
DR
AF
T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The Software Heritage Graph Dataset:
Large-scale Analysis of Public Software Development History

Antoine Pietri
antoine.pietri@inria.fr

Inria
Paris, France

Diomidis Spinellis
dds@aueb.gr

Athens University of Economics and
Business

Athens, Greece

Stefano Zacchiroli
zack@irif.fr

Université Paris Diderot and Inria
Paris, France

ABSTRACT
Software Heritage is the largest existing public archive of software
source code and accompanying development history. It spans more
than five billion unique source code files and one billion unique com-
mits, coming from more than 80 million software projects. These
software artifacts were retrieved from major collaborative devel-
opment platforms (e.g., GitHub, GitLab) and package repositories
(e.g., PyPI, Debian, NPM), and stored in a uniform representation
linking together source code files, directories, commits, and full
snapshots of version control systems (VCS) repositories as observed
by Software Heritage during periodic crawls. This dataset is unique
in terms of accessibility and scale, and allows to explore a number of
research questions on the long tail of public software development,
instead of solely focusing on “most starred” repositories as it often
happens.

1 INTRODUCTION
Analyses of software development history have historically focused
on crawling specific “forges” [17] such as GitHub or GitLab, or
language specific package managers [5, 13], usually by retrieving
a selection of popular repositories (“most starred”) and analyzing
them individually. This approach has limitations in scope: (1) it
works on subsets of the complete corpus of publicly available soft-
ware, (2) it makes cross-repository history analysis hard, (3) it makes
cross-VCS history analysis hard by not being VCS-agnostic.

The Software Heritage project [6, 11] aims to collect, preserve
and share all the publicly available software source code, together
with the associated development history as captured by modern
VCSs [16]. In 2019, we presented the Software Heritage Graph
Dataset, a graph representation of all the source code artifacts
archived by Software Heritage [15]. The graph is a fully dedupli-
catedMerkle dag [14] that contains the source code files, directories,
commits and releases of all the repositories in the archive.

The dataset captures the state of the Software Heritage archive
on September 25th 2018, spanning a full mirror of Github and
GitLab.com, the Debian distribution, Gitorious, Google Code, and
the PyPI repository. Quantitatively it corresponds to 5 billion unique
file contents and 1.1 billion unique commits, harvested from more
than 80 million software origins (see Section B for detailed figures).

We expect the dataset to significantly expand the scope of soft-
ware analysis by lifting the restrictions outlined above: (1) it pro-
vides the best approximation of the entire corpus of publicly avail-
able software, (2) it blends together related development histories
in a single data model, and (3) it abstracts over VCS and package
differences, offering a canonical representation (see Section B) of
source code artifacts.

2 AVAILABILITY
The dataset is available for download from Zenodo [15] in two
different formats (≈1 tb each):

• a Postgres [18] database dump in csv format (for the data)
and ddl queries (for recreating the DB schema), suitable for
local processing on a single server;

• a set of Apache Parquet files [2] suitable for loading into
columnar storage and scale-out processing solutions, e.g.,
Apache Spark [19].

In addition, the dataset is ready to use on two different distributed
cloud platforms for live usage:

• on Amazon Athena, [1] which uses PrestoDB to distribute
SQL queries.

• on Azure Databricks; [3] which runs Apache Spark and
can be queried in Python, Scala or Spark SQL.

3 RESEARCH QUESTIONS AND CHALLENGES
The dataset allows to tackle currently under-explored research
questions, and presents interesting engineering challenges. There
are different categories of research questions suited for this dataset.

• Coverage: Can known software mining experiments be
replicated when taking the distribution tail into account?
Is language detection possible on an unbounded number of
languages, each file having potentially multiple extensions?
Can generic tokenizers and code embedding analyzers [?]
be built without knowing their language a priori?

• Graph structure: How tightly coupled are the different
layers of the graph? What is the deduplication efficiency
across different programming languages? When do contents
or directories tend to be reused?

• Cross-repository analysis: How can forking and duplica-
tion patterns inform us on software health and risks? How
can community forks be distinguished from personal-use
forks? What are good predictors of the success of a commu-
nity fork?

• Cross-origin analysis: Is software evolution consistent
across different VCS? Are there VCS-specific development
patterns? How does a migration from a VCS to another af-
fect development patterns? Is there a relationship between
development cycles and package manager releases?

