ,

10 wasBuildToolTo (SA_build , T)
11

12 principalCompromised (Victim) :−
13 hasAccount (Victim , H, User) ,
14 compromisedH (H)
15

16 compromisedH (H) :− execCode (H, root) �
with the access privileges of User. This allows MulVal to reason about other
conditions (e.g., network access permitted) and generate an attack path that
depends on having the network service available.

5.2 Propagation of malicious software and asset compromises

We complement the dynamic and static mechanisms of malicious software de-
tection [21] with inference. Given a set of known compromised elements in the
initial state, this extension infers its effects for threat propagation. The resulting
attack paths include inferred malicious software artifacts and asset compromises.

Consider Figure 1. Let sa1 be a malicious software artifact. The extension
will infer by propagation that {h3, be1, t1} are compromised and that {sa5, sa6}
are malicious. Listing 1.6 shows some of the inference rules for compromise prop-
agation. On line 1, the rule states that a host H is compromised if there is a

Finding Software Supply Chain Attack Paths with Logical Attack Graphs 11

Listing 1.7. MulVal predicates for defining the initial state

1 attackerLocated (i n t e r n e t) .
2 hac l (i n t e rne t , h1 , tcp , 443) .
3 vu lEx i s t s (h1 , 'CVE−2021−41773 ' , httpd) .
4 vulProperty ('CVE−2021−41773 ' , remoteExploit , p r i vEs ca l a t i on) .
5 networkServ i c e In fo (h1 , httpd , tcp , 443 , user_apache) .
6 vu lEx i s t s (h1 , 'CVE−2021−3560 ' , p o l k i t) .
7 vulProperty ('CVE−2021−3560 ' , l o c a lExp l o i t , p r i vEs ca l a t i on) . �

malicious software artifact SA executing on it. On line 2, the rule states that a
build environment BE is compromised if the host H that executed it is compro-
mised. On line 3, the rule states that a transformer T is compromised if it was
executed by the compromised build environment BE. On line 4, the rule states
that a software artifact SA is malicious if it was generated by a compromised
transformer T . In the example of Figure 1, {sa5, sa6} are malicious because of
the rules on lines 1-3.

Line 6 of Listing 1.6 shows an attack path where malicious code compromises
the build tool of a build step (a transformer). The rule states that a transformer
T is compromised if it was executed by a build environment BE, there was
a malicious code SA executing on BE, with principal User (see 1.1) and write
access to SAbuild, which was a build tool to T . For an example, consider Figure 1.
Let sa2 be the only malicious software artifact in the initial state. Then the
extension will infer that {sa5, sa6} (generated by t1) are malicious if sa2 has
write access to sa3 (the build tool used by the transformer t1).

On line 12 of Listing 1.6, we show a rule that connects SSC threat propagation
to MulVal rules. The principal V ictim is compromised if it has an account on
host H which is compromised according to SSC compromise-propagation rules.

Finally, on line 16 of Listing 1.6, we show a rule that connects MulVal in-
ference rules to SSC threat-propagation rules. It states that the host H is also
compromised if there is a successful attack path leading to H, according to Mul-
Val rules (i.e., execCode(...)). We can now present usage scenarios in Section 6.

6 Detecting real-world SSC attacks

To use the extension, we encode the SSC graph and the initial state with
logic predicates. The MulVal extension then generates the attack graph using
both the existing MulVal predicates and the new extension predicates. In the
scenarios shown, the attack paths cannot be found with either MulVal or SSC
threat-propagation knowledge alone, because each predicate set covers a different
subset of attack steps. These differences are illustrated by the color coding in
the attack graphs.

