
Wild SBOMs: a Large-scale Dataset of Software
Bills of Materials from Public Code

Luı́s Soeiro∗, Thomas Robert∗, Stefano Zacchiroli∗
∗LTCI, Télécom Paris, Institut Polytechnique de Paris, France
{luis.soeiro, thomas.robert, stefano.zacchiroli}@telecom-paris.fr

Abstract—Developers gain productivity by reusing readily
available Free and Open Source Software (FOSS) components.
Such practices also bring some difficulties, such as managing
licensing, components and related security. One approach to
handle those difficulties is to use Software Bill of Materials
(SBOMs). While there have been studies on the readiness of
practitioners to embrace SBOMs and on the SBOM tools ecosys-
tem, a large scale study on SBOM practices based on SBOM files
produced in the wild is still lacking. A starting point for such
a study is a large dataset of SBOM files found in the wild. We
introduce such a dataset, consisting of over 78 thousand unique
SBOM files, deduplicated from those found in over 94 million
repositories. We include metadata that contains the standard and
format used, quality score generated by the tool sbomqs, number
of revisions, filenames and provenance information. Finally, we
give suggestions and examples of research that could bring new
insights on assessing and improving SBOM real practices.

Index Terms—SBOM dataset, SBOM standards, SBOM usage
in the wild, SBOM scores

I. INTRODUCTION

Modern software development reuses relevant amounts of
code from third parties, mainly in the form of Free and Open
Source (FOSS) code, to build applications [1]. FOSS ecosys-
tems can be very large, from thousands of components to
tens of thousands when accounting for their dependencies [2].
While gains from reusing FOSS code can reach up to trillions
of dollars [3], there are also some difficulties to be handled,
such as licensing requirements [4], repository and component
governance [5], and security considerations [6]. One of the
mechanisms that have been proposed to aid with those issues
and to provide more transparency to software projects is the
use of Software Bill of Materials (SBOM) [7], an inventory
of all third-party components and dependencies used in an
application. [8].

Since the publication of the Software Identification Tags
(SWID Tags) in 2009 [9], the Software Package Data Ex-
change (SPDX) SBOM introduction in 2010 [10], and the
CycloneDX SBOM standard prototype in 2017 [11], SBOMs
have gained traction. In the wake of major software supply
chain security incidents (e.g., SolarWinds, Log4J), the US
National Telecommunications and Information Administration

Supported by the industrial chair Cybersecurity for Critical Networked
Infrastructures (cyberCNI.fr) with support of the FEDER development fund
of the Brittany region, France. This work was made possible by Software
Heritage, the great library of source code: https://www.softwareheritage.org.
Special thanks to Valentin Lorentz for his help with data extraction.

(NTIA), following the U.S. Presidential Order 14028, started
to promote the use of SBOMs [7], and it has become a re-
quirement for supplying software to the U.S. government [12].
In the E.U., the Cyber Resilience Act (CRA) proposal of 2022
also brings a similar requirement [13].

There has been studies on the benefits and challenges of
SBOM adoption [12], [14], on the practitioners’ views on
the subject [7], and on the difficulties of generating correct
SBOM files using SBOM creation tools [15]. According to a
Linux Foundation’s survey from 2022, 20% of the organiza-
tions interviewed are already producing SBOMs and 40% are
consuming them in production [16]. Research on real SBOM
files found in the wild can help to evaluate the state of those
practices. Existing SBOM datasets mined from repositories
contain a maximum of 1,151 files, but lack diversity (see VI).
Easily accessible, more diverse datasets, with more samples
are needed [17]. Analysis of such a corpus can provide in-
sights to real world SBOM usage aspects, including standards
adherence and overall quality. Additionally, it can facilitate the
SBOM tools ecosystem, by providing developers with material
to test, evaluate and benchmark tools.