The scale of the dataset makes tackling some questions also an
engineering challenge: the sheer volume of data calls for distributed
computation, while analyzing a graph of this size requires state of
the art graph algorithms, being on the same order of magnitude as
WebGraph [7, 8] in terms of edge and node count.

1

DR
AF
T

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Mining Software Repositories, May 2020, Seoul, South Korea Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Appendix A FIGURES
The dataset contains more than 11B software artifacts, as shown in
Figure 1.

Table # of objects
origin 85 143 957
snapshot 57 144 153
revision 1 125 083 793
directory 4 422 303 776
content 5 082 263 206

Figure 1: Number of artifacts in the dataset

Appendix B DATA MODEL

Figure 2: Data model: a uniform Merkle DAG containing
source code artifacts and their development history

The Software Heritage Graph Dataset exploits the fact that
source code artifacts are massively duplicated across hosts and
projects [11] to enable tracking of software artifacts across projects,
and reduce the storage size of the graph. This is achieved by storing
the graph as a Merkle directed acyclic graph (DAG) [14]. By using
persistent, cryptographically-strong hashes as node identifiers [10],
the graph is deduplicated by sharing all identical nodes.

As shown in Figure 2, the Software Heritage DAG is organized
in five logical layers, which we describe from bottom to top.

Contents (or “blobs”) form the graph’s leaves, and contain the
raw content of source code files, not including their filenames
(which are context-dependent and stored only as part of directory

entries). The dataset contains cryptographic checksums for all con-
tents though, that can be used to retrieve the actual files from any
Software Heritage mirror using a Web api1 and cross-reference
files encountered in the wild, including other datasets.

Directories are lists of named directory entries. Each entry can
point to content objects (“file entries”), revisions (“revision entries”),
or other directories (“directory entries”).

Revisions (or “commits”) are point-in-time captures of the entire
source tree of a development project. Each revision points to the
root directory of the project source tree, and a list of its parent
revisions.

Releases (or “tags”) are revisions that have been marked as
noteworthy with a specific, usually mnemonic, name (e.g., a ver-
sion number). Each release points to a revision and might include
additional descriptive metadata.

Snapshots are point-in-time captures of the full state of a project
development repository. As revisions capture the state of a single
development line (or “branch”), snapshots capture the state of all
branches in a repository and allow to deduplicate unmodified forks
across the archive.

Deduplication happens implicitly, automatically tracking byte-
identical clones. If a file or a directory is copied to another project,
both projects will point to the same node in the graph. Similarly for
revisions, if a project is forked on a different hosting platform, the
past development history will be deduplicated as the same nodes
in the graph. Likewise for snapshots, each “fork” that creates an
identical copy of a repository on a code host, will point to the same
snapshot node. By walking the graph bottom-up, it is hence possible
to find all occurrences of a source code artifact in the archive (e.g.,
all projects that have ever shipped a specific file content).

The Merkle dag is encoded in the dataset as a set of relational
tables. In addition to the nodes and edges of the graph, the dataset
also contains crawling information, as a set of triples capturing
where (an origin url) and when (a timestamp) a given snapshot has
been encountered. A simplified view of the corresponding database
schema is shown in Figure 3; the full schema is available as part of
the dataset distribution.

Appendix C SAMPLE SQL QUERIES
To further illustrate the dataset’s affordances and as motivating
examples regarding the research possibilities it opens, below are
some sample sql queries that can be executed with the dataset on
aws Athena.

Listing 1: Most frequent file name
SELECT FROM_UTF8(name , '?') AS name ,

COUNT(DISTINCT target) AS cnt

FROM directory_entry_file

GROUP BY name

ORDER BY cnt DESC

LIMIT 1;

Listing 1 shows a simple query that finds the most frequent file
name across all the revisions. The result, obtained by scanning
151gb in 3′40′′, is index.html, which occurs in the dataset 182
million times.