In the first scenario, the attack graph is initiated by a cyberattack on host
h1 and then SSC threat-propagation rules compute the subsequent effects. We
define the SSC by using predicates from those introduced in Section 4.2 for

12 L. Soeiro et al.

1:maliciousSA(sa5):0

2:RULE 28 (Compromised SA generated by compromised transformer):0

3:generated(t1,sa5):1 4:compromisedT(t1,be1):0

5:RULE 34 (Compromised BE compromised transformer):0

6:executed(be1,t1):1 7:compromisedBE(be1):0

8:RULE 36 (A compromised Host has compromised the buildEnvironment):0

9:hosted(h3,be1):1 10:compromisedH(h3):0

11:RULE 38 (A compromised SA that was present compromised the Host):0

12:wasPresent(sa1,h3):1 13:maliciousSA(sa1):0

14:RULE 30 (A compromised Host has compromised a transferred SA):0

15:transferred(h1,sa1):1 16:compromisedH(h1):0

17:RULE 58 (An attacker compromises the host):0

18:execCode(h1,root):0

19:RULE 1 (local exploit):0

20:vulExists(h1,'CVE-2021-3560',polkit,localExploit,privEscalation):1

21:execCode(h1,user_apache):0

22:RULE 2 (remote exploit of a server program):0

23:netAccess(h1,tcp,443):0

24:RULE 6 (direct network access):0

25:hacl(internet,h1,tcp,443):1 26:attackerLocated(internet):1

28:vulExists(h1,'CVE-2021-41773',httpd,remoteExploit,privEscalation):1

27:networkServiceInfo(h1,httpd,tcp,443,user_apache):1

Fig. 2. A pruned attack graph generated for the SSC of sa5.

Finding Software Supply Chain Attack Paths with Logical Attack Graphs 13

each edge of Figure 1. For example: transferred(h1, sa1), wasPresent(sa1, h3),
hosted(h3, be1), wasPresent(sa2, be1), executed(be1, t1), wasBuildToolTo(sa3,
t1), generated(t1, sa5). The initial state is shown in Listing 1.7. Apache httpd
software on host h1 is vulnerable to remote access. Additionally, the polkit soft-
ware on h1 contains a vulnerability that allows privilege escalation. The resulting
attack graph (only shown for sa5) appears in Figure 2. Vertices 1-17 (purple)
denote new SSC threat-propagation rules and vertices 18-26 (orange) denote ex-
isting MulVal rules. There is an attack path that leads, in the first steps, to the
root compromise of host h1. From that point, software artifact sa1 is inferred
to be malicious, which leads to the compromise of host h3, which compromises
both the build environment be1 and the software artifact sa4. Finally, both paths
lead to the compromised transformer t1, which leads to the malicious software
artifacts sa5 and sa6.

1:compromisedH(h10_victim):0

2:RULE 36 (A compromised SA that was present compromised the Host):0

3:wasPresent(sa_3CXDesktopApp_exe,h10_victim):1 4:maliciousSA(sa_3CXDesktopApp_exe):0