Contributions and use cases: We introduce a large and
diverse dataset of SBOM files that came from public version
control systems (VCS). The package is comprised of two parts:

1) A deduplicated dataset of 78,612 unique SBOM files,
that were found on 94,618,356 unique source reposi-
tories, distributed in 1,782 unique forges and package
repositories (forges for short);

2) Mined metadata, including the SBOM standard adopted
(e.g., SPDX, CycloneDX), the file format (e.g., xml,
json, tag-value, yaml), a quality score generated by
the sbomqs tool [18], provenance information for each
SBOM file, and all the different filenames each one had
being observed with.

The dataset can be used to support use cases like: (a) large
scale analysis of SBOM adoption, most used standards, and
file formats, possibly segmented by originating forge, creator
tool and other properties; (b) analysis of SBOM quality in the
wild; (c) benchmarking of the SBOM tools, by evaluating their
effectiveness and correctness of their functionalities, such as
SBOM consumption, conversion, and validation; (d) software
composition analysis; (e) vulnerability analysis.

Data availability: The dataset is released as open data,
and the related code as free and open source code. The

https://www.softwareheritage.org


replication package allows the dataset to be recreated from
scratch. It is available from Zenodo [19], as a tar archive
containing a directory tree with all the SBOM files, a set of
CSV files containing the metadata, the software used to gen-
erated it, and detailed usage and reproducibility instructions
(see README.md file).

II. METHODS AND REPRODUCIBILITY

We have adopted the following criteria for building the
dataset: (a) diversity (i.e., it should include as many different
forges and package repositories as possible); (b) availability
(i.e., it should be publicly available); (c) FOSS based (i.e.,
reflecting FOSS software development and artifacts); (d) his-
tory (i.e., the SBOM file should be part of the repository,
statically embedded on its commit history). Consequentially,
we have opted to search the Software Heritage Archive [20]
(SWH). If a SBOM file is found in the public VCS of any of
the main software forges, there is a high probability of being
found in SWH, which archives over 4 billion commits and
over 324 million diverse public software repositories, at the
date of this writing [21]. Since there is no clear indication of
which artifacts are SBOM files, we have defined a strategy to
mine the archive, acquire possible candidates and then filter
out non-SBOM files. The process is depicted in Figure 1 and
each of the steps identified are detailed below.

Software
Heritage

Objects
583 bn

Files
421 bn

Directories
163 bn

Matched
532 million

Unmatched
420 bn

Dedup.
37 million

Duplicated
495 million

Correct ext.
23 million

Wrong ext.
13 million

Confirmed SBOMs
78,612

Non SBOMs

Metadata
1 million filenames
123 million origins

1 2 3 4 5 6

7

Fig. 1. Overview of the SBOM dataset creation

1) Download of indexes: First we download the Optimized
Row Columnar (ORC) files that correspond to directory entries
and the mapping of the intrinsic identifiers we will use (i.e.,
SHA1, and SWHID) for the release version ”2024-08-23” of
the Software Heritage graph dataset [22] on Amazon S3. The
data contains 583,607,093,407 files and directory entries.

2) Filter for filenames: We then load those ORC files into
Apache Spark [23] to retain only file entries. This results in
420,647,294,867 file references.

3) Search for regular expressions: The goal is to obtain as
much candidates for SBOM files as possible. However, at such
scale it is necessary to reduce the set of possible values. We use
Spark to look for file names typically used to store SBOMs.
Accordingly, we search any file name that contains, in a case
insensitive way, at least one of the substrings: spdx, swid,
bom, cyclone, cdx, or dx. This execution results in 531,729,785
items.

4) Deduplication of findings: The same SBOM content
may be observed in different commits of the same repository,
in different repositories, or with different file names. We save
the list of file names to add to the metadata later (see section

II-7). Then we drop duplicate contents (i.e., duplicate SHA1
hash values). This results in 37,036,596 candidates.

5) Removal of records with non-SBOM file extensions:
We filter out records that contain file extensions which are
known to belong to other than SBOM file formats (e.g., .dll,.so
for dynamic libraries; .odt, for LibreOffice text documents;
.md for markup documents). We obtain a list of 991 such
extensions from the Apache mime-types file [24]. Then we
obtain 23,590,858 records.

