
Forking Without Clicking:
on How to Identify Software Repository Forks

Antoine Pietri

antoine.pietri@inria.fr

Inria

Paris, France

Guillaume Rousseau

guillaume.rousseau@u-paris.fr

Université de Paris and Inria

Paris, France

Stefano Zacchiroli

zack@irif.fr

Université de Paris and Inria

Paris, France

ABSTRACT
The notion of software “fork” has been shifting over time from the

(negative) phenomenon of community disagreements that result in

the creation of separate development lines and ultimately software

products, to the (positive) practice of using distributed version con-

trol system (VCS) repositories to collaboratively improve a single

product without stepping on each others toes. In both cases the

VCS repositories participating in a fork share parts of a common

development history.

Studies of software forks generally rely on hosting platform

metadata, such as GitHub, as the source of truth for what consti-

tutes a fork. These “forge forks” however can only identify as forks

repositories that have been created on the platform, e.g., by click-

ing a “fork” button on the platform user interface. The increased

diversity in code hosting platforms (e.g., GitLab) and the habits of

significant development communities (e.g., the Linux kernel, which

is not primarily hosted on any single platform) call into question

the reliability of trusting code hosting platforms to identify forks.

Doing so might introduce selection and methodological biases in

empirical studies.

In this article we explore various definitions of “software forks”,

trying to capture forking workflows that exist in the real world.

We quantify the differences in how many repositories would be

identified as forks on GitHub according to the various definitions,

confirming that a significant number could be overlooked by only

considering forge forks. We study the structure and size of fork net-

works, observing how they are affected by the proposed definitions

and discuss the potential impact on empirical research.

KEYWORDS
software evolution, source code, software fork, open source, free

software, version control system

ACM Reference Format:
Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli. 2020. Forking

Without Clicking: on How to Identify Software Repository Forks. In 17th
International Conference on Mining Software Repositories (MSR ’20), October
5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3379597.3387450

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

MSR 2020, 25-26 May, 2020, Seoul, South Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00

https://doi.org/10.1145/3379597.3387450

1 INTRODUCTION
How developers and software communities work on their projects,

and how this relationship evolves over time, have been topics of

interest in software engineering research for many decades.

Historically, software “forking” [21] has been intended as the

practice of taking the source code and development history of

an existing software product to create a new, competing product,

whose development will happen elsewhere and taken to different

directions. This kind of “hard fork” is enabled by free/open source

software (FOSS) licensing [10] and its possibility is an asset that

guarantees freedom of development; while the actual occurrence of

a hard fork has generally been considered a liability [28] for project

sustainability [20, 22, 26].

In the past decade the rise in popularity of distributed version

control systems (DVCS) [31] introduced a significant shift of par-

adigm and terminology. The expression “fork” is now generally

intended [36] to refer to the mere technical act of creating a new

VCS repository that contains the full history (at the time of fork) of

a preexisting repository, without an implicit negative connotation

(also called “development forks” [10]). Repository forks can be cre-

ated on social coding platforms [7, 33] with as little as a click on a

button. Then, while a forked repository can be used to hard fork a

project, often it is just a way to work on software improvements

that will be eventually sent back to the originating project as pull

requests [11] for integration.

Likely as a consequence of the prevalence of social coding plat-

forms, recent literature on forks has focused on a single source of

truth to determine what constitutes a fork: metadata provided by

code hosting providers, and most notably GitHub. Clicking the fork

button on GitHub indeed, in addition to cloning development his-

tory into a new repository, also registers a “is forked from” relation-

ship between the new repository and its parent. This relationship

forms an ancestry graph that GitHub makes available through its

API and that is what has traditionally been studied as a large, easily

exploitable fork network.

The first drawback of trusting platform metadata as source of

truth for what repository is a fork is that it is platform-specific.

One cannot identify as forks repositories hosted on GitHub that

has been forked from, say, GitLab, or more generally non-GitHub

hosted repositories, and vice-versa. Similarly, although arguably

less relevant from a quantitative point of view, one cannot recognize

as forks, say, Git repositories used to collaborate with Subversion

repositories via git-svn. For a fork ecosystem to be properly stud-

ied via the current approach, all the parallel development must

happen using the same VCS and on the same platform. While the

prevalence of Git does not seem to be waning, Git code hosting

https://doi.org/10.1145/3379597.3387450
https://doi.org/10.1145/3379597.3387450

MSR 2020, 25-26 May, 2020, Seoul, South Korea Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli

diversity is increasing, making the platform-specific part of this

problem potentially severe.

A second, more subtle methodological drawback is that trusting

platform metadata introduces a selection bias on both the amount

and type of forks that are considered. The fact that social coding

platform strongly encourage, and sometimes even automate, the

creation of forked repositories as the main way to contribute even

the smallest one-liner change, inflates the number of forks. Many of

these (soft) forks will be short-lived in terms of development activity.

Hard forks will comparatively be more long lived and will not

necessarily reside on the same code hosting platform. The example

of the Linux kernel community is revealing in this respect: several

copies of the full development history of Linux exist on GitHub,

but are not recognizable as forks of torvalds/linux according to

platform metadata, because kernel development does not primarily

happen on GitHub and kernel developers create their repositories

using git clone.
Fork inflation also results in increased duplication of software

artifacts (source code files or directories, commits, . . .) across repos-

itories [29], which has a significant impact on fork studies that rely

on metrics as simple as repository size (measured as the number

of hosted commits). Filtering out forked repository is a common

solution to this problem, which calls into question how to properly

identify forks.

The absence of extensive, homogeneous fork research has been

pointed out in the past as a missing piece [28] in the literature. In

this paper we try to provide methodological tools to enable fork

studies that do not restrict themselves to platform metadata to

recognize forks, thereby removing the constraint of analyzing a

single platform and mitigating the risk of selection biases.

As an alternative to relying on platform metadata to recognize

forks we propose to compare the content of VCS and consider as

forks repositories that share artifacts such as commits or entire

source trees. We will explore the impact of different such definitions

and compare their impact in terms of the amount and structure

of forks identified using platform metadata. Specifically, we will

answer the following research questions:

RQ1: how do code hosting platform information about
which VCS repositories are forks compare to the presence
of shared source code artifacts in repositories?

RQ2: how are (a) the amount of forks and (b) the structure
of fork networks affected by fork definitions based onVCS
artifact sharing?
RQ1 will intuitively assess the level of trustworthiness of plat-

form fork metadata: if many repositories, e.g., share commits but are

not identified as fork by platform metadata, then relying on those

metadata alone would appear to be methodologically dangerous. As

one might consider different types of shared VCS artifacts (commits,

source tree directories, individual files, . . .) as fork evidence, RQ2

will provide an empirical evaluation of the effects of basing fork

definitions on one or the other.

Paper structure. Section 2 explores the spectrum of fork defini-

tions considered in the paper. Section 3 presents the experimental

methodology and used datasets. Results are discussed in Section 4,

threats to their validity in Section 5. Before concluding, related

work is discussed in Section 6.

Replication package. A replication package for this paper is avail-

able from Zenodo at https://zenodo.org/record/3610708.