1https://archive.softwareheritage.org/api/
2

https://archive.softwareheritage.org/api/

DR
AF
T

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

The Software Heritage Graph Dataset:
Large-scale Analysis of Public Software Development History Mining Software Repositories, May 2020, Seoul, South Korea

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

content

revisions

directoriessnapshots

origins

releases

content

sha1 sha1

sha1_git sha1_git

length bigint

directory

id sha1_git

dir_entries bigint[]

file_entries bigint[]

rev_entries bigint[]

directory_entry_dir

id bigserial

target sha1_git

name unix_path

perms file_perms

directory_entry_file

id bigserial

target sha1_git

name unix_path

perms file_perms

directory_entry_rev

id bigserial

target sha1_git

name unix_path

perms file_perms

skipped_content

sha1 sha1

sha1_git sha1_git

length bigint

revision

id sha1_git

date timestamp

committer_date timestamp

directory sha1_git

message bytea

author bigint

committer bigint

origin

id bigserial

type text

url text

origin_visit

origin bigint

visit bigint

date timestamp

snapshot_id bigint

snapshot

object_id bigserial

id sha1_git

person

id bigserial

release

id sha1_git

target sha1_git

date timestamp

name bytea

comment bytea

author bigint

revision_history

id sha1_git

parent_id sha1_git

parent_rank integer

snapshot_branch

object_id bigserial

name bytea

target bytea

target_type snapshot_target
snapshot_branches

snapshot_id bigint

branch_id bigint

Figure 3: Simplified schema of the Software Heritage Graph Dataset and the number of artifacts in it

Listing 2: Most common commit operations
SELECT COUNT (*) AS c, word

FROM

(SELECT LOWER(REGEXP_EXTRACT(FROM_UTF8(

message), '^\w+')) AS word

FROM revision)

WHERE word != ''

GROUP BY word

ORDER BY COUNT (*) DESC LIMIT 20;

As an example of a query useful in software evolution research,
consider the Listing 2. It is based on the convention dictating that
commit messages should start with a summary expressed in the
imperative mood [12, 3.3.2.1]. Based on that idea, the query uses a
regular expression to extract the first word of each commit message
and then tallies words by frequency. By scanning 37 gb in 30′′
it gives us that commits concern the following common actions
ordered by descending order of frequency: add, fix, update, remove,
merge, initial, create.

sql queries can also be used to express more complex tasks. Con-
sider the research hypothesis that weekend work on open source
projects is decreasing over the years as evermore development work
is done by companies rather than volunteers. The corresponding
data can be obtained by finding the ratio between revisions com-
mitted on the weekends of each year and the total number of that
year’s revisions (see Listing 3). The results, obtained by scanning
14 gb in 7′′ are inconclusive, and point to the need for further
analysis.

The provided dataset forms a graph, which can be difficult query
with sql. Therefore, questions associated with the graph’s charac-
teristics, such as closeness, distance, and centrality, will require the
use of other methods, like Spark (see Section D). Yet, interesting
metrics can be readily obtained by limiting scans to specific cases,
such as merge commits. As an example, Listing 4 calculates the
average number of parents of each revision (1.088, after scanning

Listing 3: Ratio of commits performed during each year’s
weekends

WITH revision_date AS

(SELECT FROM_UNIXTIME(date / 1000000) AS date

FROM revision)

SELECT yearly_rev.year AS year ,

CAST(yearly_weekend_rev.number AS DOUBLE)

/ yearly_rev.number * 100.0 AS weekend_pc

FROM

(SELECT YEAR(date) AS year , COUNT (*) AS number

FROM revision_date

WHERE YEAR(date) BETWEEN 1971 AND 2018

GROUP BY YEAR(date)) AS yearly_rev

JOIN

(SELECT YEAR(date) AS year , COUNT (*) AS number

FROM revision_date

WHERE DAY_OF_WEEK(date) >= 6

AND YEAR(date) BETWEEN 1971 AND 2018

GROUP BY YEAR(date)) AS yearly_weekend_rev

ON yearly_rev.year = yearly_weekend_rev.year

ORDER BY year DESC;

Listing 4: Average number of a revision’s parents
SELECT AVG(fork_size)

FROM (SELECT COUNT (*) AS fork_size

FROM revision_history

GROUP BY parent_id);

23 gb in 22′′) by grouping revisions by their parent identifier. Such
queries can be used to examine in depth the characteristics of merge
operations.

