
Submitted 17 March 2021
Accepted 18 June 2021
Published 23 July 2021

Corresponding author
Stefano Zacchiroli, zack@irif.fr

Academic editor
Sedat Akleylek

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.631

Copyright
2021 Del Bonifro et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Image-based many-language programming
language identification
Francesca Del Bonifro1, Maurizio Gabbrielli1, Antonio Lategano1 and
Stefano Zacchiroli2,3

1University of Bologna, Bologna, Italy
2Université de Paris, Paris, France
3 Inria, Paris, France

ABSTRACT
Programming language identification (PLI) is a common need in automatic program
comprehension as well as a prerequisite for deeper forms of code understanding.
Image-based approaches to PLI have recently emerged and are appealing due to their
applicability to code screenshots and programming video tutorials. However, they
remain limited to the recognition of a small amount of programming languages (up
to 10 languages in the literature). We show that it is possible to perform image-based
PLI on a large number of programming languages (up to 149 in our experiments)
with high (92%) precision and recall, using convolutional neural networks (CNNs)
and transfer learning, starting from readily-available pretrained CNNs. Results were
obtained on a large real-world dataset of 300,000 code snippets extracted from
popular GitHub repositories. By scrambling specific character classes and comparing
identification performances we also show that the characters that contribute the most
to the visual recognizability of programming languages are symbols (e.g., punctuation,
mathematical operators and parentheses), followed by alphabetic characters, with digits
and indentation having a negligible impact.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Programming Languages,
Software Engineering
Keywords Programming language identification, Image recognition, Machine learning,
Deep learning, Convolutional neural network, Code snippet, Source code

INTRODUCTION
Programming Language Identification (PLI)—also referred to as SourceCodeClassification
(SCC) in the literature—is the problem of identifying the programming language in which a
given source code file, or just a short code snippet, is written in. PLI is a commonpreliminary
need in automated program comprehension and also a relevant practical problem for
both practitioners and researchers, with important applications in programming trend
analysis (Chen et al., 2005), mining software repositories (Mockus, 2009; Caneill, Germn &
Zacchiroli, 2017), source code indexing, and code search (Gallardo-Valencia & Sim, 2009;
Kononenko et al., 2014).

Traditionally, PLI has been implemented in effective tools (Wheeler, 2001;Danial, 2006;
GitHub, Inc., 2011) by relying on heuristics such as file name extensions, shebang lines in
executable scripts (e.g., #!/bin/bash), editor mode lines (e.g., -*- mode: python -*-),

How to cite this article Del Bonifro F, Gabbrielli M, Lategano A, Zacchiroli S. 2021. Image-based many-language programming language
identification. PeerJ Comput. Sci. 7:e631 http://doi.org/10.7717/peerj-cs.631

https://peerj.com/computer-science
mailto:zack@irif.fr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.631
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.631


and a priori knowledge about programming language grammars (e.g., their keywords or
comment delimiters). More recently PLI methods based on supervised machine learning
(ML) have emerged, replacing the need of maintaining complicated heuristics as languages
evolve with neural network training.

Depending on the use case, two major classes of ML approaches to PLI have been
used (Kiyak et al., 2020): text-based and image-based programming language identification.
In text-based approaches source code is represented as character sequences, such as files
stored in version control system (VCS) repositories. Image-based approaches can classify
raster images showing code, such as screenshots of development environments or individual
frames extracted from video programming tutorials.

Image-based PLI models are currently capable of recognizing a limited amount of
different programming languages, with a maximum ‘‘diversity’’ of 10 languages found in
the literature (Kiyak et al., 2020; Hong, Mizuno & Kondo, 2019). Arguably, recognizing a
handful of programming languages could be approached with simple heuristics without
incurring the maintenance overhead of (re-)training machine learning models. Hundreds
of programming languages exist in the wild, sometimes exhibiting only subtle syntactic
differences, and they evolve over time, slowly but regularly (Sammet, 1972). It is at such
scale of diversity that PLI approaches based on machine learning would be most useful,
but it remains to be seen if it is possible to visually recognize that many programming
languages with high accuracy. The first research question we address in this paper is thus:

• RQ1: Is it possible to automatically identify the programming language used in code
snippet images, among many languages, without any a priori knowledge about the
languages, with high precision and recall performances?

where with ‘‘many’’ wemean an amount comparable to the language diversity supported
by practical state-of-the-art PLI tools (machine learning-based or otherwise), in the order
of hundreds.

Also, it is not yet established in the literature what allows image-based ML models to
visually recognize programming languages, especially at this scale of language diversity.
Such knowledge would allow in the future to specialize recognition networks and improve
performances. The second research question that we address is then:

• RQ2: What makes code visually recognizable? Specifically, which classes of characters
occurring in code snippets contribute the most to the identification of the programming
languages they are written in?

Paper contributions
We propose an image-based approach for programming language identification that relies
on convolutional neural networks (CNNs) which have been pretrained on generic images
and subsequently adapted to PLI using transfer learning.We validate the approach on a real-
world dataset of 20 million source code files retrieved from popular GitHub repositories,
from which we extract a balanced dataset of 300,000 code snippet images encompassing
149 programming languages. We test the approach using three classifiers, each based
on a different pretrained CNN for image recognition: a residual network(ResNet)

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


(He et al., 2016), MobileNetv2 (Howard et al., 2017), and AlexNet (Krizhevsky, Sutskever
& Hinton, 2017). We positively answer RQ1, by achieving both precision and recall of
92–93% with the ResNet- and MobileNet-based classifiers.

We answer RQ2 by randomly scrambling different character classes (alphabetic
characters, decimal digits, symbols) and comparing PLI efficacy. We show that symbols
contribute the most to visual recognition of code (halving precision when scrambled),
followed by far by alphabetic characters, with decimal digits and indentation having a
negligible impact on PLI accuracy.

Paper structure
We discuss related work and compare it with our contributions in ‘Related Work’.
Approach and experimental methodology are described in ‘Methodology’. Experimental
results are presented in ‘Results’ and discussed in ‘Discussion’. We discuss threats to
validity in ‘Threats to Validity’. ‘Conclusion’ concludes the paper and outlines future work.
A complete replication package for this paper is referenced in the ‘‘Data Availability’’
section at the end of the paper.

RELATED WORK
Image-based PLI
Kiyak et al. (2020) compared several image- and text-based approaches to Programming
Language Identification (PLI). At a glance, Table 1 in their work reports that the maximum
diversity supported by image-based PLI among surveyed works was 8 languages, reached
by the same authors in Kiyak et al. (2020) with an accuracy of 93.5% on a dataset of
40 K files. We achieve comparable performances (92% precision and recall) with much
higher language diversity (149 languages) and on a larger dataset (300 K snippets). Both
approaches use Convolutional Neural Networks (CNNs), the main difference being our
usage of transfer learning to adapt pretrained image CNNs. In light of the obtained
performances, the saving in training effort enabled by transfer learning appears to validate
our choice.

Image-based PLI has been attempted by others too. Ott et al. have shown how to
use CNNs to identify video frames that contain Java code within video programming
tutorials (Ott et al., 2018a) (versus frames not showing code at all) and to distinguish
frames containing Java from frames containing Python (Ott et al., 2018b). In the present
work we consider a much larger set of languages. They use real images from screencasts
and labelling performed manually by students, whereas we use synthetic images and rely
on Linguist (GitHub, Inc., 2011) as source of truth.

Hong, Mizuno & Kondo (2019) (not considered in Kiyak et al. (2020)) performed image-
based PLI over 10 languages with 90% accuracy, using snippets from StackOverflow and
GitHub, rendering them to bitmaps like we do, but using GuessLang (SOMDA, 2017) as
source of truth. They use ResNet as a pretrained CNN, which we also considered in this
work. In comparison, we achieve a slightly better accuracy atmuch higher language diversity
and we provide a more complete overview of the possible approaches by comparing the
results of several CNNs.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


To the best of our knowledge no previous work has investigated which visual features
contribute to the visual recognition of code snippets, which we address in this paper
answering RQ2.