2 WHAT IS A FORK?
In this section we explore the spectrum of possible definitions of

what constitutes a fork. In the following we will use the term “fork”

to mean a forked software repository, without discriminating be-

tween “hostile” (or hard forks, according to the terminology of [36])

and development forks. We propose three definitions, correspond-

ing to three types of forks—type 1 to 3, reminiscent of code clone

classification [27, 30]—along a spectrum of increased sharing of

artifacts commonly found in version control systems (VCS), such

as commits and source code directories.

The first definition, of type 1 forks, relies solely on code hosting

platform information and requires no explicit VCS artifact sharing

between repositories to be considered forks (although it allows it):

Definition 2.1 (Type 1 fork, or forge fork). A repository𝐵 hosted on

code hosting platform 𝑃 is a type 1 fork (or forge fork) of repository
𝐴 hosted on the same platform, written 𝐴 ⇝1 𝐵, if 𝐵 has been

created with an explicit “fork repository 𝐴” action on platform 𝑃 .

Although informal and seemingly trivial, this definition is both

meaningful and actionable on current major code hosting platforms.

For example, GitHub stores an explicit “forked from” relationship

and makes it available via its repositories API:
1

The parent and source objects are present when

the repository is a fork. parent is the repository this

repository was forked from, source is the ultimate

source for the network.

GitLab does the same and exposes type 1 fork information via its

projects API:
2

If the project is a fork, and you provide a valid token

to authenticate, the forked_from_project field will

appear in the response.

which corresponds to exploitable JSON metadata such as:

{
"id":3,
...
"forked_from_project":{

"id":13083,
"description":"GitLab Community Edition",
"name":"GitLab Community Edition",
...
"path":"gitlab -foss",
"path_with_namespace":"gitlab -org/gitlab -foss",
"created_at":"2013-09-26T06:02:36.000Z",

...

Without getting too formal we observe that each repository

is the forge fork of at most one repository (its parent) and that

the relation of being a forge fork is: not reflexive (𝐴 ̸⇝1 𝐴), not

symmetric (𝐴 ⇝1 𝐵 does not imply—and, in fact, excludes—that

𝐵 ⇝1 𝐴), not transitive (𝐴 ⇝1 𝐵 and 𝐵 ⇝1 𝐶 does not imply—

and in fact, due to parent uniqueness, excludes—that 𝐴 ⇝1 𝐶).

1
https://developer.github.com/v3/repos/, retrieved 2020-01-13.

2
https://docs.gitlab.com/ee/api/projects.html, retrieved 2020-01-13

https://zenodo.org/record/3610708
https://developer.github.com/v3/repos/
https://docs.gitlab.com/ee/api/projects.html

Forking Without Clicking: How to Identify Forks MSR 2020, 25-26 May, 2020, Seoul, South Korea

A B

C D

E

F

G

repository

forked from

Figure 1: Type 1 forks, or forge forks, as declared on code
hosting platforms. Repository 𝐵 is a forge fork of 𝐴, 𝐶 and
𝐷 are forge fork of 𝐵, 𝐹 of 𝐸, while no repository is a forge
fork of𝐺 . Note how this definition induces a global, directed,
forge fork graph (specifically: a forest of disjoint trees).

BA

6

3

5

2

1

4

repository

commit

Figure 2: Type 2 forks, or shared commit forks. Repository
𝐴 is a fork of 𝐵 and vice versa, since they share commit 1.

The latter might seem surprising at first but is consistent with

the definition, because the action resulting on the creation of 𝐶

happened on 𝐵, not 𝐴. (We will introduce later a related notion of

repository relationship that captures transitivity.)

Forge forks induce a global directed graph on repositories, specif-

ically a forest of disjoint fork-labeled trees, as depicted in Figure 1.

Type 2 forks, or shared commit forks, are based on the ability

offered bymost VCS (and all distributed VCS) of globally identifying

commits across any number of repositories, usually by the means of

intrinsic commit identifiers based on cryptographic hashes [8, 31].

Given the ability to identify commits across different repositories

we can define type 2 forks as follows:

Definition 2.2 (Type 2 fork, or shared commit fork). A repository

𝐵 is a type 2 fork (or shared commit fork) of repository 𝐴, written
𝐴 ⇝2 𝐵 if it exists a commit 𝑐 contained in the development

histories of both 𝐴 and 𝐵.

Figure 2 shows an example of 2 repositories, 𝐴 and 𝐵 that are

type 2 forks of each other, due to the fact they have in common

commit 1, the initial commit; their respective development histories

diverged immediately after that commit and never shared any other

commits. In the general case shared commit forks will share many

more commits: all the commits that were available at the time of

the most recent development history divergence.

Differently from type 1 forks, the relation of being a type 2 fork

is symmetric (𝐴⇝2 𝐵 implies 𝐵⇝2 𝐴), but still not transitive (as

three repositories 𝐴, 𝐵 and 𝐶 can have shared artifacts between

𝐴 and 𝐵 and between 𝐵 and 𝐶 without there necessarily being a

shared artifact between 𝐴 and 𝐶).

BA

10

7

5

9

1

2

4

38

6

repository

commit

root directory

Figure 3: Type 3 fork, or shared root fork. Repository 𝐴 is
a fork of 𝐵 and vice versa, since they share root directory
1. As per shared commit forks, type shared root forks are
symmetric.

Intuitively, the notion of shared commit forks is more robust

than that of forge forks because it allows to recognize as forks—in

the broad sense of “repositories that collaborate with one another”—

repositories that are hosted on different platforms. A repository

hosted on GitLab.com, or your personal git repository on your

homepage, can be recognized as a fork of a another hosted on

GitHub. The price to pay is that, due to symmetry, the definition

alone is not enough to orientate the relation; it does not capture

which repository “came first”.

We can push this idea further, trying to make it even more

robust, and capable of recognizing as forks repositories that have

no recognizable shared commits, but do share entire source trees.

That is of interest when, for example, collaboration happens using

different version control systems (e.g., a developer using git-svn

to participate into the development of a Subversion based project).

Type 3 forks, or shared root (directory) forks, allow to capture those

situations:

Definition 2.3 (Type 3 fork, or shared root fork). A repository 𝐵 is

a type 3 fork (or shared root fork) of a repository𝐴, written𝐴⇝3 𝐵,

if there exist a commit 𝑐𝐴 in the development history of 𝐴 and a

commit 𝑐𝐵 in that of 𝐵 such that the full source code trees of the

two commits are identical.

The intuition behind type 3 forks is depicted in Figure 3. Note

that it is not enough for the two repositories to share any arbitrary

sub-directory to be considered forks, as that would consider as forks
repositories that embed third-party libraries, an arguably undesired

consequence; we need the root directories of two commits to be

(recursively) equal for establishing a shared root fork relationship.