Although the performance of Athena can be impressive, there
are cases where the available memory resources will be exhausted
causing an expensive query to fail. This typically happens when
joining two equally large tables consisting of hundreds of mil-
lions of records. This restriction can be overcome by sampling
the corresponding tables. Listing 5 demonstrates such a case. The
objective here is to determine the modularity at the level of files
among diverse programming languages, by examining the size

3

DR
AF
T

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Mining Software Repositories, May 2020, Seoul, South Korea Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

Listing 5: Average size of the most popular file types
SELECT suffix ,

ROUND(COUNT (*) * 100 / 1e6) AS Million_files ,

ROUND(AVG(length) / 1024) AS Average_k_length

FROM

(SELECT length , suffix

FROM

-- File length in joinable form

(SELECT TO_BASE64(sha1_git) AS sha1_git64 , length

FROM content) AS content_length

JOIN

-- Sample of files with popular suffixes

(SELECT target64 , file_suffix_sample.suffix AS suffix

FROM

-- Popular suffixes

(SELECT suffix FROM (

SELECT REGEXP_EXTRACT(FROM_UTF8(name),

'\.[^.]+$') AS suffix

FROM directory_entry_file) AS file_suffix

GROUP BY suffix

ORDER BY COUNT (*) DESC LIMIT 20) AS pop_suffix

JOIN

-- Sample of files and suffixes

(SELECT TO_BASE64(target) AS target64 ,

REGEXP_EXTRACT(FROM_UTF8(name),

'\.[^.]+$') AS suffix

FROM directory_entry_file TABLESAMPLE BERNOULLI (1))

AS file_suffix_sample

ON file_suffix_sample.suffix = pop_suffix.suffix)

AS pop_suffix_sample

ON pop_suffix_sample.target64 = content_length.sha1_git64)

GROUP BY suffix

ORDER BY AVG(length) DESC;

of popular file types. The query joins two 5 billion row tables:
the file names and the content metadata. To reduce the number
of joined rows a 1% sample of the rows is processed, thus scan-
ning 317 gb in 1′20′′. The order of the resulting language files
(JavaScript>C>C++>Python>php>C#> Ruby) hints that, with the
exception of JavaScript, languages offering more abstraction facili-
ties are associated with smaller source code files.

Appendix D SPARK USAGE
For a more fine-grained control of the computing resources, it is
also possible to use the dataset on Spark, through a local install or
using the public dataset on Azure Databricks.

Once the tables are loaded in Spark, the query in Listing 6 can
be used to generate an outdegree distribution of the directories.

Listing 6: Outdegree distribution of directories
%sql

select degree , count (*) from (

select source , count (*) as degree from (

select hex(source) as source ,

hex(target) as dest from (

select id as source ,

explode(dir_entries) as dir_entry

from directory)

inner join directory_entry_file

on directory_entry_file.id = dir_entry

)

group by source

)

group by degree

order by degree

To analyze the graph structure, the GraphFrames library [9] can
also be used to perform common operations on the graph. Listing 7
demonstrates how one can load the edges and nodes of the revision

tables as a GraphFrame object, then compute the distribution of
the connected component sizes in this graph.

Listing 7: Connected components of the revision graph
from graphframes import GraphFrame

revision_nodes = spark.sql("SELECT id FROM revision")

revision_edges = spark.sql("SELECT id as src , parent_id as dst "

"FROM revision_history")

revision_graph = GraphFrame(revision_nodes , revision_edges)

revision_cc = revision_graph.connectedComponents ()

distribution = (revision_cc.groupby (['component ']). count()

.withColumnRenamed('count ', 'component_size ')

.groupby (['component_size ']). count ())

display(distribution)

By allowing users to choose the amount of resources in the
cluster, Spark lifts the constraints imposed by limits in Athena,
such as timeouts and limited scale-out factor. This is important for
computationally intensive experiments or very large join operations,
which can only be achieved through sampling in Athena.

Spark is also more flexible in terms of the computations it can
perform, thanks to User-Defined Functions [4] that can be used to
specify arbitrary operations to be performed on the rows, which
isn’t possible with Athena.