5:RULE 26 (Compromised SA generated by compromised transformer):0

6:generated(t1_3cx,sa_3CXDesktopApp_exe):1 7:compromisedT(t1_3cx,be1_3cx):0

76:RULE 49 (The private key was compromised by its compromised T):0

8:RULE 32 (Compromised BE compromised transformer):0

9:executed(be1_3cx,t1_3cx):110:compromisedBE(be1_3cx):0

11:RULE 34 (A compromised Host has compromised the buildEnvironment):0

12:hosted(h7_3cx,be1_3cx):113:compromisedH(h7_3cx):0

14:RULE 56 (An attacker compromises the host):0

15:execCode(h7_3cx,root):0

16:RULE 3 (local exploit):0

17:vulExistsInferred(h7_3cx,vulPriv,system2,localExploit,privEscalation):0

18:RULE 21 (VulExists with properties):0

19:vulProperty(vulPriv,localExploit,privEscalation):1

91:RULE 21 (VulExists with properties):0

20:vulExists(h7_3cx,vulPriv,system2):1

21:execCode(h7_3cx,_):0

22:RULE 4 (remote exploit of a server program):0

23:netAccess(h7_3cx,tcp,port):0

64:RULE 4 (remote exploit of a server program):0

24:RULE 7 (multi-hop access):0

25:hacl(h6_3cx,h7_3cx,tcp,port):1 26:execCode(h6_3cx,account):0

96:RULE 7 (multi-hop access):0

27:RULE 2 (When a principal is compromised any machine):0

28:canAccessHost(h6_3cx):0

29:RULE 11 (Access a host through a log-in service):0

30:netAccess(h6_3cx,vpn_protocol,vpn_port):0

31:RULE 8 (direct network access):0

32:hacl(internet,h6_3cx,vpn_protocol,vpn_port):1 33:attackerLocated(internet):1

34:logInService(h6_3cx,vpn_protocol,vpn_port):0

35:RULE 16 (Login by vpn):0

36:networkService(h6_3cx,vpnService,vpn_protocol,vpn_port,_):0

37:RULE 0 (Network service info defined):0

38:networkServiceInfo(h6_3cx,vpnService,vpn_protocol,vpn_port,_):1

39:hasAccount(employee_3cx,h6_3cx,account):1 40:principalCompromised(employee_3cx):0

41:RULE 60 (Compromised Host compromised principal):0

42:compromisedH(h5_employee_3cx):0

43:RULE 36 (A compromised SA that was present compromised the Host):0

44:wasPresent(sa_x_trader,h5_employee_3cx):1 45:maliciousSA(sa_x_trader):0

46:RULE 29 (A SA was compromised by a comp validating cert):0

47:validatesSA(c1_x_trader,sa_x_trader):0

48:RULE 54 (A Certificate validates a SA when its privkey signs it):0

49:signedC(privateKey_trading,c1_x_trader):1

52:RULE 52 (A Certificate was compromised by a comp private key):0

50:signedSA(privateKey_trading,sa_x_trader):1

51:compromisedC(c1_x_trader):0

53:compromisedK(privateKey_trading):0

54:RULE 50 (The private key was defined as compromised):0

55:aCompromisedK(privateKey_trading):1

56:hasAccount(employee_3cx,h5_employee_3cx,account):1

57:networkService(h7_3cx,system1,tcp,port,_):0

58:RULE 0 (Network service info defined):0

59:networkServiceInfo(h7_3cx,system1,tcp,port,_):1

60:vulExistsInferred(h7_3cx,vulRemote,system1,remoteExploit,privEscalation):0

61:RULE 21 (VulExists with properties):0

62:vulProperty(vulRemote,remoteExploit,privEscalation):1

102:RULE 21 (VulExists with properties):0

63:vulExists(h7_3cx,vulRemote,system1):1

65:networkService(h7_3cx,system1,tcp,port,root):0

66:RULE 0 (Network service info defined):0

67:networkServiceInfo(h7_3cx,system1,tcp,port,root):1

68:RULE 29 (A SA was compromised by a comp validating cert):0

69:validatesSA(c2_3cx,sa_3CXDesktopApp_exe):0

70:RULE 54 (A Certificate validates a SA when its privkey signs it):0

71:signedC(privateKey_3cx,c2_3cx):1

74:RULE 52 (A Certificate was compromised by a comp private key):0 116:RULE 54 (A Certificate validates a SA when its privkey signs it):0