The same properties of type 2 forks apply to type 3 forks: the

shared root fork relation is also symmetric. In most VCS, and in all

modern DVCS, type 2 forks is also a strictly larger relation than

type 3 forks: 𝐴 ⇝2 𝐵 implies 𝐴 ⇝3 𝐵, because if there exists a

shared commit 𝑐 that makes 𝐴 and 𝐵 shared commit forks, then the

root directory pointed by 𝑐 also makes 𝐴 and 𝐵 shared root forks

(due to the cryptographic properties of intrinsic commit identifiers

in DVCS). This property of inclusion, in the sense of one definition

implying the other, is at the heart of the analysis made in section

4.3, studying the aggregation processes of networks and cliques.

MSR 2020, 25-26 May, 2020, Seoul, South Korea Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli

In theory we could go further, and introduce an even more lax

notion of fork, that equates repositories sharing as little as a sin-

gle file, but that would exacerbate the problematic behavior we

discussed for sharing sub-directories.

Armed with these definitions we will be able to answer RQ1, by

comparing the number of forks identified by Definition 2.1 with

those identified by Definition 2.2 and/or 2.3 (that we refer to as

intrinsic forks). To fully address RQ2 on the other hand we need to

capture the notion of “community” of repositories used for collabo-

ration, as follows:

Definition 2.4 (Type 𝑇 fork network). The type 𝑇 fork network of

a repository 𝐴 is the smallest set N𝑇
𝐴

such that:

• 𝐴 ∈ N𝑇
𝐴

• ∀𝐵 ∈ N𝑇
𝐴
, 𝐵⇝𝑇 𝐶 =⇒ 𝐶 ∈ N𝑇

𝐴

• ∀𝐵 ∈ N𝑇
𝐴
, 𝐶 ⇝𝑇 𝐵 =⇒ 𝐶 ∈ N𝑇

𝐴

That is, a fork network is the set of all repositories reachable

from a given one, following both forked from (parents) and forked

to repositories (children). The definition is parametric in the type of

forks, so we have type 1 fork networks (N1
), type 2 fork networks

(N2
), and type 3 fork networks (N3

).

A stricter notion that will come in handy is that of repository

cliques, sets of repositories that are all direct forks (i.e., neither

transitive nor reverse transitive) of each other:

Definition 2.5 (Type 𝑇 fork clique). The type 𝑇 fork clique of a
repository 𝐴 is the largest set C𝑇

𝐴
such that:

• 𝐴 ∈ C𝑇
𝐴

• ∀𝐶, (∀𝐵 ∈ C𝑇
𝐴
, 𝐵⇝𝑇 𝐶 ∧𝐶 ⇝𝑇 𝐵) =⇒ 𝐶 ∈ C𝑇

𝐴

Note that, while this definition is parametric in the type of forks

too, fork cliques make intuitive sense only for type 2 and type 3

forks; type 1 forks (forge forks) only have singleton cliques as the

relation is not symmetric.

3 METHODOLOGY
3.1 Dataset
Our goal is to experimentally determine the amount and structure

of forks for the various definitions we have introduced. To do so

we will use two datasets: the Software Heritage Graph Dataset [25],

which contains the development history needed to find intrinsic

fork relationships, and a reference forge-specific dataset, GHTor-

rent [12], which contains the fork ancestry relationships as captured

by GitHub.

GHTorrent. GitHub is the largest public software forge, and is

therefore the candidate of choice to study forge forks (type 1).

GHTorrent [12] crawls and archives GitHub via its REST API and

makes periodical data dumps available in a relational table format.

In its database schema, the project table contains a unique identi-

fier for each repository, and a forked_from column contains the

ID of the repository it has been forked from if the repository is

considered to be a forge forks. A single SQL query on this table

allows to extract the full graph of GitHub-declared forks, e.g.:
3

3
Additional URL gymnastic is needed in the query to cross-reference GHTorrent

project URLs with Software Heritage ones; we refer to the replication package for this

kind of details.

B origins (“repositories”)

snapshots

releases (“tags”)

revisions (“commits”)

directories (“trees”)

contents (“blobs”)

Figure 4: The Software Heritage Graph Dataset data model

select parents.url as parent ,
projects.url as child

from projects
inner join projects as parents

on projects.forked_from = parents.id

Software Heritage Graph Dataset. Software Heritage [1, 9] is the
largest publicly accessible archive of software source code and

accompanying development history, spanning more than 90 mil-

lion software projects retrieved from major development forges

including GitHub and GitLab.com. The Software Heritage Graph

Dataset [25] is an offline dataset containing the development history

of all the projects in Software Heritage in a tabular representation

of a unified directed acyclic graph (DAG). As the archive encom-

passes a substantial portion of all the public GitHub repositories, it

is possible to cross-reference the origins contained in this dataset

with the ones in GitHub, our reference for forge forks.

The Software Heritage Graph Dataset data model maps the tradi-

tional concepts of VCS as nodes in a Merkle DAG [19], as shown in

Figure 4. As a consequence, all the development artifacts, including

commits and source trees, are natively deduplicated within and

across projects. This property is particularly useful to find intrinsic

forks, as it enables tracking the relevant artifacts (revisions and

directories) across the entire dataset and link them back to their

source repositories.

The dataset contains two intermediate layers between reposito-

ries and the commit graph they point to: snapshots, which are point

in time captures of the state of a repository; and releases (or “tags”),
which are revisions (or commits) labeled with a specific name. As

none of our fork definitions depend on these artifacts, the two layers

can be flattened out so that the origins point directly to the revi-

sion graph. Likewise, the blob layer and the directory layer are not

needed to find shared commit forks (Definition 2.2), while shared

root forks (Definition 2.3) only require the root directory of each

revision. Filtering out the unnecessary nodes reduces the graph to

a more reasonable size of 2 billion nodes (down from 10 billion),

which makes it easier to process on a single machine. The structure

of the resulting subgraph closely matches the examples in Figure 2

and Figure 3, making it easy to verify the intrinsic definitions.

Forking Without Clicking: How to Identify Forks MSR 2020, 25-26 May, 2020, Seoul, South Korea

BA C

Figure 5: Fork networks identified as connected compo-
nents, for the case of shared commit (type 2) forks. Con-
nected components are computed on the undirected version
of the shown Merkle DAG. Measuring network sizes as the
number of contained repository nodes we obtain that: repos-
itories A and B are forks of each other and members of a
network of size 2, while repository C is in its own singleton
network.

We run the experiments on the compressed version of the two

graph datasets, using the WebGraph framework [4, 5]. The Soft-

ware Heritage Graph Dataset is already distributed as a compressed

BVGraph, along with the swh-graph helper library [3] to run tra-

versal algorithms easily. The GHTorrent can be compressed from its

relational database format using the swh-graph compress utility.

3.2 Fork networks
The easiest way to get a first sense of the amount and structure

of forks according to the various definitions is to find all fork net-

works, as per Definition 2.4. This can be done in linear time with

a simple graph traversal with linear complexity: two repositories

are in the same network if and only if there exists a path between

them in the undirected subgraph of origins and revisions. (We re-

call from the dataset section that we have removed the snapshot

and revision layers, so that root commits are directly pointed by

repository nodes.) Finding all the fork networks is therefore equiv-

alent to computing the connected components on this subgraph, as

exemplified in Figure 5.