6) Download and evaluation of candidate SBOM files: We
use the SHA1 hash values present in the candidate records
to download the candidate files from Amazon S3, and them
validate that their contents are not corrupted. Then we evaluate
them to make sure to retain only real SBOM files. For this
evaluation we have selected the SBOM quality score (sbomqs)
tool [18], since it has already been used to score over 28
thousand SBOM files on the sbombenchmark.dev site [25]. We
define that valid SBOM files for inclusion in the dataset are
those that don’t receive a failed result by the SBOM scoring
tool. For those SBOMs included in the dataset, we store the
results of the tool as metadata: quality score, SBOM standard,
SBOM format and SBOM version. After the filtering process
we obtain 78,612 confirmed SBOM files.

7) Metadata addition: We then select only those file names
obtained in the deduplication step (section II-4) whose SHA1
hash values match the SHA1 hash values from the valid SBOM
files. This results in 1,168,328 records with file names. We
also traverse the SWH Graph to find all the repositories (i.e.,
origins in SWH) that have been observed for each SBOM
file. The resulting data has 123,826,651 records with origins.
Finally, we query SWH to obtain the earliest observed commit
(i.e., revision in SWH) where the SBOM was observed, the
earliest observed timestamp, and the total number of observed
commits for each SBOM file. We sum all commits and observe
that the SBOM files are distributed among 2,232,518,895
commits.

III. DESCRIPTION OF THE DATASET

The dataset contains a collection of SBOM files and the as-
sociated metadata, totalling 14 GB. We compress all elements
of the dataset with Zstandard [26] to reduce the storage space,
bringing it down to 5.6 GB.

SBOM files: The file sbom-files.tar.zstd contains
all the 78,612 SBOM files. When extracted they
occupy 12 GB of storage space. They are organized
under a 1-level deep directory structure based on
the first character of their SHA1 hash value, e.g.,
sbom-files/a/a01269419c76765dfa79499597e8eac79787450d.
The files are deduplicated based on the SHA1 value (i.e.,
even if the same file was observed in different origins and
different revisions, it will appear only once in the dataset).

Metadata: SBOM Metadata are provided as a set of
4 CSV [27] textual files, which correspond to 4 relational
database tables, shown in Figure 2. The tables are described
below, with the indication of the corresponding file:



sboms

sha1 char(40)

sha1_git char(40)

swhid char(50)

score float

standard char(4)

version char(3)

format char(8)

sboms-filenames

sha1 char(40)

filename varchar

sboms-revisions

swhid char(50)

earliest_swhid char(50)

earliest_ts integer

rev_occurrences integer

sboms-origins

swhid char(50)

origin_url varchar

Fig. 2. Relational model for the SBOM dataset metadata

sboms (sboms-01.csv.zst) is the main table of the dataset
and describes the main characteristics of each SBOM file. The
sha1 field is the SHA1 hash value of the content of the SBOM
file, and its filename in the dataset; sha1 git is the original
Git commit value where the SBOM was found; swhid is the
file’s Software Heritage persistent identifier (SWHID) [28];
score is the evaluation score given by sbomqs and ranges from
0 to 10; standard indicates the SBOM standard that is used
for the SBOM: spdx (i.e., the SPDX stanard) or cdx (i.e. the
CycloneDX standard); format indicates the layout format of
the SBOM: json, xml, or tag-value.

sboms-filenames (sboms-02-filenames.csv.zst) provides the
repository maintainer’s choice for naming the SBOM, i.e., the
file name that have been observed for each SBOM file. sha1
is the SHA1 hash value for the SBOM contents and a foreign
key to the sboms table; filename is an observed filename for
that SBOM file, e.g., camel-sbom.xml, bom.xml. There can be
many filenames observed for each SBOM content, i.e., many
rows. A SBOM file which is renamed and committed to a VCS
multiple times without content change will have one row for
each distinct file name.

sboms-origins (sboms-03-origins.csv.zst) shows all the
repositories where each SBOM file has been observed
in. swhid is the file’s SWHID and a foreign key to
the sboms table; oring url denotes the repository where
the SBOM file was observed in the past, for example,
https://codeberg.org/cap jmk/tinkabell.git. There can be many
repositories for each SBOM file, e.g. repository forks.