72:signedSA(privateKey_3cx,sa_3CXDesktopApp_exe):1

73:compromisedC(c2_3cx):0

114:RULE 29 (A SA was compromised by a comp validating cert):0

75:compromisedK(privateKey_3cx):0

77:keyStored(privateKey_3cx,t1_3cx):1

78:RULE 49 (The private key was compromised by its compromised T):0

79:keyStored(privateKey_3cx,t2_3cx):1

80:executed(be2_3cx,t2_3cx):1

82:RULE 32 (Compromised BE compromised transformer):0

81:compromisedT(t2_3cx,be2_3cx):0

112:RULE 26 (Compromised SA generated by compromised transformer):0

83:compromisedBE(be2_3cx):0

84:RULE 34 (A compromised Host has compromised the buildEnvironment):0

85:hosted(h8_3cx,be2_3cx):1 86:compromisedH(h8_3cx):0

87:RULE 56 (An attacker compromises the host):0

88:execCode(h8_3cx,root):0

89:RULE 3 (local exploit):0

90:vulExistsInferred(h8_3cx,vulPriv,system2,localExploit,privEscalation):0

92:vulExists(h8_3cx,vulPriv,system2):1

93:execCode(h8_3cx,_):0

94:RULE 4 (remote exploit of a server program):0

95:netAccess(h8_3cx,tcp,port):0

104:RULE 4 (remote exploit of a server program):0

97:hacl(h6_3cx,h8_3cx,tcp,port):1

98:networkService(h8_3cx,system1,tcp,port,_):0

99:RULE 0 (Network service info defined):0

100:networkServiceInfo(h8_3cx,system1,tcp,port,_):1

101:vulExistsInferred(h8_3cx,vulRemote,system1,remoteExploit,privEscalation):0

103:vulExists(h8_3cx,vulRemote,system1):1

105:networkService(h8_3cx,system1,tcp,port,root):0

106:RULE 0 (Network service info defined):0

107:networkServiceInfo(h8_3cx,system1,tcp,port,root):1

108:compromisedH(h11_victim):0

109:RULE 36 (A compromised SA that was present compromised the Host):0

110:wasPresent(sa_3CX_MacOS_Client,h11_victim):1111:maliciousSA(sa_3CX_MacOS_Client):0

113:generated(t2_3cx,sa_3CX_MacOS_Client):1

115:validatesSA(c2_3cx,sa_3CX_MacOS_Client):0

117:signedSA(privateKey_3cx,sa_3CX_MacOS_Client):1

Fig. 3. Intertwined rules (orange and purple) for the 3CX attack graph

In the second scenario, the attack graph for the 3CX double-SSC attack is
depicted in Figure 3, color-coded as the previous scenario. Although individual
rule text is unreadable at this scale, the dense structure and mixed colors con-
vey both the complexity of the rule set and the tight interdependence between
standard attack rules and the proposed SSC propagation rules. The replication
package [27] contains 20 additional usage scenarios, including signing-key com-
promise, build-environment isolation and escape, and combined SSC attacks.

7 Discussion

RQ1: To what extent is it possible to formalize knowledge of SSC attacks into
LAG? The SSC MulVal extension allows users to account for SSC attacks, even
in long chains of interactions, when generating attack paths. It can be used to
prioritise the resources that appear on the attack paths for further investigation.

14 L. Soeiro et al.

In the example shown in Section 6, the system infers that the software artifacts
{sa5, sa6} at the end of the SSC are malicious. The attack path begins with
an attacker exploiting two vulnerabilities in a remote host. The example shows
that the capability of the logical graph generator was correctly expanded to also
account for the effects of attacks on the SSC.

RQ2: To what extent does such a formalism uncover non-trivial attack sce-
narios? Because of the inference rules shown, especially in Section 5, threats
can be inferred instead of only detected with external tools. An inferred threat
makes it possible to reason about its effects on the other elements of the SSC
and networked systems, covering complex scenarios. In the best-case scenario
(i.e., the inference is effective), the inferred threats in the attack paths can be
neutralized (e.g., a new firewall rule that blocks a host from receiving network
connections, or a software-artifact version changed). In the worst-case scenario,
the resources on the attack paths are all false positives. In this case, the effort
of investigating possible compromises is restricted to the resources in the attack
paths, a fraction of all the resources available.

8 Limitations

We chose a widely-used FOSS tool for LAG generation. However, there might
be other developments that could make the work of integrating SSC knowledge
easier. We chose to implement the extension by only adding predicates to the
base MulVal rules. In this way, they should be compatible with other extensions.
However, if other extensions replace the original MulVal rules (instead of only
adding new rules) it might cause integration problems. Despite the absence of
facts and inference rules that are specific to FOSS, the need to declare the SSC
structure may be an issue for non-free projects. In this case, the original MulVal
approach can still be used at the expense of accuracy.