Other visual artifacts
Visual development artifacts have also been analyzed for uses cases other than PLI.
CodeTube (Ponzanelli et al., 2016) uses Optical Character Recognition (OCR) techniques
to index the parts of video programming tutorials that contain code fragments and allows
to query them as text. Yadid & Yahav (2016) used similar techniques to extract code from
video tutorials, joining together snippets that spawn multiple frames with OCR error
correction. Zhao et al. (2019) used CNNs to automatically identify common development
workflow actions in programming screencasts. The images in our dataset are not from
screencasts, but given the high-quality of screencast frames we expect the proposed
classifiers to be applicable in that context as well.

Text-based PLI
Although less relevant for comparison with this paper in terms of approach and field of
use, text -based PLI has been studied extensively, achieving both good accuracy and high
language diversity. Various approaches have been used in the literature: support vector
machines(SVM) (Ugurel, Krovetz & Giles, 2002), long short-term memory(LSTM) (Reyes,
Ramírez & Paciello, 2016), custom heuristics (Klein, Murray & Weber, 2011), CNNs (Gilda,
2017), and more recently fully-connected neural network classifiers (Del Bonifro, Gabbrielli
& Zacchiroli, 2021). The accuracy achieved by text-based PLI has been as high as 97% (in
Van Dam & Zaytsev (2016) for 19 languages); language diversity as high as 130 languages
(in Del Bonifro, Gabbrielli & Zacchiroli (2021) with 85% accuracy). With the present work
we achieve for image-based PLI a language diversity comparable to the maximum one
supported by image-based PLI approaches and also higher accuracy.

Heuristic-based programming language recognition tools like sloccount (Wheeler, 2001)
and cloc (Danial, 2006) have been available for a long time. Linguist (GitHub, Inc., 2011)
is a state-of-the-art PLI tool developed by GitHub, with a self-reported (Ganesan & Foti,
2019) accuracy of 85%. Several PLI studies rely on Linguist as ground truth, as we do in
this work. In terms of language diversity, Linguist supports 573 languages, but it requires
file extensions—without which performance drops crucially (Ganesan & Foti, 2019) to
an F1 score < 0.05—which are not always. In particular, file extensions cannot be relied
upon when trying to identify the programming language of code snippets and in all other
situations in which only limited code portions are available.

METHODOLOGY
In this section we describe the used experimental methodology, encompassing: the starting
dataset, code snippets rendering, the classifier architectures and their training, and selective
character scrambling.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


Dataset
The experimental dataset consists of a large set of code snippets images obtained by
rendering real-world code, an approach shared with other image-based PLI works in the
literature. We started from a dataset released by the Software Heritage project (Di Cosmo
& Zacchiroli, 2017), consisting of all versions of all source code files collected from the
1000 most popular GitHub repositories on 2019-10-08 (https://annex.softwareheritage.
org/public/dataset/content-samples/2019-10-08-github-top1k/). This dataset contains
both the actual files (≈ 25 million distinct files) and the associated filenames. We used
file extensions as a first indication about the file types (that it is going to be refined later).
Initially the dataset contained ≈ 6000 different extensions, from which we excluded all
uncommon ones by filtering out those that occur with a frequency < 10−5 within the
dataset, thus obtaining 717 remaining extensions.

As the main goal of this work is the recognition of programming languages, we could
not directly use file extensions as labels for supervised machine learning. Hence, we run
Linguist (GitHub, Inc., 2011) (a popular choice for source of truth of PLI works in the
literature) on all source code files having one of the remaining extensions, while excluding
all the files for which Linguist was unable to predict the language. At the end of this step
212 languages remained in the dataset, together with the associated source code files. From
this point on classification labels are programming languages (as detected by Linguist) and
no longer file extensions.

Code snippets
The amount of both files and source lines of code (SLOCs) in the dataset at this point
were highly unbalanced across languages. For example, popular programming languages
such as Python or JavaScript occurs in thousands of source code file examples, whereas
other languages only had 100 examples or less. As unbalanced datasets are a well-known
issue for supervised machine learning we wanted to mitigate this issue, while at the same
time avoiding both high file repetition rate (oversampling) and the exclusion of too many
languages (downsampling). Avoiding downsampling is particularly relevant here, since
our goal is to assess the feasibility of high-accuracy image-based PLI with many languages.

We exploited the fact that we need code snippets images rather than entire source code
files. As a first step, we created one source code bundle for each programming language
concatenating together up to 1000 files randomly selected among all the files written in that
language. Then wemoved a sliding window of 32 SLOCs (see Fig. 1) randomly moves along
the vertical axis of each bundle, extracting 2000 code snippets for each language. We took
care of ensuring that the snippets belonging to the test set do not overlap SLOCs occurring
in the train set. Bundles that did not contain enough SLOCs to allow the extraction of
non-overlapping snippets for the test set have been excluded, thus obtaining a total of 149
recognizable languages and 149∗2000= 298000 labeled snippets.

Finally we rendered each snippet to a raster PNG image of size 399× 399 pixels
by using white on black text typeset in the Roboto Mono monospace font (https:
//fonts.google.com/specimen/Roboto+Mono) with a font size of 11 points. Note that

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 5/24

https://peerj.com
https://annex.softwareheritage.org/public/dataset/content-samples/2019-10-08-github-top1k/
https://annex.softwareheritage.org/public/dataset/content-samples/2019-10-08-github-top1k/
https://fonts.google.com/specimen/Roboto+Mono
https://fonts.google.com/specimen/Roboto+Mono
http://dx.doi.org/10.7717/peerj-cs.631


Figure 1 Source lines of code extraction from source code bundles and their rendering.
Full-size DOI: 10.7717/peerjcs.631/fig-1

all obtained images are squared and have the same size, so trimming of long lines could
happen, as shown in Fig. 1.

Classifiers
Convolutional Neural Networks (CNNs) (O’Shea & Nash, 2015) represent the state-of-
the-art and the most used neural network architectures for image recognition. CNNs are
commonly used for image-based PLI and our approach rely on them as well, with two
notable differences from related works in the literature: a large number of classes to be
recognized and the use of transfer learning.

Transfer learning (Zhuang et al., 2021) is a well-known machine learning approach
that, rather than training models from scratch for a specific classification task, starts
from a model that has been pre-trained on a related domain and then adapts it to the
target domain. The key advantage of transfer learning is that it allows to obtain good
classification performances while using a reduced training set and therefore reduced
training costs. Whereas we did have enough data in our dataset to start from scratch,
training cost remains an important concern in PLI because, due to the rapid evolution of
source code artifacts in the target domain, one has to add to the initial training cost that
of periodic retraining. This domain-specific aspect of the problem led us to the decision of
using transfer learning.

We compared the performances of three classifiers based on three different CNN
architectures pre-trained for images recognition: ResNet34 (He et al., 2016), MobileNetv2
(Howard et al., 2017) and AlexNet (Krizhevsky, Sutskever & Hinton, 2017). The first two
have about 30 layers each, while the latter has 8 layers. We show in Fig. 2 the architecture
of AlexNet, as it is the simplest to fully depict; the other two architecture are similar but

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 6/24

https://peerj.com
https://doi.org/10.7717/peerjcs.631/fig-1
http://dx.doi.org/10.7717/peerj-cs.631


Figure 2 AlexNet architecture, the simplest pre-trained CNN among those we specialized for visual
code recognition.

Full-size DOI: 10.7717/peerjcs.631/fig-2

significantly deeper. The three CNNs we used were all pre-trained on ImageNet (Deng
et al., 2009), a generic image dataset composed of more than 14 million images classified
into 20000 classes. This allowed us to benefit from the features and invariants learned on
ImageNet in order to perform image-based PLI, as shown in Fig. 3.

Training
As a preliminary step in the model training we replaced the classification layer (or head)
of each CNN—initially composed of 1000 output neurons, as required by the ImageNet
classification task—with a head composed of 149 output neurons, corresponding to the
cardinality of our set of programming languages to recognize. We applied a (usual) 80/20%
split to our dataset twice to obtain the training, validation, and test sets. First we kept aside
20% of the obtained code bundles for testing and then further split the rest to obtain the
training and validation sets. This resulted in an overall partition of all code bundles in three
sets: 64% for training, 16% for validation, and 20% for testing.