Using fork networks has the advantage of allowing easy inter-

pretations of the results. First, it is trivial to quantify how many

repositories are forks by counting the number of repositories that

belong to non-singleton networks. Besides, a direct comparison

can be made between the distribution of forge forks and shared

commit or root forks, as networks provide a partition method for

both graphs. The sizes of the networks can be directly compared

between the three definitions while keeping the invariant of num-

ber of total repositories. This is not the case when looking at fork

cliques, since the same repository can be found in multiple cliques,

which makes comparison harder.

BA C

Figure 6: Example ofmisleading clustering of fork networks.
Here, repositories A and C are in the same network because
there is a path between them, even though they do not share
common development history.

In GHTorrent origins are already linked together in a global

graph where the edges represent the forge-level forking relation-

ships. We can partition this forge fork graph in fork networks

similarly by computing all its connected components.

Our experimental design is therefore as follows: first, we list the

common non-empty repositories between the Software Heritage

Graph Dataset and GHTorrent. We then extract the aforementioned

subgraphs: the development history graph for Software Heritage

(origins→ {revisions, releases}→ commits) and the fork graph for

GHTorrent (origins→ origins). We then compute the connected

components of each graph using a simple depth-first traversal al-

gorithm, then output the origins contained in each component.

3.3 Fork cliques
While partitioning the corpus in fork networks gives a good idea

of how intrinsic forks are linked together, it can group together

repositories that are not forks of each other, as the intrinsic fork

relationship is not transitive. Figure 6 shows a pattern, that we have

verified as commonly found in the wild, where two different cliques

will be merged in the same fork network—A and B are part of the

same clique as they share development history; the same applies to

B and C; whereas A and C do not share any part of their respective

development histories but will end up in the same network. We

expect this effect to merge cliques into giant components, that will

make the size of the largest networks hard to interpret.

The other interesting metric that can be looked at is the distribu-

tion of fork cliques, as defined in Definition 2.5. While cliques do

not provide a partition function for the graph, they allow to narrow

down the actual extent of forking relationships within large fork

networks.

Due to the fact that shared commit fork cliques are defined

pairwise, the naive algorithm to find all the inclusion-maximal

cliques is superlinear: for each repository, walk through its commit

history and add all the commits to a queue, then take the transposed

graph to walk through the commit history backwards and list all

repository leaves. The time complexity of this algorithm is highly

unpractical: in the worst case, if all the repositories are forks of each

other, is has time complexity of O(𝑅 ×𝐶) where 𝐶 is the number

of commits and 𝑅 the number of repositories in the graph.

However, clever use of some properties on the DAG structure of

the commit graph can substantially speed up the algorithm. First,

MSR 2020, 25-26 May, 2020, Seoul, South Korea Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli

Algorithm 1 Find all the fork cliques

function FindOriginLeaves(r)

𝑆𝑂 ← empty set

for all 𝑛 ∈ AncestorsDFS(𝑟) do
if type(n) = ORIGIN then

add 𝑛 to 𝑆𝑂
end if

end for
return 𝑆𝑂

end function
function FindCliqes(𝐺)

𝑆𝐹 ← empty set

𝑆𝐶 ← empty set

for all 𝑛 ∈ 𝐺 do
if type(𝑛) = REVISION and 𝑛 has no parents then

𝑐 ← FindOriginLeaves(𝑛)
𝑓𝑐 ← Fingerprint(𝑐)
if 𝑓𝑐 ̸∈ 𝑆𝐹 then

add 𝑓𝑐 to 𝑆𝐹
add 𝑐 to 𝑆𝐶

end if
end if

end for
return 𝑆𝐶

end function

fork cliques can be generated by iterating on the common ancestors

instead of the repositories: for each commit 𝑐 , if it has more than one

repository leave when doing a traversal on the transposed graph,

then 𝑐 was a common commit ancestor, and the generated set of

repositories is a fork clique. Besides, since the ancestry relationship

is transitive, the clique with commit 𝑐 as a common ancestor is the

same as the clique generated by running the traversal on its parents.

By induction, it is possible to compute all the cliques simply by

doing one traversal per “root” commit.

The resulting algorithm is Algorithm 1: for each root commit

with no parents, we generate the clique of all repositories that

contain it. We use a cryptographic hash fingerprint to avoid adding

multiple times the same clique if it has multiple root commits.

While this algorithm technically does not change the worst case

complexity on arbitrary graphs, it is still a huge speed improvement

in our case, as commit chains tend to be degenerate (i.e., very

long chains with indegrees and outdegrees close to 1 on average).

Algorithm 1 has a best-case complexity of Θ(𝐶), equivalent to a

single DFS traversal. The commit graph is largely close to this best-

case scenario, making the algorithm run in just a few hours on the

entire corpus.

While Algorithm 1 works well for shared commit forks, the

speedup does not apply to shared root forks: the induction property

no longer works for root directories, as they are not organised in

nearly-degenerate chains. The time complexity for type 3 forks

is closer to the worst case of O(𝐶 × 𝑅), which makes the clique

analysis impractical for this kind of forks.

Algorithm 2 Compute the p-cliques partition function

function CliqesToPartition(𝐿𝐶)

ReverseSizeSort(𝐿𝐶) ⊲ Process larger cliques first

𝐼 ← empty map ⊲ Build reverse index

for all 𝑐𝑖 ∈ 𝐿𝐶 do
add {𝑖 → 𝑐𝑖 } to 𝐼

end for
for all 𝑐𝑖 ∈ 𝐿𝐶 do

for all 𝑟 𝑗 ∈ 𝑐𝑖 do
for all 𝑠 ∈ 𝐼 [𝑟 𝑗] do ⊲ Remove subsequent

occurrences of 𝑟 𝑗if 𝑘 > 𝑖 then
remove 𝑟 𝑗 from 𝑠

end if
end for

end for
end for
𝐿𝐶 ← RemoveEmptySets(𝐿𝐶) ⊲ Remove cliques left empty

return 𝐿𝐶
end function

P-clique partition function. While cliques do not directly pro-

vide a way to partition the corpus in several fork clusters (be-

cause a single origin can be contained in multiple cliques), it is

possible to define a partition function based on them, e.g., by

always assigning repositories to the largest clique they belong

to. As repositories belonging to multiple cliques appear to be a

quite rare occurrence (as they require the equivalent of a git
merge --allow-unrelated-histories on two completely differ-

ent repositories), the arbitrary criterion choice is not expected to

be a significant caveat to interpret the results.

We use the Algorithm 2 to generate the partition function of the

graph based on cliques. To implement the criterion of attributing

repositories to their largest cliques, cliques are processed in decreas-

ing order of size. Building a reverse index of “repository→ clique

it belongs to” allows direct access to the subsequent occurrences

of repositories in smaller cliques to remove them. After doing so,

the cliques left empty are removed and the newly generated graph

partition can be returned.

The output of this algorithm generate a set of sets of origins that

are subsets of the input fork cliques. We call this set “fork p-cliques”
to emphasize the fact that they form a partition of the repository

set in which all the groups are fork cliques.