Table 1. Execution time for increasingly larger scenarios.

#Hosts #SA #Predicates Time
3K 39K 4M 53 s
3K 183K 21M 13 min
6K 186K 40M 48 min

15K 195K 100M 4 h 46 min

Dealing with very large graphs can pose scalability problems. MulVal can
handle millions of predicates (vertices in the SSC). However, when full SSC
graphs are used—because all software artifacts observed on each build environ-
ment and host must be represented—the reasoning engine may reach MulVal’s
limits. We generated scenarios with increasingly larger SSC graphs to gain insight
into the possible limits. For the experiment we assumed each host and build envi-
ronment contains 1,000 to 5,000 unique software packages drawn from a limited

Finding Software Supply Chain Attack Paths with Logical Attack Graphs 15

set of operating systems. We executed MulVal with our extension on a computer
equipped with an Intel Core i7-12700H CPU and 32 GB of RAM. The results are
shown in Table 1. The columns list the number of unique hosts, unique software
artifacts, resulting number of predicates, and total running time for logical at-
tack graph generation. We stopped after completing the scenario with 100 million
predicates (just under five hours of execution). We observed that the current im-
plementation uses only a single thread for computation. Expanding parallelism
is one approach to improve the engine’s performance. Another possible solution
for supporting even larger SSC graphs is to partition threat-propagation runs
around each software artifact and cache results in a network-reachable database.

9 Conclusion

This paper presents an extension to MulVal by introducing new predicates and
rules to: (i) model SSC assets and their interactions along which attacks can
propagate; (ii) represent assets’ security status (e.g., vulnerable, malicious, or
compromised); (iii) encode initial knowledge about vulnerable or compromised
hosts and software artifacts; and (iv) model security mechanisms and incorpo-
rate them into SSC threat propagation. This extension captures complex attack
scenarios that combine SSCs and traditional networked-system attacks. Those
scenarios display strong interleaving between attack types, indicating that threat
identification would not be possible with either reasoning approach alone.

Future work. We plan to develop a mechanism for partitioning, caching, up-
dating, and retrieving partial SSC threat-propagation runs to guarantee scal-
ability for very large graphs. Another area of work is the automatic gener-
ation of MulVal input rules. We consider the usage of hardware mechanisms
(e.g., Trusted Platform Module) to help instrumentation logic capture running
software-artifact information during builds.

Acknowledgments. Supported by the industrial chair Cybersecurity for Critical Net-
worked Infrastructures (cyberCNI.fr) with support of the FEDER development fund
of the Brittany region, France.

References

1. Security update thursday 20 april 2023 – initial intrusion vector found. https:
//www.3cx.com/blog/news/mandiant-security-update2/, accessed: 2024-12-26

2. Calleja, A., Tapiador, J., Caballero, J.: A Look into 30 Years of Malware Devel-
opment from a Software Metrics Perspective, pp. 325–345. Springer International
Publishing (2016). https://doi.org/10.1007/978-3-319-45719-2_15

3. Catuogno, L., Galdi, C., Persiano, G.: Secure dependency enforcement in package
management systems. IEEE Transactions on Dependable and Secure Computing
17(2), 377–390 (Mar 2020). https://doi.org/10.1109/tdsc.2017.2777991

4. Duman, O., Tabiban, A., Wang, L., Debbabi, M.: Measuring and improving the
security posture of iec 61850 substations against supply chain attacks. IEEE Trans-
actions on Instrumentation and Measurement 73, 1–20 (2024). https://doi.org/
10.1109/tim.2024.3400328

https://www.3cx.com/blog/news/mandiant-security-update2/
https://www.3cx.com/blog/news/mandiant-security-update2/
https://doi.org/10.1007/978-3-319-45719-2_15
https://doi.org/10.1007/978-3-319-45719-2_15
https://doi.org/10.1109/tdsc.2017.2777991
https://doi.org/10.1109/tdsc.2017.2777991
https://doi.org/10.1109/tim.2024.3400328
https://doi.org/10.1109/tim.2024.3400328
https://doi.org/10.1109/tim.2024.3400328
https://doi.org/10.1109/tim.2024.3400328