Appendix E DATA SAMPLE
A sample of the data as well as instructions to run live queries on
the dataset using Amazon Athena can be found here:

https://annex.softwareheritage.org/public/dataset/graph/2019-01-
28/

4

https://annex.softwareheritage.org/public/dataset/graph/2019-01-28/
https://annex.softwareheritage.org/public/dataset/graph/2019-01-28/

DR
AF
T

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

The Software Heritage Graph Dataset:
Large-scale Analysis of Public Software Development History Mining Software Repositories, May 2020, Seoul, South Korea

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

REFERENCES
[1] 2019. Amazon Athena. https://aws.amazon.com/athena/.
[2] 2019. Apache Parquet. https://parquet.apache.org.
[3] 2019. Azure Databricks. https://azure.microsoft.com/en-in/services/databricks/.
[4] 2019. User-Defined Functions (UDFs) · The Internals of Spark SQL. https:

//jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-udfs.html.
[5] Pietro Abate, Roberto Di Cosmo, Louis Gesbert, Fabrice Le Fessant, Ralf Treinen,

and Stefano Zacchiroli. 2015. Mining Component Repositories for Installability
Issues. In 12th IEEE/ACM Working Conference on Mining Software Repositories,
MSR 2015, Florence, Italy, May 16-17, 2015, Massimiliano Di Penta, Martin Pinzger,
and Romain Robbes (Eds.). IEEE Computer Society, 24–33. https://doi.org/10.
1109/MSR.2015.10

[6] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. 2018. Build-
ing the Universal Archive of Source Code. Commun. ACM 61, 10 (October 2018),
29–31. https://doi.org/10.1145/3183558

[7] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
Label Propagation: AMultiResolution Coordinate-Free Ordering for Compressing
Social Networks. In Proceedings of the 20th international conference on World Wide
Web, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,
Elisa Bertino, and Ravi Kumar (Eds.). ACM Press, 587–596.

[8] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[9] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and Matei
Zaharia. 2016. Graphframes: an integrated api for mixing graph and relational
queries. In Proceedings of the Fourth International Workshop on Graph Data Man-
agement Experiences and Systems. ACM, 2.

[10] Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. 2018. Identifiers
for Digital Objects: the Case of Software Source Code Preservation. In iPRES
2018: 15th International Conference on Digital Preservation.

[11] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage:Why andHow
to Preserve Software Source Code. In iPRES 2017: 14th International Conference
on Digital Preservation.

[12] Michael Freeman. 2019. Programming Skills for Data Science: Start Writing Code
to Wrangle, Analyze, and Visualize Data with R. Addison-Wesley, Boston.

[13] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Struc-
ture and evolution of package dependency networks. In Proceedings of the 14th
International Conference on Mining Software Repositories, MSR 2017, Buenos Aires,
Argentina, May 20-28, 2017, Jesús M. González-Barahona, Abram Hindle, and Lin
Tan (Eds.). IEEE Computer Society, 102–112. https://doi.org/10.1109/MSR.2017.55

[14] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. InAdvances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA, August
16-20, 1987, Proceedings (Lecture Notes in Computer Science), Carl Pomerance (Ed.),
Vol. 293. Springer, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[15] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2019. The Software
Heritage Graph Dataset: Public software development under one roof. In MSR
2019: The 16th International Conference on Mining Software Repositories. IEEE,
138–142. https://doi.org/10.1109/MSR.2019.00030

[16] Diomidis Spinellis. 2005. Version control systems. IEEE Software 22, 5 (2005),
108–109.

[17] Megan Squire. 2017. The Lives and Deaths of Open Source Code Forges. In
Proceedings of the 13th International Symposium on Open Collaboration, OpenSym
2017, Galway, Ireland, August 23-25, 2017, Lorraine Morgan (Ed.). ACM, 15:1–15:8.
https://doi.org/10.1145/3125433.3125468

[18] Michael Stonebraker and Greg Kemnitz. 1991. The POSTGRES next generation
database management system. Commun. ACM 34, 10 (1991), 78–92.

[19] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache Spark: a unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56–65.

5

https://aws.amazon.com/athena/
https://parquet.apache.org
https://azure.microsoft.com/en-in/services/databricks/
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-udfs.html
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-udfs.html
https://doi.org/10.1109/MSR.2015.10
https://doi.org/10.1109/MSR.2015.10
https://doi.org/10.1145/3183558
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1145/3125433.3125468

	Abstract
	1 Introduction
	2 Availability
	3 Research questions and challenges
	Appendix A Figures
	Appendix B Data Model
	Appendix C Sample SQL Queries
	Appendix D Spark usage
	Appendix E Data sample
	References