sboms-revisions (sboms-04-revisions.csv.zst) provides his-
torical information. earliest swhid gives the SWHID of the
oldest known public commit that contained the SBOM
file; earliest ts is the commit timestamp as Unix time;
rev occurrences shows the total number of commits that
contain the SBOM file, as known by SWH. For exam-
ple, swh:1:cnt:0004b472fcd003bcbd29544a534d1f24afd0f3f2
denotes an instance of a SBOM for which the oldest commit
is from May 8, 2022, and has a history of 52 revisions. By
looking up the SHA1 value in sboms and consulting the file
in sbom-files we can see it is a CycloneDX 1.3 JSON SBOM
file for a Go language application.

IV. DATASET USE CASES

This dataset can be used to study SBOM creation practices
in the wild, e.g., when they were created, main standards
and formats, tools used, contents that are present. It can
also be used to evaluate and benchmark SBOM related tools.
Other possibilities include vulnerability analysis at large by
searching the SBOM contents on vulnerability databases. We
give some examples related to understanding SBOM practices
below. Details for each of the examples are found in the
Jupyter Notebooks provided with the dataset.

A. Standards

Since NTIA, who is pushing for SBOM adoption in the
industry, has not endorsed any specific standards [7], it is up
to the developers to decide what standard to adhere to. SWID
Tags was proposed first and is now the standard ISO/IEC
19770-2:2015 [29]. SPDX is a project by the Linux Foundation
and was standardized as ISO/IEC 5962:2021 [10]. CycloneDX
is younger than both [11]. Do those elements affect general
adoption? One first step to answering that is to verify what
standards and file formats are really being used by developers.

We use the Python Pandas library [30] to load the sboms
table and count the frequency of standards and formats found
in the wild. Figure 3 show the results. This is a first approxima-
tion of the analysis because we are studying the deduplicated
set only. Although a more comprehensive study might give
some weights to SBOMs that have more origins and revisions,
this first version considers the underlining choices of the
original creators. It seems to be surprising that CycloneDX is
the most used standard, while being the youngest proposal.
Furthermore we see that there are no SWID Tags based
SBOMs at all.

74.2%CycloneDX - JSON 12.0%

SPDX
JSON

CycloneDX
XML

SPDX
YAML

6.1% 1.4%

SPDX
Tag-Value

6.3%

Fig. 3. Distribution of SBOM standards and file formats

B. Filenames

We haven’t found in the SPDX specification guidelines for
file extension or file naming conventions. OpenSSF Best Prac-
tices document recommends to add the extension *.spdx for
tag-value format or *.spdx.{json, xml, yml, yaml, rdf, rdf-xml}
[31]. CycloneDX recommends the adoption of the filenames
bom.{json, xml} or the extensions *.cdx.{json, xml} [32]. We
will see what practitioners adhere to.

We use Pandas to load the table sboms-filenames, count
the number of occurrences and display the 10 most used file
names. Figure 4. For this example, we look at all filenames
that are used in all repositories throughout all commits.

C. Popular forges and package repositories

The dataset contains 94,618,356 unique origins. Each of
those origins point to one of 1,782 unique forges. We examine



0 500 1000 1500 2000 2500 3000 3500
Number of SBOM files found with the filename

manifest.spdx.json

spdx.json

cyclonedx.json

sbom.json

vcpkg.spdx.json

cdx.json

spdx.spdx

spdx.yaml

gl-sbom-dep-scan-python-latest.cdx.json

bom.xml
Fil

en
am

e

Fig. 4. The most popular filenames for SBOM files

how SBOM practitioners’ works are distributed along the
forges.

We use Pandas to load the table sboms-origins and re-
move the duplicates of origin url. Then we use the library
tldextract [33] to help extract the part that correspond to the
forge. In total, the practitioners have placed SBOMs in 1,783
unique forges. The top ten forges that contributed with the
most SBOM files to the dataset are shown in figure 5.