Once this p-clique graph partition is established, the fork def-

inition can once again be compared with the forge definition, by

looking at the difference between the size distribution of the parti-

tioned cliques of type 2 forks and the size distribution of networks

for type 1 forks.

4 RESULTS
We identified 71.9M repositories in common between the Software

Heritage Graph Dataset and GHTorrent, 41.4M of which are non-

empty. We focused our experiments on these repositories.

Forking Without Clicking: How to Identify Forks MSR 2020, 25-26 May, 2020, Seoul, South Korea

Table 1: Number of forks and networks by fork type

Fork type # forks # networks
Forge forks (type 1) 18.5 M (44.7%) 25.3 M

Shared commit forks (type 2) 20.1 M (48.4%) 24.0 M

Shared root forks (type 3) 25.3 M (61.1%) 18.5 M

 1×10-1

 1×100

 1×101

 1×102

 1×103

 1×104

 1×105

 1×106

 1×107

 1×108

 1×10-1 1×100 1×101 1×102 1×103 1×104 1×105 1×106 1×107

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
cy

 (
n
e
tw

o
rk

 s
iz

e
 ≤

 x
)

Network size

Forge forks
Intrinsic shared commit forks

Intrinsic shared root tree forks

Figure 7: Cumulative frequency distribution of fork net-
work sizes

4.1 Fork networks
In the GHTorrent graph, we found 25.3 M different connected

components, among which 22.9 M repositories isolated in their

own component, which means they are not forge forks (type 1) of

other repositories. The other 2.4 M connected components contain

the remaining 18.5 M repositories, which are all in fork networks.

These forge forks represent 44.74% of all repositories.

In the Software Heritage Graph Dataset, we found 24.0 M con-

nected components, among which 21.3 M isolated repositories. The

remaining 2.6 M components contain 20.1 M shared commit forks

(type 2), i.e., 48.44% of all repositories. We have hence almost 9%

more shared commit forks than forge forks, which is a significant

divergence for the most strict definition of forks based on shared

VCS artifacts.

For shared root forks (type 3), we found 18.5 M connected compo-

nents, among which 16.1 M isolated repositories and 25.3 intrinsic

forks (61.08% of all repositories), which is almost 37% more than the

forge forks. These results are summarized in Table 1. They suggest

that in between 1.6 M (3.8% of total) and 6.8 M (16%) reposi-
tories might be overlooked when studying forks using only
GitHub metadata as a source of truth for what is a fork.

Figure 7 shows the cumulative frequency distribution of fork

networks for intrinsic forks and forge forks. That is, for each fork

network size 𝑥 , the number of repositories in networks of size ≥ 𝑥

is shown. At first glance, the distribution of forge forks and shared

commit forks appear to be pretty similar (although the log scale

minimizes the differences between the two), which is a good sign

that the two definitions are not returning vastly different results.

The average size of fork networks is also about the same (≈ 7.6 for

type 2 forks, ≈ 7.7 for type 1). The situation appears to be quite

different for shared root forks, where the average size is ≈ 10.5 and

the frequency distribution is significantly farther from the reference

distribution of forge forks.

One distinguishing feature of each distribution of type 2 and

type 3 forks is the size of the largest connected component, which

is significantly larger than the largest networks of forge forks (by a

factor of 17 for shared revision forks, and 157 for shared root forks).

As discussed in Section 3.3, this is an expected outcome of our use

of network as a quantification metric and confirms the need for

further analysis through fork cliques. This does not however have

any implications on the quantification aspect of the experiment,

as partitioning this network further using fork cliques would still

yield the same number of non-isolated repositories.

4.2 Fork cliques
As expected, running Algorithm 1 to generate the shared-revision

cliques on the compressed graph does not take more than an hour,

which is the same order ofmagnitude as the time needed for a simple

full traversal of the revision graph [3]. This confirms our prediction

that in the shared-revision case, the average-case runtime of the

algorithm is close to Θ(𝑅).
The algorithm finds 24.5 M cliques, although the results are

difficult to interpret in this current state as the cliques overlap

together. A few key observations can nevertheless already be made,

notably the absence of very large cliques: the largest clique contains

92.4 M repositories, which is very similar to the largest forge fork

network (which contains 90.2 M repositories). This is consistent

with our intuition expressed in Section 3.3 that the largest intrinsic

fork networks are a specific feature of networks (as seen in Figure 6),

and that these artifacts disappear when looking at the cliques. It is

also possible to measure how the cliques overlap: 28 M repositories

are present in a single clique, while the remaining 13.3 M appear

two times or more. On average, each repository appears in ≈ 1.47

cliques.

Computing the p-clique partition function using Algorithm 2

removes this overlap to allow a direct comparison with the forge

fork networks. This algorithm takes a few minutes to process the 24

million cliques and returns the p-clique partition directly, restoring

the invariant of total number of repositories (41.5 M).

There are 24.0 M of p-cliques partitioning the graph, which is

pretty close to the number of forge fork networks in GitHub (25.3

M). 21.3 M repositories are isolated in their own p-clique (51.6%),

and the remaining 48.4% are in cliques of size larger than one,

which is consistent with the findings of Section 4.1 which uses fork

networks as a quantification mechanism.

Figure 8 shows the cumulative frequency distribution of the sizes

of the shared-commit fork cliques, compared to the baseline of forge

fork networks. As before, the graph can be read as: “for each clique

(resp. forge fork network) of size 𝑥 , the number of repositories

found in cliques (resp. networks) of size ≥ 𝑥”.

The visual similarity between the two distributions is striking:

while the shared-commit p-clique distribution seems to be consis-

tently above the forge-fork network baseline for groups of size ≥ 2,

they always appear to be very close to each other, even farther

in the tail. This suggests that type 2 forks capture well what
developers typically recognize as forks.

MSR 2020, 25-26 May, 2020, Seoul, South Korea Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli

 1×10-1

 1×100

 1×101

 1×102

 1×103

 1×104

 1×105

 1×106

 1×107

 1×108

 1×10-1 1×100 1×101 1×102 1×103 1×104 1×105 1×106 1×107

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
cy

 (
P
C

liq
u
e
 s

iz
e
 ≤

 x
)

PClique size

Forge forks
Intrinsic shared commit forks

Difference (intrinsic - forge)

Figure 8: Cumulative frequency distribution of intrinsic
fork p-cliques compared to forge fork networks

To formally assess this similarity, the graph also exhibits the cu-

mulative difference between the clique distribution and the baseline.

This is in essence, the cumulative size distribution of the cliques of

forks overlooked when using only the GitHub metadata. This cumu-

lative distributionmostly stays positive, suggesting that using
DVCS data to identify forks is overall a net gain in coverage.
It also appears that the difference is typically at least one order

of magnitude less than the size of the clusters, emphasizing the

proximity between the two definitions.