We then applied a two-step training procedure to all three CNN architecture. As a first
step the weights of the CNN (the body) have been frozen so that training could only affect
the substituted head. This way the features previously learned by the convolutional layers
during ImageNet training are exploited to make predictions about the new classification
task (Fig. 3).

After a few epochs of training we moved to the second training step, where all the
weights are unfrozen, thus allowing training updates all over the architecture. A slightly
lower learning rate is used in the second training step with respect to the first, so that the

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 7/24

https://peerj.com
https://doi.org/10.7717/peerjcs.631/fig-2
http://dx.doi.org/10.7717/peerj-cs.631


Figure 3 Using transfer learning to adapt CNNs trained on ImageNet to visually recognize code snip-
pets.

Full-size DOI: 10.7717/peerjcs.631/fig-3

Table 1 Training times per epoch (minutes and seconds), number of epochs and total training times
(hours, minutes and seconds) for AlexNet (A), MobileNet (M) and ResNet (R) -based models for the
two considered steps of training.

Per-epoch training time (avg.) Epochs Total training time

A M R A M R A M R

step 1 6m33s 22m20s 20m04s 8 8 8 52m23s 2h58m39s 2h40m29s
step 2 6m49s 30m32s 26m46s 8 7 7 54m29s 3h44m41s 3h07m20s
total 13m22s 52m52s 46m50s 1h46m52s 6h43m20s 5h47m49s

network can adapt to the task of image-based PLI without completely forgetting what the
network has learned about images in general.

Table 1 shows the total training times for the three architectures, as well as a breakdown
per training step, the number of training epochs, and the average per-epoch training time
in each case. Training has been performed on a Linuxmachine equipped with an Intel Xeon
8 core 2.1 GHz CPU, Nvidia Titan XP GPU and 96 GiB of RAM. The slowest architecture is
MobileNet, which took around 7 h to complete both training steps; the fastest architecture
is AlexNet, requiring less than 2 h of total training time.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 8/24

https://peerj.com
https://doi.org/10.7717/peerjcs.631/fig-3
http://dx.doi.org/10.7717/peerj-cs.631


Figure 4 Java code snippet in original form v. several scrambled variants. (A) original snippet. (B)
scrambling alphabetic characters (A) (C) scrambling decimal digits (N) (D) scrambling symbols (S) (E)
scrambling all character classes (ANS) (F) replacing all non-blank characters with lowercase "x" (X).

Full-size DOI: 10.7717/peerjcs.631/fig-4

Improvements in the training process, including finding a good balance between
underfitting and overfitting phenomena, can be obtained by setting suitable values for
several network hyperparameters. We mainly focused on tuning the learning rate (LR)
while the other hyperparameters, such as epochs and batch size, have been kept at fixed
values. For LR tuning we used the One Cycle Policy (Smith, 2017), where the LR cyclically
varies within a certain range allowing improvements both in classification accuracy and
training time. The LR range’s upper bound has been determined during a pretraining
phase according to a method recently proposed by Smith (Smith, 2018), which represents
an efficient alternative to the common random search technique. We run one epoch of
training starting with a small LR and gradually increasing it at each training iteration, while
recording the validation loss values. At the beginning the loss decreases, then reaches its
minimum, and then starts to increase: such a minimum indicates the LR value that we
have retained. The lower bound of the LR range was set to be 1

25 of the upper bound.

Scrambling
When using CNNs for image-based PLI, learned features are automatically extracted by
the network during training. In order to better understand what are the domain features
(indentation, particular character classes, text placement, etc.) that allow the networks to
visually recognize programming languages we selectively added noise to the code snippet
images of the test set. This allowed us to determine which characters impact the most
language identification capabilities, answering RQ2.

We defined three classes of characters that are commonly used to define lexemes in the
syntax of programming languages: alphabetic characters (denoted by A), numeric decimal
digits (N), and symbols (S) for the remaining non-blank characters (mostly punctuation
characters, mathematical symbols, and parentheses). Scrambling consists in replacing each
character of a class being scrambled by another character, randomly selected within the
same class, while preserving string lengths. Figure 4 shows some examples of scrambling
results.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 9/24

https://peerj.com
https://doi.org/10.7717/peerjcs.631/fig-4
http://dx.doi.org/10.7717/peerj-cs.631


We first applied scrambling of one character class at a time, without changing characters
belonging to other classes, obtaining 3 scrambled test sets denoted A, N, and S. We then
scrambled pairs of character classes together, obtaining 3 additional scrambled test sets
denoted AN, AS, and NS; then we scrambled all the three character classes together,
obtaining the scrambled test set denoted ANS. Finally we considered the extreme case
in which every characters except blanks have been replaced by a (lowercase) x character,
preserving only the overall code ‘‘layout’’, as dictated by code indentation, obtaining the
scrambled test set denoted by (uppercase) X.

RESULTS
We implemented in Python the three classifiers described in the previous section, using
the PyTorch framework (Paszke et al., 2019). The three implementations are available as
part of the complete replication package for this paper (see ‘Conclusion’).

For each architecture the training phase has been performed on the original non-
scrambled dataset and then repeated for each classifier and for each scrambled version of
the dataset. In order to be able to compare results among the different architectures we
used a fixed PRNG (pseudorandom number generator) seed to make sure that images were
processed in the same order during both training and evaluation.

Image-based PLI performances with many languages
On the non-scrambled dataset, after 8 epochs of the first training phase—in which only
the weights of the classifier’s head were able to be updated—the ResNet- and MobileNet-
based classifiers reached ≈ 90% accuracy on the validation set, while the AlexNet-based
model reached only ≈ 60%. Performances improved for all models after the fine-tuning
phase—when all weights could be updated, although at a lower learning rate. After 7 epochs
of fine-tuning ResNet accuracy reached ≈ 92% (+2%), MobileNet ≈ 93% (+3%), and
AlexNet ≈ 84% (a significant +24%, but still the worst performing classifier overall).

Several performance measures have been computed to evaluate the performance of the
three classifiers: precision (P), recall (R) and F1 measure (F1). Since PLI classification is
a single-label, multi-class problem, P, R and F1 are computed on the confusion matrix
obtained by applying the trained models to the test set separately for each class, as follows:

Pi=
Cii∑149
j=0Cji

=
TPi

TPi+FPi
(1)

Ri=
Cii∑149
j=0Cij

=
TPi

TPi+FNi
(2)

F1i=
2PiRi

Pi+Ri
(3)

where: the generic element Ci,j of the confusion matrix represents the amount of samples
of the ith class that the model classified as jth class instances; TPi is the amount of true

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


Table 2 Recognition performances for three pretrained CNNs, fine-tuned for image-based program-
ming language identification.

ResNet34 MobileNetv2 AlexNet

P R F1 P R F1 P R F1

Micro avg. 0.92 0.92 0.92 0.92 0.92 0.92 0.83 0.83 0.83
Macro avg. 0.92 0.92 0.92 0.93 0.92 0.92 0.83 0.83 0.83

positives (i.e., instances of the ith class that have been correctly classified); FPi is the amount
of false positives (instances that were wrongly classified as belonging to the i−th class); and
FNi is the amount of false negatives (ith class instances that were not classified as such).

The micro and macro averages for the three metrics P, R and F are reported in Table 2,
as a summary of the overall performances of each classifier. Micro average is obtained by
considering the total of the true/false positives/negatives among all classes obtained from
the confusion matrix and by applying the measures formulae. Macro average is obtained
by summing up the Pi, Ri or F1i values obtained for each class and dividing by the number
of classes.

Two aspects are worth noticing: first, performances range from acceptable to very
good for all classifiers, with precision in the 83–93% range (depending on the base CNN)
and recall in the 83–92% range. Second, the ResNet- and MobileNet-based classifiers
significantly outperform the AlexNet-based one, to better generalize to the PLI dataset
within a limited number of training epochs. Performances of the ResNet- and MobileNet-
classifiers are almost as good (−1.5%) as the state-of-the-art in image-based PLI, in spite
of a ×15-time increase in language diversity and of reduced training costs.