16 L. Soeiro et al.

5. Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., Halderman, J.A.: The matter of heartbleed. In:
Proceedings of the 2014 Conference on Internet Measurement Conference. pp. 475–
488. IMC ’14, ACM (Nov 2014). https://doi.org/10.1145/2663716.2663755

6. Everson, D., Cheng, L., Zhang, Z.: Log4shell: Redefining the web attack sur-
face. In: Proceedings 2022 Workshop on Measurements, Attacks, and Defenses for
the Web. MADWeb 2022, Internet Society (2022). https://doi.org/10.14722/
madweb.2022.23010

7. Hammi, B., Zeadally, S., Nebhen, J.: Security threats, countermeasures, and chal-
lenges of digital supply chains. ACM Computing Surveys 55(14s), 1–40 (Jul 2023).
https://doi.org/10.1145/3588999

8. Ji, T., Fang, B., Cui, X., Wang, T., Zhang, Y., Gu, F., Zheng, C.: Scrutinizing
code signing: A study of in-depth threat modeling and defense mechanism. IEEE
Internet of Things Journal 11(24), 40051–40069 (Dec 2024). https://doi.org/
10.1109/jiot.2024.3450272

9. Kalu, K.G., Singla, T., Okafor, C., Torres-Arias, S., Davis, J.C.: An industry
interview study of software signing for supply chain security. arXiv preprint
arXiv:2406.08198 (2024)

10. Konsta, A.M., Lluch Lafuente, A., Spiga, B., Dragoni, N.: Survey: Automatic gen-
eration of attack trees and attack graphs. Computers & Security 137, 103602 (Feb
2024). https://doi.org/10.1016/j.cose.2023.103602

11. Ladisa, P., Plate, H., Martinez, M., Barais, O.: Sok: Taxonomy of attacks on
open-source software supply chains. In: 2023 2023 IEEE Symposium on Secu-
rity and Privacy (SP) (SP). pp. 167–184. IEEE Computer Society, Los Alamitos,
CA, USA (may 2023). https://doi.org/10.1109/SP46215.2023.00010, https:
//doi.ieeecomputersociety.org/10.1109/SP46215.2023.00010

12. Ladisa, P., Ponta, S.E., Sabetta, A., Martinez, M., Barais, O.: Journey to the
center of software supply chain attacks. IEEE Security & Privacy 21(6), 34–49
(Nov 2023). https://doi.org/10.1109/msec.2023.3302066

13. Lallie, H.S., Debattista, K., Bal, J.: A review of attack graph and attack tree
visual syntax in cyber security. Computer Science Review 35, 100219 (Feb 2020).
https://doi.org/10.1016/j.cosrev.2019.100219

14. Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K., Zhou, Q.: A measurement study
on linux container security: Attacks and countermeasures. In: Proceedings of the
34th Annual Computer Security Applications Conference. pp. 418–429. ACSAC
’18, ACM (Dec 2018). https://doi.org/10.1145/3274694.3274720

15. Lindorfer, M., Di Federico, A., Maggi, F., Comparetti, P.M., Zanero, S.: Lines
of malicious code: insights into the malicious software industry. In: Proceedings of
the 28th Annual Computer Security Applications Conference. pp. 349–358. ACSAC
’12, ACM (Dec 2012). https://doi.org/10.1145/2420950.2421001

16. Martínez, J., Durán, J.M.: Software supply chain attacks, a threat to global cyber-
security: SolarWinds’ case study. International Journal of Safety and Security En-
gineering 11(5), 537–545 (oct 2021). https://doi.org/10.18280/ijsse.110505