4.3 Aggregation process
Two repositories having a common commit ancestor necessarily

have a common root source tree (the root source tree of that com-

mon commit ancestor), so all the repositories that belong to the same

shared-commit network also belong to the same shared-directory

network. Similarly, we expect that most origins declared as forge

forks will be in the same shared commit and shared root source

tree fork networks. By switching from one definition to another,

we expect the clusters to aggregate together smaller clusters from

the previous definitions.

To characterize this aggregation process into fork clusters at

different granularities, we compute the Kolmogorov-Smirnov (KS)

distance between the weighted cumulative distributions function

of the clique or network size.

We note 𝛿𝑂 the KS difference between a fork definition A and a

fork definition B, and represent it as a function of the size of the

network (or partitioned clique). By definition 𝛿𝑂 is always equal to

zero for sizes 𝑠 = 1 (as all the forks are in clusters of size 𝑠 ≥ 1)

and 𝑠 = max(cluster sizes) (as there are no clusters larger than

this size).

Because the total number of repositories is invariant, we can plot

the KS distance weighted by repositories to see how the repositories

found in fork networks (or cliques) of a given size will progressively

aggregate into fork networks (or cliques) of different sizes. Figure 9

represents 𝛿𝑂 between the forge fork definition baseline and: shared

commit fork networks (top), shared commit p-cliques (bottom), and

shared root tree fork networks (middle)).

100 101 102 103 104 105 106 107

Network size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nu
m

be
r o

f O
rig

in
s

1e6

O : Forge Forks - Shared Commit Forks

100 101 102 103 104 105 106 107

Network size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f O
rig

in
s

1e7

O : Forge Forks - Shared Root Tree Forks

100 101 102 103 104 105 106 107

Network or Clique size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f O
rig

in
s

1e6
O : Forge Forks - PCliques Forks

Figure 9: Complementary Cumulative Weighted Distribu-
tion Functions Differences between forge fork network and
shared-commit fork network (top), shared root source tree
fork network (middle), and p-cliques based fork network
(bottom).

While this analysis shows the flux of repositories between clus-

ters identified by the different definitions, it can mask some com-

pensating phenomena by merging independent processes, as some

repositories can migrate from larger to smaller clusters, sometimes

leading to 𝛿𝑂 < 0 (Figure 9, bottom, 𝑠𝑖𝑧𝑒 ∼ 10
5
).

Forking Without Clicking: How to Identify Forks MSR 2020, 25-26 May, 2020, Seoul, South Korea

101 103 105 107

Network size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nu
m

be
r o

f O
rig

in
s

1e6

O: forge fork - shared commit fork
O: restricted to the giant network

Size of the giant network
Difference of isolated origins

Figure 10: Contribution (orange dots) of the giant (largest)
network that appear using shared commit fork definition
w.r.t. 𝜹𝑶 : forge fork − shared commit fork (Same as Fig. 9,
Top)

To narrow down this phenomenon, we specifically focus on the

largest shared-commit fork network to see how it contributes to

the global flux. By taking the repositories in this network and the

size distribution of the forge fork networks, we show in Figure 10

the repository flux, as defined above, and compare it to the corre-

sponding global flux.

Several points are noteworthy. First, only 15% (200 k origins over

1.53 M (red dotted)) of the origins that were isolated (blue dot for

𝑠𝑖𝑧𝑒 = 2) in forge fork network are aggregated in the giant network

of shared commit fork. This shows that the aggregation mechanism

is not only to this "giant" network, since ∼ 85% of the origins are

aggregated within smaller networks.

Then, the flux for the 6 largest networks (isolated blue and orange

dots around 10
5
that overlap) is almost the same whether we restrict

ourselves to the origins of the giant network (orange line) or to all

the networks (blue line). We conclude that aggregation for the large

network sizes is dominated by absorption into the giant cluster,

without any redistribution to smaller networks.

This confirms that the “aggregation/merge” mechanism which

happens when changing the definition is not just an absorption

phenomenon into a “super attractor”, but concerns all network

sizes, with larger networks absorbing networks of any size.

5 THREATS TO VALIDITY
Internal validity. Aside from forge forks (type 1) we have no

certainty on how well the proposed fork definitions capture what

developers would recognize as forks. While shared commit (type

2) and shared root (type 3) forks make intuitive sense, the sheer

volume of data to be analyzed makes it very hard to rule out the

existence of pathological cases. Certainly type 2 and type 3 fork

definitions can be “gamed”, making unrelated repositories appear

as forks when they intuitively are not. Unusual development work-

flows might also induce topology in the global development graph

that merge together repositories that would not be considered forks

by developers. There exists an apparent trade-off here between

fully automatable definitions based on VCS artifact sharing, and

qualitative assessment by developers that does not scale to datasets

like the one studied here.

Also as a consequence of the above we do not feel confident at

this stage in making a methodological judgment call on whether

type 2 or type 3 fork definitions “better” capture the essence of a

fork. We simply warn scholars about the extent of the discrepancies

between the number of forks detectable via shared VCS artifacts

and forge-level metadata. Further work, of both statistical nature

(looking for outliers) and based on structured interviews with de-

velopers (to review uncommon cases), is needed to improve over

this point.

External validity. The datasets used in this study do not capture

the full extent of publicly available development history, notably

due to their snapshot nature and their assembly through periodic

crawling processes. The Software Heritage Graph Dataset only

contains data from various forges to the extent of what is covered by

the Software Heritage archive, which might lag behind the tracked

forges, and GHTorrent is GitHub-specific. As we need comparable

samples we were limited by the intersection of the two datasets

in this study, which composes these limitations. Still, to the best

of our knowledge this is one of the largest quantitative fork study

to date, having considered more than 40 M public version control

system repositories.

In the future it would be interesting to extend this approach to

forges that are raising in popularity, and most notably GitLab. For

that we would need a GHTorrent equivalent (or corresponding ad

hoc crawling of that forge for the purposes of the study only).

6 RELATEDWORK
Accounts of the history of forking have been given by Nyman [21]

and Zhou et al. [36, Section 2]. The latter also covers the terminolog-

ical and cultural shift from hard forks (to be avoided) to forking as

the mere technical act of duplicating VCS history, possibly as basis

for future collaboration. The present work is agnostic to which in-

terpretation prevails, as in both cases the main observable effect of

forking are VCS repositories that share parts of an initially common

development history.

Hard forks. Hard forks have been studied extensively in seminal

work by Nyman [20–23], covering historical origins, motivations

for forking (or not), and sustainability considerations in the socioe-

conomic context of free/open source software (FOSS) development.

Robles and Barahona [28] give a detailed account of famous hard

forks, covering history, reasons, and outcomes.

These and other studies of hard forks are qualitative and focused

in nature. This paper is complementary to them as it proposes tools

to identify and quantitatively measure and observe forks, address-

ing the need of more extensive and homogeneous fork research

already observed in [28]. As far as we could determine without

fully replicating the corresponding studies, the VCS repositories

involved in the hard fork cases cited thus far would be correctly

identified as either type 2 or type 3 forks.

MSR 2020, 25-26 May, 2020, Seoul, South Korea Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli

Development forks. With the advent of DVCS and social cod-

ing [17], a significant amount of empirical research has been de-

voted to development forks. Motivations for forking on GitHub

have been studied by Jiang et al. [15].