102 103 104

Number of SBOM files found

github.com

pypi.org

gitlab.com

bitbucket.org

npmjs.com

googlecode.com

googlesource.com

go.dev

Ubuntu

Debian

Fo
rg

es
 a

nd
 p

ac
ka

ge
 re

po
sit

or
ie

s

Fig. 5. Forges with the most SBOM files

V. LIMITATIONS

We took the approach of searching for SBOM files that
are stored in public VCS. However, most of the forges
also have a way (e.g., Github assets) for the contributors to
release software artifacts that are stored outside the version
control system and SBOM files could be placed there as well.
Additionally, the popular forges Github [34] and Gitlab [35]
have recently announced services to integrate dynamic SBOM
generation in their pipelines. Our approach in this work doesn’t
account for those SBOM files, as they are released outside of
VCS repositories. There is still no consensus to where SBOM
files should be stored, and it is possible to argue for storing
them on either place. If practitioners favor the approach that
requires the least amount of work, they may use the platform’s
SBOM creation functionalities, and fewer SBOM files will be

found in public VCS repositories. However, storing SBOM
files inside the VCS repositories makes them independent
of that specific forge (i.e., cloning the VCS will retrieve
all resources). Furthermore, we sampled some repositories
from the dataset and looked at their VCS contents in SWH.
There are contributors that include the SBOM file in the same
directory of the release notes, inside the VCS, where they are
kept as part of the history along with the source files.

VI. RELATED WORK

Previous works have created SBOM datasets from existing
projects, as part of a broader research to evaluate SBOM
generating tools for feature comparison [36], on Docker im-
ages [37], for security purposes [38], or for accuracy assess-
ment [15], [8], [39], [40]. There are two main differences that
our work presents. First, our work doesn’t generate the SBOM
files. We aggregate those committed by practitioners to VCS
repositories, which possibly provides for more diversity in the
conditions of generation (e.g., time of creation, origin, authors,
generation tools) to better be able to assess SBOM practices;
Second, while the number of SBOM files in those works range
from 2 to 7,876, our dataset is much larger by an order of
magnitude.

There are also related works that gather SBOM files in
the wild. Ambala has mined SBOM files from 18 software
repositories for security analysis [41]. The dataset ”bom-
shelter” contains over 50 SBOM files found by using a web
site specialized on source code search [42]. Nocera et al have
selected SBOM creation tools that have Github repositories
and then they have used Github’s API to locate software
repositories that depend on those tools, finding 186 SBOM
files in the wild [43]. O’Donoghue has obtained 1,151 SBOM
files from Interlynk’s SBOM sbombenchmark.dev [25], by
accessing directly its Amazon S3 repository, to check them for
vulnerabilities using SBOM tools [44]. Our approach differs
from these works on the diversity and quantity of SBOM files
found in the wild. While most studies rely on sourcing one or a
few well known software forges and collections (e.g., GitHub,
sbombenchmark.dev), our work represents 1,782 unique forges
and 94,618,356 unique source repositories, providing a larger
and a much more diverse dataset.

VII. CONCLUSION

We have introduced a dataset of 78,612 unique SBOM
files found in the wild. They were observed in 94,618,356
repositories, spread in 1,782 unique forges. We also included
the metadata: sha1, sha1 git, swhid, SBOM score, SBOM
standard, SBOM version, SBOM format, and provenance
information. We’ve given some suggestions of future usage
and we have presented some concrete examples.

Future work: The goal is to enlarge the dataset and
to improve the available metadata. We will include newer
SBOMs found in the wild and also add metadata related to
quality criteria as measured by diverse SBOM tools.



REFERENCES

[1] P. Buchkova, J. H. Hinnerskov, K. Olsen, and R.-H. Pfeiffer, “DaSEA,”
in Proceedings of the 19th International Conference on Mining Software
Repositories, ACM, may 2022.

[2] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, pp. 381–416, feb 2018.

[3] M. Hoffmann, F. Nagle, and Y. Zhou, “The value of open source
software,” SSRN Electronic Journal, 2024.

[4] S. Phipps and S. Zacchiroli, “Continuous open source license compli-
ance,” Computer, vol. 53, pp. 115–119, dec 2020.