17. Ohm, M., Plate, H., Sykosch, A., Meier, M.: Backstabber’s knife collection: A re-
view of open source software supply chain attacks. In: Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 23–43. Springer International Pub-
lishing (2020). https://doi.org/10.1007/978-3-030-52683-2_2

18. Ou, X., Govindavajhala, S., Appel, A.W., et al.: Mulval: A logic-based network
security analyzer. In: USENIX security symposium. vol. 8, pp. 113–128. Baltimore,
MD (2005)

https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.14722/madweb.2022.23010
https://doi.org/10.14722/madweb.2022.23010
https://doi.org/10.14722/madweb.2022.23010
https://doi.org/10.14722/madweb.2022.23010
https://doi.org/10.1145/3588999
https://doi.org/10.1145/3588999
https://doi.org/10.1109/jiot.2024.3450272
https://doi.org/10.1109/jiot.2024.3450272
https://doi.org/10.1109/jiot.2024.3450272
https://doi.org/10.1109/jiot.2024.3450272
https://doi.org/10.1016/j.cose.2023.103602
https://doi.org/10.1016/j.cose.2023.103602
https://doi.org/10.1109/SP46215.2023.00010
https://doi.org/10.1109/SP46215.2023.00010
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00010
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00010
https://doi.org/10.1109/msec.2023.3302066
https://doi.org/10.1109/msec.2023.3302066
https://doi.org/10.1016/j.cosrev.2019.100219
https://doi.org/10.1016/j.cosrev.2019.100219
https://doi.org/10.1145/3274694.3274720
https://doi.org/10.1145/3274694.3274720
https://doi.org/10.1145/2420950.2421001
https://doi.org/10.1145/2420950.2421001
https://doi.org/10.18280/ijsse.110505
https://doi.org/10.18280/ijsse.110505
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1007/978-3-030-52683-2_2

Finding Software Supply Chain Attack Paths with Logical Attack Graphs 17

19. Paschali, M.E., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Stamelos, I.:
Reusability of open source software across domains: A case study. Journal of Sys-
tems and Software 134, 211–227 (Dec 2017). https://doi.org/10.1016/j.jss.
2017.09.009

20. Pearce, M., Zeadally, S., Hunt, R.: Virtualization: Issues, security threats, and
solutions. ACM Computing Surveys 45(2), 1–39 (Feb 2013). https://doi.org/
10.1145/2431211.2431216

21. Polamarasetti, A.: Research developments, trends and challenges on the rise of
machine learning for detection and classification of malware. In: 2024 International
Conference on Intelligent Computing and Emerging Communication Technologies
(ICEC). pp. 1–5. IEEE (Nov 2024). https://doi.org/10.1109/icec59683.2024.
10837413

22. Rostami Mazrae, P., Mens, T., Golzadeh, M., Decan, A.: On the usage, co-usage
and migration of ci/cd tools: A qualitative analysis. Empirical Software Engineer-
ing 28(2) (Mar 2023). https://doi.org/10.1007/s10664-022-10285-5

23. Ruohonen, J., Saddiqa, M.: A time series analysis of malware uploads to program-
ming language ecosystems (2025). https://doi.org/10.48550/ARXIV.2504.15695

24. Saint-Hilaire, K.A., Neal, C., Cuppens, F., Boulahia-Cuppens, N., Bassi, F.:
Attack-defense graph generation: Instantiating incident response actions on at-
tack graphs. In: 2024 IEEE 23rd International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). pp. 295–305. IEEE (Dec
2024). https://doi.org/10.1109/trustcom63139.2024.00063

25. Schorlemmer, T.R., Kalu, K.G., Chigges, L., Ko, K.M., Ishgair, E.A., Bagchi, S.,
Torres-Arias, S., Davis, J.C.: Signing in four public software package registries:
Quantity, quality, and influencing factors. In: 2024 IEEE Symposium on Security
and Privacy (SP). pp. 1160–1178. IEEE (May 2024). https://doi.org/10.1109/
sp54263.2024.00215