The structure of forks on GitHub has been analyzed in several

studies. Thung et al. [33] have characterized the network structure

of social coding of GitHub, including forks. Padhye [24] have mea-

sured external contributions from non-core developers. Biazzini

and Baudry have proposed metrics to quantify and classify collabo-

ration in GitHub repositories pertaining to the same fork tree [2].

Rastogi and Nagappan [26]—as well as Stanciulescu et al. [32] for

firmware projects—have characterized forks on GitHub based on

the flow of commits between them and the originating repository.

Various performance aspects of the pull request development

model [11, 13] have been also studied. Latency in acceptance has

been a popular one [34, 35]; the amount of generated community en-

gagement [6, 7] another one. A more general accounting of efficient

forking patterns has recently been given by Zhou et al. [36].

To the extent we could determine it without full replication, all

aforementioned studies on forking for social coding purposes rely

on platform (and more specifically GitHub’s) metadata to determine

which repository is a fork (of which other). As such, involved repos-

itories would be recognized as type 1 forks, and non type 1 forks

(but nonetheless type 2 or 3 forks) might have been overlooked

in the studies. To be clear: we have no reason to believe that the

findings in those studies would turn out to be different by enlarging

the set of considered forks using the alternative definitions. We

simply propose to acknowledge fork type discrepancy as an internal

validity threat in future studies.

Fork definitions. Aside from the already discussed hard forks

v. development forks distinction, the only other work we are aware

of on formal or semi-formal fork characterization is [29], which in-

troduces the notion ofmost fit fork: a repository that, within a group
of VCS repositories that share commits, contain the largest number

of commits. The notion is proposed as a long-term approximation

of the main development line of a forked (hardly or otherwise)

project. Our notion of type 2 fork clique captures the same idea;

additionally we show how to use it to partition the global set of

VCS repositories into independent clusters instead of partitioning

the global set of commits.

Methodology. Methodological issues and risks in analyzingGitHub

were pointed out by Kalliamvakou et al. [16]. While not directly ad-

dressed as an explicit risk, forks not recognized as such are echoed

by perils “I: A repository is not necessarily a project” and “IX: Many ac-
tive projects do not conduct all their software development in GitHub”
in that article. Proposed mitigations were, respectively, “consider
the activity in both the base repository and all associated forked repos-
itories” and “Avoid projects that have a high number of committers
who are not registered GitHub users and projects which explicitly state
that they are mirrors in their description”.

Half a decade later it is arguably less of a risk that develop-

ment happens elsewhere and that a high number of committers

are not registered GitHub users (due to the current marked dom-

inance of GitHub). But it is still not zero and might be about to

increase again due to push back against centralized services among

FOSS developers. In this paper we provide methodological tools

and improve upon the mitigation techniques proposed back then.

Instead of avoiding projects, one can start from cross-platform

datasets [1, 18, 25, 29] and measure the amount of shared VCS

artifacts in the available repositories.

7 CONCLUSION
When relying only on forge-specific features and metadata to iden-

tify forked repositories, empirical studies on software forks might

incur into selection and methodological biases. This is because

repository forking can happen exogenously to any specific code

hosting platform and out of band, especially when using distributed

version control system (DVCS), which are currently very popular

among developers.

To mitigate these risks we proposed two different ways to iden-

tify software forks solely based on intrinsic VCS data and devel-

opment history: a shared commit forks (type 2) and a shared root
directory forks (type 3) definition of software forks, as opposed to

forge forks (type 1) which are identifiable only when created on spe-

cific code hosting platforms by, e.g., clicking on a “fork” UI element.

We also introduced the notions of fork cliques (set of repositories
that share parts of a common development history) and fork net-
works (repositories linked together by pairwise fork relationships)

as ways to understand and quantify larger sets of forks when using

non-transitive definitions of forking.

Via empirical analysis of 40+M repositories using the GHTorrent

and Software Heritage datasets we quantified the amount of type 2

and type 3 forks that are not recognizable as type 1 forks on GitHub,

which appears to be substantial: +9% forks for type 2 forks, +37%

more for type 3.

We also showed that the aggregation/merge dynamics into larger

clusters of related repositories upon changing fork definitions is not

just an absorption phenomenon into a “super attractor” cluster, but

that it concerns all clusters: smaller ones are absorbed into larger

ones of any size.

The methodological implications of our findings are that:

• Empirical software engineering studies on software forks

aiming to be exhaustive in their coverage of forked reposito-

ries should consider using fork definitions based on shared
VCS history rather than trusting forge-specific metadata.

• Depending on the research question at hand, the objects of

studies to consider when looking at repositories involved

in forks are either fork networks or fork cliques. The latter
have the advantage of excluding cases that exist in the wild

(e.g., on GitHub) in which repositories that do not share

VCS artifacts might end up in the same fork network due to

transitiveness.

• Any set of repositories can be partitioned in accordance with

its relevant shared commit fork cliques by computing its fork
p-clique partition function. This way of grouping together

repositories that are all type 2 forks of each other is easily

substitutable to partition approaches based on forge fork

metadata.

ACKNOWLEDGMENTS
The authors would like to thank Théo Zimmermann for his careful

review and comments on an early version of this paper.

Forking Without Clicking: How to Identify Forks MSR 2020, 25-26 May, 2020, Seoul, South Korea

REFERENCES
[1] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. 2018. Build-

ing the Universal Archive of Source Code. Commun. ACM 61, 10 (Sept. 2018),

29–31. https://doi.org/10.1145/3183558

[2] Marco Biazzini and Benoit Baudry. 2014. May the fork be with you: novel

metrics to analyze collaboration on GitHub. In Proceedings of the 5th International
Workshop on Emerging Trends in Software Metrics. ACM, 37–43.

[3] Paolo Boldi, Antoine Pietri, Sebastiano Vigna, and Stefano Zacchiroli. 2020. Ultra-

Large-Scale Repository Analysis via Graph Compression. In SANER 2020: The 27th
IEEE International Conference on Software Analysis, Evolution and Reengineering.
IEEE.

[4] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression

techniques. In Proceedings of the 13th international conference on World Wide Web,
WWW 2004, New York, NY, USA, May 17-20, 2004, Stuart I. Feldman, Mike Uretsky,

Marc Najork, and Craig E. Wills (Eds.). ACM, 595–602. https://doi.org/10.1145/

988672.988752

[5] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework II: Codes For

The World-Wide Web. In 2004 Data Compression Conference (DCC 2004), 23-25
March 2004, Snowbird, UT, USA. IEEE Computer Society, 528. https://doi.org/10.

1109/DCC.2004.1281504

[6] Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb. 2012. Leveraging

transparency. IEEE software 30, 1 (2012), 37–43.
[7] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding

in GitHub: transparency and collaboration in an open software repository. In

Proceedings of the ACM 2012 conference on computer supported cooperative work.
ACM, 1277–1286.