A detailed breakdown of performance results for each language is given in Appendix
A. We notice from it that most languages perform very well, close to the overview given
by the aggregate performance metrics. Most of the languages that perform poorly still
perform well above 80% precision with the best performing classifiers. The languages
that perform the worst tend to have common syntactic characteristics either among them
or with other languages included in the dataset. This is the case when a language is a
subset of another one, as it is for example for Objective-C and Objective-C++; and yet the
two languages are recognizable with 76–82% precision by the MobileNet-based classifier.
Other low-precision cases are related to languages that can embed other languages, such
as HTML, JavaScript, JSX, Less, and XSLT. All classifiers exhibit weaknesses in visually
recognizing these languages.

What makes code snippets visually recognizable?
The three classifiers trained on the original trainset have been then tested on the scrambled
versions too. Performance results are presented in Table 3 for each architecture on the
various dataset versions. The results provides some insights on what makes a code snippet
visually recognisable, as we discuss below.

We can see that randomly scrambling decimal digits alone (dataset ‘‘N’’) induces no
degradation in PLI performances for the three classifiers. Scrambling alphabetic characters

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


Table 3 PLI performances with and without scrambling. From left to right: no scrambling (Orig),
scrambling of alphabetic characters (A), digits (N), symbols (S), combinations of them (AN, AS, NS, ANS)
and substitution of all non-blank characters for x (X).

Orig A N S AN AS NS ANS X

ResNet34
Precision 0.92 0.87 0.92 0.47 0.87 0.34 0.48 0.35 0.01
Recall 0.92 0.85 0.92 0.33 0.85 0.20 0.33 0.19 0.17
F1 0.92 0.86 0.92 0.39 0.86 0.25 0.39 0.25 0.01

MobileNetv2
Precision 0.92 0.89 0.93 0.42 0.89 0.31 0.44 0.29 0.04
Recall 0.92 0.88 0.92 0.25 0.88 0.16 0.25 0.16 0.05
F1 0.92 0.88 0.93 0.31 0.89 0.21 0.32 0.21 0.04

AlexNet
Precision 0.83 0.75 0.83 0.57 0.75 0.44 0.58 0.44 0.09
Recall 0.83 0.72 0.83 0.49 0.72 0.31 0.50 0.31 0.05
F1 0.83 0.73 0.83 0.53 0.73 0.37 0.53 0.36 0.06

alone (dataset ‘‘A’’) has a mild performance impact, degrading precision and recall by
3–11%, depending on the CNN, with AlexNet being the most affected one. Scrambling
symbol characters alone (punctuation, operators, parentheses, etc; dataset ‘‘S’’) on the
other hand is enough to have a dramatic effect on the performances of every considered
architecture, inducing an impressive drop in both precision and recall in the 2–4 ×
range. This degradation is likely due to the syntactic (and hence visual) importance that
punctuation characters play in programming languages and the highly different usage of
them across different languages.

Scrambling several character classes at once (datasets: ‘‘AN’’, ‘‘AS’’, ‘‘NS’’, and ‘‘ANS’’)
appears to simply combine the effects of scrambling individual character classes. AN still
performs relatively well (because symbols are not scrambled), all the datasets which also
involve symbol scrambling perform badly, and scrambling all three character classes at
once exhibits the worst performances.

Performances for the ‘‘X’’ dataset, where all non-blank characters have been replaced
by x, are below 10% for both precision and recall in most cases, reaching as low as 1%
for the precision of the ResNet-based classifier. It appears that the code ‘‘layout’’ alone, as
captured by indentation, is nowhere near enough to make programming languages visually
recognizable.

DISCUSSION
Based on the obtained results we can now affirmatively answer RQ1: it is possible to
automatically recognize up to 149 different programming languages in brief code snippet
images, with high accuracy. This is a significant step forward in the state-of-the-art of
image-based PLI, which was limited to recognize up to 10 languages. This result paves the
way to use of image-based PLI in real-world settings, where much more than a handful
of programming languages need to be handled. It is worth noting that we stopped at 149
languages only to avoid dataset imbalance, not due to intrinsic limitations in the proposed

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 12/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


1These maps can be seen as heatmaps,
with black/blue colors indicating low
temperatures and the scale going up to
yellow for high temperature in the usual
way. High temperature in our case means
high contribution to the final classifier
decision.

approach. Using larger code bases (Abramatic, Di Cosmo & Zacchiroli, 2018; Ma et al.,
2019) as training datasets it should be possible to achieve even higher language diversity
without significant reductions in identification accuracy.

Regarding RQ2, we have gathered evidence that symbols—punctuation, arithmetic
operators, parentheses, etc.—are the characters that impact the ability to visually recognize
programming languages the most, making precision halve and recall diminish by 2

3 when
scrambled and with the best-performing classifier. Alphabetic characters have a minor
impact (a few percentage points drop), whereas decimal digits have no measurable impact.
The difference among classes makes intuitive sense, but the impact of symbol scrambling
remains remarkable, especially considering how symbols tend to be reused for similar
needs across different languages (e.g., many languages share the use of arithmetic operators
or, to a lesser extent, of ";"). A more fine grained analysis of which individual symbols
impact recognition the most is needed as future work.

We intuitively expected the ‘‘layout’’ of the code alone, as captured by indentation,
to perform better than what we have observed with the ‘‘all x’’ scrambled dataset, which
performed terribly with all classifiers in our experiments. In particular, we expected
indentation to be a tell for at least the languages where indentation is syntactically
meaningful, such as Python. That factor is probably contrasted by the fact that proper
indentation is a coding best practice for all languages, and certainly so in a dataset assembled
from popular open source projects. This could make good indentation a common trait of
all languages and snippets, from which nothing can be learned by a trained classifier.

To get a qualitative feeling of where the classifiers gather the most relevant information
for image-based PLI, we show in Fig. 5 the class activation map (CAM) (Zhou et al., 2015)
heatmaps for selected snippets. We have generated CAMs from the ResNet-based classifier,
using PyTorch hooks just after the last convolutional layer. Colors in CAMs highlight
which image parts contributed the most to the final classifier decision, helping with the
understandability of machine learning models.1

A few observations about these CAMs are in order. First, CAMs highlight the fact that the
beginning of code lines is very relevant for classifier decisions. This relates to the importance
of symbol characters—which are often found at the beginning of each line, like parentheses,
and are also highlighted by CAMs elsewhere in code snippets—but it appears to go deeper
than that. For instance it seems that for several languages the CNN has learned to recognize
full language keywords, such as "def" for the Python programming language and other
keywords for Dockerfiles and Visual Basic. Second, CAMs confirm that indentation is
not useful for PLI: spaces at the beginning of code lines remain almost invariably in the
dark. These are just some preliminary considerations based on CAMs, whose exhaustive
analysis in the context of image-based PLI was out of scope for this paper, but constitutes
a promising lead for future work.

In terms of machine learning architectures we have shown that transfer learning starting
from pretrained image CNNs is a viable option for image-based PLI, an approach that
had received little attention in the literature for this domain thus far. With respect to
starting from scratch, our approach offers the benefits of cheaper (re)training, reducing
maintenance costs. Considering the very marginal reduction in precision in comparison

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 13/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


Figure 5 Class ActivationMap (CAM) heatmaps for selected code snippets in various languages, for
the ResNet-based classifier. (A) Dart. (B) Dockerfile. (C) Emacs Lisp. (D) Go. (E) JavaScript. (F) Kotlin.
(G) Objective-C++. (H) OCaml. (I) Python. (J) Rust. (K) Twig. (L) Visual Basic NET.

Full-size DOI: 10.7717/peerjcs.631/fig-5

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 14/24

https://peerj.com
https://doi.org/10.7717/peerjcs.631/fig-5
http://dx.doi.org/10.7717/peerj-cs.631


to previous work (≤ 1.5% with respect to Kiyak et al. (2020)), which is probably in large
part imputable to the much higher language diversity in our experiments, the pros/cons
balance seems to tilt towards pretrained CNNs and transfer learning.