26. Shu, R., Wang, P., Gorski III, S.A., Andow, B., Nadkarni, A., Deshotels, L., Gionta,
J., Enck, W., Gu, X.: A study of security isolation techniques. ACM Computing
Surveys 49(3), 1–37 (Oct 2016). https://doi.org/10.1145/2988545

27. Soeiro, L., Robert, T., Zacchiroli, S.: Replication package for: Finding software
supply chain attack paths with logical attack graphs (2025). https://doi.org/
10.5281/zenodo.15924456

28. Soeiro, L., Robert, T., Zacchiroli, S.: Assessing the threat level of software sup-
ply chains with the log model. In: 2023 IEEE International Conference on Big
Data (BigData). IEEE (Dec 2023). https://doi.org/10.1109/bigdata59044.
2023.10386091

29. Tayouri, D., Baum, N., Shabtai, A., Puzis, R.: A survey of mulval extensions and
their attack scenarios coverage. IEEE Access 11, 27974–27991 (2023). https://
doi.org/10.1109/access.2023.3257721

30. Tayouri, D., Sgan Cohen, O., Maimon, I., Mimran, D., Elovici, Y., Shabtai, A.:
Coral: Container online risk assessment with logical attack graphs. Computers
& Security 150, 104296 (Mar 2025). https://doi.org/10.1016/j.cose.2024.
104296

31. Williams, L., Benedetti, G., Hamer, S., Paramitha, R., Rahman, I., Tamanna, M.,
Tystahl, G., Zahan, N., Morrison, P., Acar, Y., Cukier, M., Kästner, C., Kapravelos,
A., Wermke, D., Enck, W.: Research directions in software supply chain security.
ACM Transactions on Software Engineering and Methodology 34(5), 1–38 (May
2025). https://doi.org/10.1145/3714464

https://doi.org/10.1016/j.jss.2017.09.009
https://doi.org/10.1016/j.jss.2017.09.009
https://doi.org/10.1016/j.jss.2017.09.009
https://doi.org/10.1016/j.jss.2017.09.009
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1109/icec59683.2024.10837413
https://doi.org/10.1109/icec59683.2024.10837413
https://doi.org/10.1109/icec59683.2024.10837413
https://doi.org/10.1109/icec59683.2024.10837413
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.48550/ARXIV.2504.15695
https://doi.org/10.48550/ARXIV.2504.15695
https://doi.org/10.1109/trustcom63139.2024.00063
https://doi.org/10.1109/trustcom63139.2024.00063
https://doi.org/10.1109/sp54263.2024.00215
https://doi.org/10.1109/sp54263.2024.00215
https://doi.org/10.1109/sp54263.2024.00215
https://doi.org/10.1109/sp54263.2024.00215
https://doi.org/10.1145/2988545
https://doi.org/10.1145/2988545
https://doi.org/10.5281/zenodo.15924456
https://doi.org/10.5281/zenodo.15924456
https://doi.org/10.5281/zenodo.15924456
https://doi.org/10.5281/zenodo.15924456
https://doi.org/10.1109/bigdata59044.2023.10386091
https://doi.org/10.1109/bigdata59044.2023.10386091
https://doi.org/10.1109/bigdata59044.2023.10386091
https://doi.org/10.1109/bigdata59044.2023.10386091
https://doi.org/10.1109/access.2023.3257721
https://doi.org/10.1109/access.2023.3257721
https://doi.org/10.1109/access.2023.3257721
https://doi.org/10.1109/access.2023.3257721
https://doi.org/10.1016/j.cose.2024.104296
https://doi.org/10.1016/j.cose.2024.104296
https://doi.org/10.1016/j.cose.2024.104296
https://doi.org/10.1016/j.cose.2024.104296
https://doi.org/10.1145/3714464
https://doi.org/10.1145/3714464

	Finding Software Supply Chain Attack Paths with Logical Attack Graphs