[8] Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. 2018. Identifiers

for Digital Objects: the Case of Software Source Code Preservation. In Proceedings
of the 15th International Conference on Digital Preservation, iPRES 2018, Boston,
USA. https://doi.org/10.17605/OSF.IO/KDE56

[9] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why and

How to Preserve Software Source Code. In Proceedings of the 14th International
Conference on Digital Preservation, iPRES 2017. https://hal.archives-ouvertes.fr/

hal-01590958/

[10] Karl Fogel. 2005. Producing open source software: How to run a successful free
software project. O’Reilly Media, Inc.

[11] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory

study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 345–355.

[12] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from a

firehose. In 9th IEEE Working Conference of Mining Software Repositories, MSR,
Michele Lanza, Massimiliano Di Penta, and Tao Xie (Eds.). IEEE Computer Society,

12–21. https://doi.org/10.1109/MSR.2012.6224294

[13] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.

2015. Work practices and challenges in pull-based development: the integra-

tor’s perspective. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 358–368.

[14] Imed Hammouda, Björn Lundell, Tommi Mikkonen, andWalt Scacchi (Eds.). 2012.

Open Source Systems: Long-Term Sustainability - 8th IFIP WG 2.13 International
Conference, OSS 2012, Hammamet, Tunisia, September 10-13, 2012. Proceedings.
IFIP Advances in Information and Communication Technology, Vol. 378. Springer.

https://doi.org/10.1007/978-3-642-33442-9

[15] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang.

2017. Why and how developers fork what from whom in GitHub. Empirical
Software Engineering 22, 1 (2017), 547–578.

[16] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M

German, and Daniela Damian. 2014. The promises and perils of mining GitHub.

In Proceedings of the 11th working conference on mining software repositories. ACM,

92–101.

[17] Antonio Lima, Luca Rossi, and Mirco Musolesi. 2014. Coding together at scale:

GitHub as a collaborative social network. In Eighth International AAAI Conference
on Weblogs and Social Media.

[18] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.

2019. World of code: an infrastructure for mining the universe of open source

VCS data. In Proceedings of the 16th International Conference on Mining Software
Repositories. IEEE Press, 143–154.

[19] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption

Function. InAdvances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA, August
16-20, 1987, Proceedings (Lecture Notes in Computer Science), Carl Pomerance (Ed.),

Vol. 293. Springer, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[20] Linus Nyman. 2014. Hackers on Forking. In Proceedings of The International
Symposium on Open Collaboration, OpenSym 2014, Berlin, Germany, August 27 -
29, 2014, Dirk Riehle, Jesús M. González-Barahona, Gregorio Robles, Kathrin M.

Möslein, Ina Schieferdecker, Ulrike Cress, Astrid Wichmann, Brent J. Hecht, and

Nicolas Jullien (Eds.). ACM, 6:1–6:10. https://doi.org/10.1145/2641580.2641590

[21] Linus Nyman and Mikael Laakso. 2016. Notes on the History of Fork and Join.

IEEE Annals of the History of Computing 38, 3 (2016), 84–87. https://doi.org/10.

1109/MAHC.2016.34

[22] Linus Nyman and Tommi Mikkonen. 2011. To Fork or Not to Fork: Fork Motiva-

tions in SourceForge Projects. IJOSSP 3, 3 (2011), 1–9. https://doi.org/10.4018/

jossp.2011070101

[23] Linus Nyman, Tommi Mikkonen, Juho Lindman, and Martin Fougère. 2012. Per-

spectives on Code Forking and Sustainability in Open Source Software, See [14],

274–279. https://doi.org/10.1007/978-3-642-33442-9_21

[24] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2014. A study of external

community contribution to open-source projects on GitHub. In Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM, 332–335.

[25] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2019. The Software Her-

itage graph dataset: public software development under one roof. In Proceedings of
the 16th International Conference on Mining Software Repositories, MSR 2019, 26-27
May 2019, Montreal, Canada., Margaret-Anne D. Storey, Bram Adams, and Sonia

Haiduc (Eds.). IEEE / ACM, 138–142. https://dl.acm.org/citation.cfm?id=3341907

[26] Ayushi Rastogi and Nachiappan Nagappan. 2016. Forking and the Sustainabil-

ity of the Developer Community Participation–An Empirical Investigation on

Outcomes and Reasons. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 102–111.

[27] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone

detection: A systematic review. Information and Software Technology 55, 7 (2013),

1165–1199.

[28] Gregorio Robles and Jesús M. González-Barahona. 2012. A Comprehensive

Study of Software Forks: Dates, Reasons and Outcomes, See [14], 1–14. https:

//doi.org/10.1007/978-3-642-33442-9_1

[29] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. 2019. Growth
and Duplication of Public Source Code over Time: Provenance Tracking at Scale.
Technical Report. Inria. https://hal.archives-ouvertes.fr/hal-02158292.

[30] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Technical Report 115. Queen’s School of Computing. 64–68

pages.

[31] Diomidis Spinellis. 2005. Version control systems. IEEE Software 22, 5 (2005),
108–109.

[32] Stefan Stanciulescu, Sandro Schulze, and Andrzej Wasowski. 2015. Forked and

integrated variants in an open-source firmware project. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 151–160.

[33] Ferdian Thung, Tegawende F Bissyande, David Lo, and Lingxiao Jiang. 2013.

Network structure of social coding in GitHub. In 2013 17th European Conference
on Software Maintenance and Reengineering. IEEE, 323–326.

[34] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and

technical factors for evaluating contribution in GitHub. In Proceedings of the 36th
international conference on Software engineering. ACM, 356–366.

[35] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan

Vasilescu. 2015. Wait for it: determinants of pull request evaluation latency on

GitHub. In 2015 IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries. IEEE, 367–371.

[36] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. 2019. What the fork: a

study of inefficient and efficient forking practices in social coding. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, 350–361.

https://doi.org/10.1145/3183558
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/988672.988752
https://doi.org/10.1109/DCC.2004.1281504
https://doi.org/10.1109/DCC.2004.1281504
https://doi.org/10.17605/OSF.IO/KDE56
https://hal.archives-ouvertes.fr/hal-01590958/
https://hal.archives-ouvertes.fr/hal-01590958/
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1007/978-3-642-33442-9
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/2641580.2641590
https://doi.org/10.1109/MAHC.2016.34
https://doi.org/10.1109/MAHC.2016.34
https://doi.org/10.4018/jossp.2011070101
https://doi.org/10.4018/jossp.2011070101
https://doi.org/10.1007/978-3-642-33442-9_21
https://dl.acm.org/citation.cfm?id=3341907
https://doi.org/10.1007/978-3-642-33442-9_1
https://doi.org/10.1007/978-3-642-33442-9_1
https://hal.archives-ouvertes.fr/hal-02158292

	Abstract
	1 Introduction
	2 What Is a Fork?
	3 Methodology
	3.1 Dataset
	3.2 Fork networks
	3.3 Fork cliques

	4 Results
	4.1 Fork networks
	4.2 Fork cliques
	4.3 Aggregation process

	5 Threats to validity
	6 Related work
	7 Conclusion
	Acknowledgments
	References