In this respect it seems worth to explore side-tuning (Zhang et al., 2020), a recent
technique for transfer learning which consists in adapting a pre-trained network by
training a lightweight ‘‘side’’ network that is then fused with the (unchanged) pre-trained
network via summation. Side-tuning works very well in several scenarios (Zhang et al.,
2020) and it has recently been shown (Zingaro, Lisanti & Gabbrielli, 2021) to be applicable
to multimodal document classification, where diverse data sources such as text and images
are considered, improving document classification accuracy with respect to the state of
the art. Such a multimodal approach could be naturally applied to PLI, by interpreting
code snippets as both images and text. The empirical validation of the applicability of
side-tuning to PLI is left as future work.

THREATS TO VALIDITY
We rely on Linguist (GitHub, Inc., 2011) as source of truth for what is the ‘‘real’’ language
of a code snippet. Whereas this is a common choice in the PLI literature due to the efficacy,
efficiency, and broad language support of Linguist, it still means that our precision and
recall results should be diminished by Linguist’s performances, which is reported by
GitHub as having 85% accuracy (Ganesan & Foti, 2019). As we are comparing with other
works in the literature that also used Linguist as source of truth, this fact does not impact
the improvement in language diversity that we introduce with this paper.

We used synthetic images rendered from textual code snippets instead of real-world
images. Both approaches can be found in the PLI literature and we compare well with
previous works that also used rendered images. Moreover, works that use ‘‘real’’ images
rely for the most part on video frames extracted from programming tutorials. Those
tutorials are generally produced as screencasts, in which programming editors and IDEs
are recorded directly from the desktop environment (rather than, say, from a physical
camera pointed at the screen), resulting in very high-quality video frame images. Therefore
we do not expect our performances to be significantly impacted by the switch from synthetic
images to screencast video frames. Visual recognition of actual real-world images—e.g.,
pictures of billboards showing code or movie frames of screens showing code—would be
a different matter, but it is a challenge we share with most works in the image-based PLI
literature.

We relied on Software Heritage as data source (instead of ad hoc crawling) and used
a dataset corresponding to code retrieved from the most popular GitHub repositories.
We further cleaned up all unrecognizable and unpopular languages according to the data
pipeline discussed in ‘Methodology’. There is certainly a bias in this process, tilting in favor
of ‘‘good’’ snippets rather than considering a wide spectrum of good and bad ones. We
believe that our choice in this respect leads to comparable results to other approaches (e.g.,
retrieving snippets from StackOverflow or extracting video frames), as those solutions are
also characterized by a significant selection bias for quality (the barrier for posting a snippet

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 15/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


on StackOverflow or publishing a video tutorial being much higher than that of pushing
code to GitHub).

In terms of dataset size, and according to a recent literature review (Kiyak et al., 2020),
our experiments have been conducted over 12–15 × more snippets than the largest
empirical studies in image-based PLI. Rather, our dataset size is inline with the largest
datasets used for text -based PLI. It is worth noting that we have arguably amplified the
number of snippets that form our experimental dataset, in the sense that we have extracted
several snippets from each source code file. At the same time we have been careful in not
extracting overlapping snippets for the training set, mitigating (if not fully neutralizing)
this threat.

CONCLUSION
As a first contribution we have shown that image-based programming language
identification (PLI) can be performed with high precision and recall even when
many different programming languages (149 in our experiments) are considered. This
corresponds to a 15 × increase in language diversity with respect to the state-of-the-art,
incurring no significant loss (≤ 1.5%) in accuracy. We established this result on a dataset
consisting of ≈ 300,000 code snippets extracted from 1,000 popular GitHub repositories.
We have used three classifiers based on convolutional neural networks (CNNs) pretrained
for images (ResNet34, MobileNetv2, and AlexNet) then adapted to the PLI domain using
transfer learning, with significant reductions in terms of training cost with respect to
the common approach in the PLI literature of training from scratch. The ResNet-based
classifier performed best, achieving 92% in both precision and recall.

Our second contribution is a quantitative exploration of what makes programming
languages visually recognizable. By selectively scrambling different character classes in
the original dataset we found evidence that symbolic characters such as punctuation,
arithmetic operators, and parentheses contribute the most to visual programming language
recognition, followed (by far) by alphabetic characters, with no to negligible impact by
decimal digits and indentation in our experiments. A preliminary qualitative exploration
of class activation maps(CAMs) supports these findings and also suggests that CNN-based
classifiers for code snippet images might be able to autonomously learn to spot language
keywords, without any a priori knowledge of programming language grammars.

Future work
Several leads remain to be explored as future work. The introduced classifiers should
be empirically validated on non-synthetic images extracted from programming tutorial
videos and pictures containing code, e.g., billboards or pictures of screens showing code.
The former should be straightforward, the latter more challenging and also a significant
departure from the tradition of image-based PLI.

On the front of synthetic images, where by construction both textual and visual
representations of code snippets are available, we intend to explore side-tuning as part of
classifier training, to verify if it can further improve PLI performances, as it did in other
problem spaces.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


With the analysis of scrambled character classes we have only scratched the surface of the
understanding of what makes programming languages visually identifiable. Fine-grained
analyses are needed to identify which code parts matter the most for CNN-based classifiers.
CAM-based observations seem to hint at the importance of keywords, which we intend to
explore more, together with finer-grained scrambling and spatial layout analyses. If a clear
understanding of what makes code visually recognizable could be reached, it is possible that
dedicated feature engineering could lead to even more accurate image-based PLI classifiers.

Finally, even though we have been able to visually recognize almost 150 programming
languages, we intend to try pushing further this limit and reach hundreds of recognized
languages, retaining high accuracy. Themain difficulty here is the lack of a suitably balanced
dataset, a task that we intend to address in the near future by perusing large source code
archives.

APPENDIX
Per-language results
The following table reports the disaggregated identification performance (P, R and
F1-score) for each programming language and for the three classifiers described in
‘Methodology’, on the original (non-scrambled) dataset.

Table A1

Language ResNet34 MobileNetv2 Al exNet

P R F1 P R F1 P R F1

ANTLR 0.95 0.99 0.97 0.97 0.99 0.98 0.94 0.97 0.96
ActionScript 0.78 0.91 0.84 0.76 0.93 0.83 0.65 0.72 0.68
AGC 0.99 1.00 1.00 0.99 1.00 0.99 0.97 0.99 0.98
AsciiDoc 0.98 0.94 0.96 0.98 0.95 0.97 0.78 0.86 0.81
Assembly 0.94 0.87 0.90 0.97 0.88 0.92 0.86 0.83 0.84
Batchfile 0.98 0.99 0.98 1.00 0.99 0.99 0.91 0.94 0.93
C 0.84 0.92 0.88 0.83 0.94 0.88 0.73 0.75 0.74
C# 0.83 0.91 0.87 0.88 0.91 0.89 0.74 0.83 0.78
C++ 0.64 0.66 0.65 0.69 0.70 0.70 0.47 0.39 0.43
CMake 0.97 0.98 0.98 0.97 0.99 0.98 0.81 0.89 0.84
CSON 1.00 0.99 1.00 1.00 0.99 1.00 0.96 0.99 0.98
CSS 0.81 0.87 0.84 0.78 0.91 0.84 0.68 0.72 0.70
CSV 0.97 0.58 0.73 0.98 0.57 0.72 0.93 0.40 0.56
Cabal Config 1.00 0.99 0.99 0.99 1.00 0.99 0.98 0.99 0.99
Cap’n Proto 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.99 0.98
Clojure 0.98 0.96 0.97 0.96 0.97 0.97 0.84 0.90 0.87
CoffeeScript 0.97 0.88 0.92 0.96 0.89 0.92 0.83 0.85 0.84
Crystal 0.83 0.89 0.86 0.84 0.86 0.85 0.73 0.76 0.74

(continued on next page)

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 17/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


Table A1 (continued)

Language ResNet34 MobileNetv2 Al exNet

P R F1 P R F1 P R F1

Cuda 0.78 0.88 0.83 0.72 0.91 0.80 0.56 0.81 0.67
Cython 0.84 0.86 0.85 0.83 0.90 0.87 0.66 0.76 0.70
DIGITAL CL 1.00 0.99 1.00 1.00 0.99 1.00 0.96 0.99 0.98
Dart 0.94 0.95 0.94 0.93 0.96 0.95 0.80 0.84 0.82
Diff 0.97 0.97 0.97 0.99 0.96 0.97 0.93 0.93 0.93
Dockerfile 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99
eC 0.96 0.97 0.97 0.97 0.98 0.98 0.88 0.95 0.91
EJS 0.96 0.88 0.92 0.96 0.92 0.94 0.83 0.81 0.82
EML 0.92 0.97 0.94 0.92 0.96 0.94 0.89 0.85 0.87
Elixir 0.98 0.95 0.96 0.93 0.92 0.93 0.92 0.84 0.88
Emacs Lisp 0.98 0.96 0.97 0.98 0.98 0.98 0.82 0.83 0.82
Erlang 0.98 0.98 0.98 0.98 0.99 0.98 0.94 0.95 0.94
fish 0.98 0.99 0.99 0.99 0.99 0.99 0.93 0.91 0.92
FreeMarker 0.90 0.95 0.93 0.91 0.95 0.93 0.86 0.92 0.89
GAP 0.96 0.89 0.93 0.95 0.91 0.93 0.86 0.77 0.81
GDB 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99
GLSL 0.96 0.94 0.95 0.96 0.92 0.94 0.84 0.81 0.83
GN 0.99 1.00 0.99 1.00 1.00 1.00 0.91 0.99 0.95
Gettext C. 0.98 1.00 0.99 0.98 1.00 0.99 0.99 0.99 0.99
Gherkin 0.98 0.99 0.99 1.00 0.99 1.00 1.00 0.95 0.97
Go 0.92 0.81 0.86 0.93 0.80 0.86 0.70 0.70 0.70
Gradle 0.91 0.93 0.92 0.94 0.93 0.93 0.70 0.74 0.72
GraphQL 0.99 0.98 0.98 0.99 1.00 0.99 0.96 0.90 0.93
Graphviz 0.99 0.96 0.97 1.00 0.97 0.98 0.97 0.92 0.94
Groovy 0.89 0.91 0.90 0.86 0.92 0.89 0.71 0.79 0.75
HAProxy 1.00 0.99 1.00 0.99 1.00 1.00 0.98 0.99 0.98
HTML 0.79 0.54 0.64 0.81 0.60 0.69 0.69 0.53 0.60
HTML+Django 0.89 0.95 0.92 0.75 0.95 0.84 0.83 0.92 0.87
HTML+ERB 0.85 0.89 0.87 0.90 0.90 0.90 0.74 0.80 0.77
HTML+Razor 0.94 0.94 0.94 0.97 0.93 0.95 0.83 0.86 0.85
Hack 0.93 0.95 0.94 0.96 0.96 0.96 0.90 0.92 0.91
Haml 1.00 0.99 1.00 1.00 0.99 1.00 0.97 0.97 0.97
Handlebars 0.97 0.93 0.95 0.96 0.94 0.95 0.91 0.85 0.88
Haskell 0.95 0.70 0.81 0.96 0.72 0.82 0.81 0.64 0.71
INI 0.92 0.99 0.95 0.93 0.99 0.96 0.84 0.92 0.88
Ignore List 1.00 0.99 1.00 0.99 1.00 1.00 0.96 0.99 0.97
Inno Setup 1.00 0.97 0.99 0.99 0.97 0.98 0.98 0.96 0.97
JSON 0.98 0.94 0.96 0.97 0.95 0.96 0.79 0.40 0.53
JSON5 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.99
JSX 0.72 0.56 0.63 0.76 0.68 0.72 0.52 0.49 0.51
Java 0.81 0.81 0.81 0.84 0.81 0.83 0.69 0.59 0.64

(continued on next page)

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


Table A1 (continued)

Language ResNet34 MobileNetv2 Al exNet

P R F1 P R F1 P R F1

Java Prop. 0.97 0.99 0.98 0.99 0.98 0.98 0.83 0.93 0.88
Java SP 0.96 0.93 0.95 0.98 0.93 0.96 0.92 0.84 0.88
JavaScript 0.59 0.62 0.60 0.59 0.58 0.59 0.41 0.36 0.38
Jison 0.97 0.99 0.98 0.98 0.99 0.99 0.94 0.99 0.97
Julia 0.91 0.85 0.88 0.88 0.84 0.86 0.76 0.78 0.77
Jupyter Not. 0.97 0.99 0.98 0.97 0.99 0.98 0.90 0.94 0.92
Kotlin 0.91 0.95 0.93 0.92 0.97 0.94 0.69 0.84 0.76
LLVM 1.00 0.84 0.92 0.99 0.88 0.93 0.98 0.68 0.80
Less 0.67 0.68 0.67 0.76 0.67 0.71 0.52 0.46 0.49
Lex 0.95 0.91 0.93 0.98 0.92 0.95 0.88 0.87 0.88
Linux KM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lua 0.83 0.94 0.88 0.96 0.94 0.95 0.73 0.82 0.77
M4Sugar 0.98 0.94 0.96 1.00 0.93 0.96 0.91 0.83 0.87
MLIR 0.98 0.99 0.98 0.98 0.99 0.99 0.96 0.98 0.97
Makefile 0.88 0.97 0.92 0.88 0.97 0.92 0.77 0.93 0.84
Mako 0.99 0.97 0.98 0.99 0.96 0.97 0.96 0.90 0.93
Markdown 0.85 0.93 0.89 0.91 0.90 0.90 0.72 0.58 0.64
Micr. DSP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MMS 0.99 0.99 0.99 0.99 1.00 1.00 0.97 0.99 0.98
Assembly 0.69 0.71 0.70 0.72 0.72 0.72 0.44 0.53 0.48
NASL 0.93 0.81 0.87 0.91 0.81 0.85 0.89 0.78 0.83
NSIS 0.99 1.00 0.99 0.96 1.00 0.98 0.92 0.96 0.94
OCaml 0.95 0.91 0.93 0.98 0.94 0.96 0.88 0.75 0.81
Object.-C 0.71 0.81 0.75 0.76 0.81 0.78 0.60 0.66 0.63
Object.-C++ 0.73 0.62 0.67 0.82 0.71 0.76 0.60 0.49 0.54
Objective-J 0.88 0.93 0.90 0.86 0.93 0.90 0.80 0.88 0.84
OpenCL 0.91 0.96 0.93 0.92 0.97 0.94 0.76 0.90 0.83
OpenType FF 1.00 0.96 0.98 0.99 0.93 0.96 0.97 0.82 0.89
Org 1.00 0.99 1.00 0.99 0.99 0.99 0.93 0.94 0.94
PHP 0.90 0.89 0.89 0.93 0.89 0.91 0.80 0.78 0.79
PLpgSQL 0.90 0.96 0.93 0.90 0.96 0.93 0.86 0.86 0.86
Perl 0.96 0.96 0.96 0.98 0.95 0.96 0.89 0.80 0.84
Pod 0.97 0.98 0.98 0.97 0.98 0.97 0.75 0.88 0.81
PowerShell 0.96 0.97 0.97 0.99 0.96 0.98 0.87 0.95 0.91
Proguard 0.99 0.97 0.98 0.99 0.98 0.99 0.99 0.80 0.88
Prot. Buffer 0.99 0.98 0.99 0.97 0.97 0.97 0.89 0.93 0.91
Pug 0.96 0.94 0.95 0.98 0.96 0.97 0.85 0.77 0.81
Python 0.80 0.78 0.79 0.82 0.74 0.78 0.60 0.54 0.56
QML 0.96 0.98 0.97 0.97 0.98 0.97 0.78 0.90 0.83
QMake 0.98 0.98 0.98 0.99 0.99 0.99 0.96 0.96 0.96
R 0.98 0.99 0.99 0.98 0.99 0.99 0.95 0.97 0.96
RDoc 0.98 0.97 0.97 0.97 0.97 0.97 0.76 0.82 0.79

(continued on next page)

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


Table A1 (continued)

Language ResNet34 MobileNetv2 Al exNet

P R F1 P R F1 P R F1

RMarkdown 0.99 0.98 0.99 0.97 1.00 0.98 0.93 0.97 0.95
RPM Spec 0.99 0.99 0.99 0.98 1.00 0.99 0.97 0.94 0.96
Ragel 0.94 0.94 0.94 0.92 0.96 0.94 0.81 0.83 0.82
Rascal 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99
ReST 0.94 0.92 0.93 0.93 0.94 0.94 0.76 0.83 0.79
RTF 0.97 0.98 0.98 0.98 0.99 0.99 0.93 0.94 0.94
Roff 0.90 0.66 0.76 0.89 0.65 0.75 0.85 0.64 0.73
Roff Manp. 0.73 0.90 0.81 0.73 0.92 0.81 0.71 0.86 0.78
Ruby 0.81 0.81 0.81 0.77 0.83 0.80 0.66 0.72 0.69
Rust 0.88 0.91 0.89 0.92 0.93 0.92 0.66 0.83 0.74
SCSS 0.75 0.78 0.77 0.77 0.82 0.79 0.60 0.70 0.64
SQL 0.88 0.69 0.77 0.69 0.67 0.68 0.75 0.53 0.62
SVG 0.73 0.80 0.77 0.82 0.85 0.83 0.87 0.66 0.75
SWIG 0.84 0.91 0.87 0.84 0.89 0.86 0.69 0.71 0.70
SaltStack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
Sass 0.97 0.94 0.96 0.98 0.96 0.97 0.93 0.91 0.92
Scala 0.96 0.93 0.94 0.95 0.94 0.94 0.77 0.88 0.82
Scheme 0.94 0.99 0.97 0.97 0.99 0.98 0.90 0.97 0.94
Shell 0.88 0.91 0.89 0.89 0.93 0.91 0.62 0.64 0.63
Slash 0.99 1.00 0.99 0.99 1.00 1.00 0.90 0.99 0.94
Smarty 0.95 1.00 0.97 0.96 1.00 0.98 0.90 1.00 0.95
Starlark 0.96 0.94 0.95 0.95 0.95 0.95 0.91 0.86 0.88
Stylus 0.90 0.94 0.92 0.94 0.94 0.94 0.86 0.89 0.88
Svelte 0.88 0.98 0.93 0.89 0.98 0.93 0.78 0.92 0.84
Swift 0.89 0.90 0.89 0.90 0.84 0.87 0.57 0.48 0.52
TOML 0.98 0.97 0.98 0.98 0.98 0.98 0.93 0.95 0.94
TSQL 0.76 0.88 0.82 0.72 0.84 0.78 0.69 0.77 0.73
TSX 0.64 0.73 0.68 0.65 0.63 0.64 0.57 0.43 0.49
Tcl 0.92 0.99 0.96 0.90 0.99 0.95 0.81 0.94 0.87
TeX 0.99 0.96 0.97 0.98 0.95 0.97 0.93 0.88 0.91
Texinfo 0.99 0.99 0.99 1.00 1.00 1.00 0.94 0.92 0.93
Text 0.66 0.90 0.76 0.64 0.88 0.74 0.82 0.71 0.76
Textile 0.97 0.95 0.96 0.98 0.95 0.97 0.94 0.89 0.92
Twig 0.95 0.96 0.96 0.94 0.95 0.95 0.86 0.88 0.87
TypeScript 0.78 0.78 0.78 0.77 0.79 0.78 0.45 0.35 0.40
UnixAssembly 0.81 0.89 0.84 0.81 0.89 0.85 0.60 0.79 0.68
Vim Snippet 0.98 0.91 0.94 0.99 0.94 0.97 0.96 0.85 0.90
Vim script 0.96 0.99 0.98 0.92 0.99 0.96 0.87 0.91 0.89
VB .NET 0.99 0.94 0.96 0.96 0.96 0.96 0.95 0.90 0.93
Vue 0.91 0.84 0.87 0.94 0.86 0.90 0.76 0.74 0.75
Wavefront 1.00 0.91 0.95 1.00 0.89 0.94 0.90 0.67 0.77
WebIDL 0.99 1.00 1.00 0.98 1.00 0.99 0.94 0.99 0.97

(continued on next page)

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631


Table A1 (continued)

Language ResNet34 MobileNetv2 Al exNet

P R F1 P R F1 P R F1

Windows RE 0.99 1.00 1.00 0.99 1.00 1.00 0.98 0.99 0.99
XML 0.79 0.97 0.87 0.89 0.85 0.87 0.63 0.81 0.71
XML Pr. List 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99 0.99
XSLT 0.95 0.57 0.71 0.98 0.73 0.84 0.79 0.54 0.64
YAML 0.94 0.99 0.96 0.96 0.99 0.97 0.88 0.92 0.90
Yacc 0.96 0.97 0.97 0.95 0.94 0.95 0.85 0.85 0.85
Micro avg. 0.92 0.92 0.92 0.92 0.92 0.92 0.83 0.83 0.83
Macro avg. 0.92 0.92 0.92 0.93 0.92 0.92 0.83 0.83 0.83

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Francesca Del Bonifro conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.
• Maurizio Gabbrielli and Stefano Zacchiroli conceived and designed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.
• Antonio Lategano conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

A replication package for the experiments, with the code that generates the code snippet
images, are available in the Supplemental Files and at Zenodo: Francesca Del Bonifro,
Maurizio Gabbrielli, Antonio Lategano, & Stefano Zacchiroli. (2021). Image-based Many-
language Programming Language Identification - Replication Package (Version 1.0) [Data
set]. IEEE Software. Zenodo. http://doi.org/10.5281/zenodo.4986391.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.631#supplemental-information.

REFERENCES
Abramatic J-F, Di Cosmo R, Zacchiroli S. 2018. Building the universal archive of source

code. Communications of the ACM 61(10):29–31 DOI 10.1145/3183558.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 21/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.631#supplemental-information
http://doi.org/10.5281/zenodo.4986391
http://dx.doi.org/10.7717/peerj-cs.631#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.631#supplemental-information
http://dx.doi.org/10.1145/3183558
http://dx.doi.org/10.7717/peerj-cs.631


Caneill M, GermnDM, Zacchiroli S. 2017. The debsources dataset: two decades of
free and open source software. Empirical Software Engineering 22:1405–1437
DOI 10.1007/s10664-016-9461-5.

Chen Y, Dios R, Mili A, Wu L,Wang K. 2005. An empirical study of programming
language trends. IEEE Software 22(3):72–78 DOI 10.1109/MS.2005.55.

Danial A. 2006. cloc. Available at https://github.com/AlDanial/cloc (accessed on 13
January 2021).

Del Bonifro F, Gabbrielli M, Zacchiroli S. 2021. Content-based textual file type detec-
tion at scale. In: ICMLC 2021: the 13th international conference on machine learning
and computing. New York: ACM.

Deng J, DongW, Socher R, Li L, Li Kai , Fei-Fei L. 2009. ImageNet: a large-scale
hierarchical image database. 248–255 DOI 10.1109/CVPR.2009.5206848.

Di Cosmo R, Zacchiroli S. 2017. Software heritage: why and how to preserve software
source code. In: Proceedings of the 14th international conference on digital preservation,
iPRES 2017.

Gallardo-Valencia RE, Sim SE. 2009. Internet-scale code search. In: 2009 ICSE workshop
on search-driven development-users, infrastructure, tools and evaluation. 49–52.

Ganesan K, Foti R. 2019. C# or Java? TypeScript or JavaScript? Machine learning based
classification of programming languages. Available at https://github.blog/2019-
07-02-c-or-java-typescript-or-javascript-machine-learning-based-classification-of-
programming-languages/ (accessed on 6 January 2021).

Gilda S. 2017. Source code classification using Neural Networks. In: 2017 14th inter-
national joint conference on computer science and software engineering (JCSSE).
Piscataway: IEEE, 1–6.

GitHub, Inc. 2011. Linguist: language savant. Available at https://github.com/github/
linguist (accessed on 6 January 2021).

He K, Zhang X, Ren S, Sun J. 2016. Deep Residual Learning for Image Recognition. In:
2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016. Piscataway: IEEE Computer Society, 770–778
DOI 10.1109/CVPR.2016.90.

Hong J, Mizuno O, KondoM. 2019. An empirical study of source code detection
using image classification. In: 10th international workshop on empirical software
engineering in practice, IWESEP 2019, Tokyo, Japan, December 13-14, 2019. IEEE, 1–6
DOI 10.1109/IWESEP49350.2019.00009.

Howard AG, ZhuM, Chen B, Kalenichenko D,WangW,Weyand T, Andreetto M,
AdamH. 2017.MobileNets: efficient convolutional neural networks for mobile
vision applications. CoRR, abs/1704.04861.

Kiyak EO, Cengiz AB, Birant KU, Birant D. 2020. Comparison of image-based and text-
based source code classification using deep learning. SN Computer Science 1(5):266
DOI 10.1007/s42979-020-00281-1.

Klein D, Murray K,Weber S. 2011. Algorithmic programming language identification.
ArXiv preprint. arXiv:1106.4064.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 22/24

https://peerj.com
http://dx.doi.org/10.1007/s10664-016-9461-5
http://dx.doi.org/10.1109/MS.2005.55
https://github.com/AlDanial/cloc
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://github.blog/2019-07-02-c-or-java-typescript-or-javascript-machine-learning-based-classification-of-programming-languages/
https://github.blog/2019-07-02-c-or-java-typescript-or-javascript-machine-learning-based-classification-of-programming-languages/
https://github.blog/2019-07-02-c-or-java-typescript-or-javascript-machine-learning-based-classification-of-programming-languages/
https://github.com/github/linguist
https://github.com/github/linguist
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/IWESEP49350.2019.00009
http://dx.doi.org/10.1007/s42979-020-00281-1
http://arXiv.org/abs/1106.4064
http://dx.doi.org/10.7717/peerj-cs.631


Kononenko O, Baysal O, Holmes R, Godfrey MW. 2014.Mining modern repositories
with elasticsearch. In: Devanbu PT, Kim S, Pinzger M, eds. 11th working conference
on mining software repositories, MSR 2014, proceedings, May 31 - June 1, 2014.
Hyderabad, India: ACM, 328–331 DOI 10.1145/2597073.2597091.

Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep
convolutional neural networks. Communications of the ACM 60(6):84–90
DOI 10.1145/3065386.

Ma Y, Bogart C, Amreen S, Zaretzki R, Mockus A. 2019.World of code: an infrastruc-
ture for mining the universe of open source VCS data. In: Proceedings of the 16th
international conference on mining software repositories. 143–154.

Mockus A. 2009. Amassing and indexing a large sample of version control systems:
towards the census of public source code history. In: Godfrey MW, Whitehead
J, eds. Proceedings of the 6th international working conference on mining soft-
ware repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC, Canada,
May 16-17, 2009, Proceedings. Piscataway: IEEE Computer Society, 11–20
DOI 10.1109/MSR.2009.5069476.

O’Shea K, Nash R. 2015. An introduction to convolutional neural networks. ArXiv
preprint. arXiv:1511.08458.

Ott J, Atchison A, Harnack P, Bergh A, Linstead E. 2018a. A deep learning ap-
proach to identifying source code in images and video. In: Zaidman A, Kamei
Y, Hill E, eds. Proceedings of the 15th international conference on mining software
repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. ACM, 376–386
DOI 10.1145/3196398.3196402.

Ott J, Atchison A, Harnack P, Best N, Anderson H, Firmani C, Linstead E. 2018b.
Learning lexical features of programming languages from imagery using convolu-
tional neural networks. In: Khomh F, Roy CK, Siegmund J, eds. Proceedings of the
26th conference on program comprehension, ICPC 2018, Gothenburg, Sweden, May 27-
28, 2018. New York: ACM, 336–339 DOI 10.1145/3196321.3196359.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kpf A, Yang E, DeVito Z, RaisonM,
Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. 2019. PyTorch:
an imperative style, high-performance deep learning library. ArXiv preprint.
arXiv:1912.01703.

Ponzanelli L, Bavota G, Mocci A, Penta MD, Oliveto R, HasanMA, Russo B, Haiduc S,
LanzaM. 2016. Too long; didn’t watch!: extracting relevant fragments from software
development video tutorials. In: Dillon LK, Visser W, Williams LA, eds. Proceedings
of the 38th international conference on software engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. New York: ACM, 261–272 DOI 10.1145/2884781.2884824.

Reyes J, Ramírez D, Paciello J. 2016. Automatic classification of source code archives by
programming language: A deep learning approach. In: 2016 international conference
on computational science and computational intelligence (CSCI). 514–519.

Sammet JE. 1972. Programming languages: history and future. Communications of the
ACM 15(7):601–610.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 23/24

https://peerj.com
http://dx.doi.org/10.1145/2597073.2597091
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/MSR.2009.5069476
http://arXiv.org/abs/1511.08458
http://dx.doi.org/10.1145/3196398.3196402
http://dx.doi.org/10.1145/3196321.3196359
http://arXiv.org/abs/1912.01703
http://dx.doi.org/10.1145/2884781.2884824
http://dx.doi.org/10.7717/peerj-cs.631


Smith LN. 2017. Cyclical learning rates for training neural networks. In: 2017 IEEE winter
conference on applications of computer vision (WACV). Piscataway: IEEE, 464–472.

Smith LN. 2018. A disciplined approach to neural network hyper-parameters: part 1 –
learning rate, batch size, momentum, and weight decay..

Somda Y. 2017. GuessLang. Available at https:// guesslang.readthedocs.io/ (accessed on 14
January 2021).

Ugurel S, Krovetz R, Giles CL. 2002.What’s the code?: automatic classification of source
code archives. In: Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. New York: ACM, 632–638.

Van Dam JK, Zaytsev V. 2016. Software language identification with natural language
classifiers. In: 2016 IEEE 23rd international conference on software analysis, evolution,
and reengineering (SANER), vol. 1. Piscataway: IEEE, 624–628.

Wheeler DA. 2001. SLOCCount. Available at https://dwheeler.com/sloccount/ (accessed
on 13 January 2021).

Yadid S, Yahav E. 2016. Extracting code from programming tutorial videos. In:
Visser E, Murphy-Hill ER, Lopes C, eds. 2016 ACM international symposium
on new ideas, new paradigms, and reflections on programming and software, on-
ward! 2016, Amsterdam, The Netherlands, November 2-4, 2016. ACM, 98–111
DOI 10.1145/2986012.2986021.

Zhang JO, Sax A, Zamir AR, Guibas LJ, Malik J. 2020. Side-tuning: a baseline for
network adaptation via additive side networks. In: Vedaldi A, Bischof H, Brox T,
Frahm JM, eds. Computer vision – ECCV 2020. ECCV 2020. Lecture notes in computer
science, vol 12348. Cham: Springer, 698–714 DOI 10.1007/978-3-030-58580-8_41.

Zhao D, Xing Z, Chen C, Xia X, Li G. 2019. ActionNet: vision-based workflow action
recognition from programming screencasts. In: Atlee JM, Bultan T, Whittle J,
eds. Proceedings of the 41st international conference on software engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019. Piscataway, New York: IEEE/ACM,
350–361 DOI 10.1109/ICSE.2019.00049.

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. 2015. Learning Deep Features for
Discriminative Localization. ArXiv preprint. arXiv:1512.04150 .

Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. 2021. A compre-
hensive survey on transfer learning. Proceedings of the IEEE 109(1):43–76
DOI 10.1109/JPROC.2020.3004555.

Zingaro S, Lisanti G, Gabbrielli M. 2021.Multimodal side-tuning for document clas-
sification. In: Proceedings of the 25th international conference on pattern recognition
(ICPR). Piscataway: IEEE, 5206–5213.

Del Bonifro et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.631 24/24

https://peerj.com
https://guesslang.readthedocs.io/
https://dwheeler.com/sloccount/
http://dx.doi.org/10.1145/2986012.2986021
http://dx.doi.org/10.1007/978-3-030-58580-8_41
http://dx.doi.org/10.1109/ICSE.2019.00049
http://arXiv.org/abs/1512.04150 
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.7717/peerj-cs.631