[5] N. Harutyunyan and D. Riehle, “Industry best practices for open source
governance and component reuse,” in Proceedings of the 24th European
Conference on Pattern Languages of Programs, ACM, jul 2019.

[6] Y.-K. Lin and W. Li, “A theory of open source security: The spillover of
security knowledge in vulnerability disclosures through software supply
chains,” SSRN Electronic Journal, 2023.

[7] T. Stalnaker, N. Wintersgill, O. Chaparro, M. Di Penta, D. M. German,
and D. Poshyvanyk, “Boms away! inside the minds of stakeholders:
A comprehensive study of bills of materials for software systems,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ICSE ’24, pp. 1–13, ACM, Feb. 2024.

[8] M. Mirakhorli, D. Garcia, S. Dillon, K. Laporte, M. Morrison, H. Lu,
V. Koscinski, and C. Enoch, “A landscape study of open source and
proprietary tools for software bill of materials (sbom),” 2024.

[9] D. Waltermire, B. A. Cheikes, L. Feldman, and G. Witte, Guidelines for
the Creation of Interoperable Software Identification (SWID) Tags. Apr.
2016.

[10] “About spdx.” https://spdx.dev/about/overview/. Accessed: 2024-11-11.
[11] “Cyclonedx history.” https://cyclonedx.org/about/history/. Accessed:

2024-11-11.
[12] N. Zahan, E. Lin, M. Tamanna, W. Enck, and L. Williams, “Software

bills of materials are required. are we there yet?,” IEEE Security &
Privacy, vol. 21, pp. 82–88, mar 2023.

[13] M. Dalla Preda, S. Egelman, A. M. Mandalari, V. Stocker, J. Tapiador,
and N. Vallina-Rodriguez, “Eu cyber resilience act: Socio-technical and
research challenges (dagstuhl seminar 24112),” 2024.

[14] W. Otoda, T. Kanda, Y. Manabe, K. Inoue, and Y. Higo, “Sbom
challenges for developers: From analysis of stack overflow questions,” in
2024 IEEE/ACIS 22nd International Conference on Software Engineer-
ing Research, Management and Applications (SERA), vol. 10, pp. 43–46,
IEEE, May 2024.

[15] M. Balliu, B. Baudry, S. Bobadilla, M. Ekstedt, M. Monperrus, J. Ron,
A. Sharma, G. Skoglund, C. Soto-Valero, and M. Wittlinger, “Challenges
of producing software bill of materials for java,” arXiv, 2023.

[16] “The state of software bill of materials (sbom) and cybersecu-
rity readiness.” https://www.linuxfoundation.org/research/the-state-of-
software-bill-of-materials-sbom-and-cybersecurity-readiness. Accessed:
2024-11-02.

[17] S. Torres-Arias, D. Geer, and J. S. Meyers, “A viewpoint on knowing
software: Bill of materials quality when you see it,” IEEE Security &
Privacy, vol. 21, pp. 50–54, Nov. 2023.

[18] “Sbom quality score - quality metrics for your sboms.”
https://github.com/interlynk-io/sbomqs. Accessed: 2024-11-11.

[19] L. Soeiro, T. Robert, and S. Zacchiroli, “Replication package for wild
SBOMs: a large-scale dataset of software bills of materials from public
code.” https://doi.org/10.5281/zenodo.14250102, 2024.

[20] R. Di Cosmo and S. Zacchiroli, “Software heritage: Why and how to
preserve software source code,” in iPRES 2017 - 14th International
Conference on Digital Preservation, (Kyoto, Japan), pp. 1–10, Sept.
2017.

[21] “Software heritage archive.” https://archive.softwareheritage.org/. Ac-
cessed: 2024-10-02.

[22] A. Pietri, D. Spinellis, and S. Zacchiroli, “The software heritage
graph dataset: Public software development under one roof,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR), IEEE, may 2019.

[23] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data
analytics on apache spark,” International Journal of Data Science and
Analytics, vol. 1, pp. 145–164, Oct. 2016.

[24] “Apache httpd mime.types.” https://svn.apache.org/viewvc?view= revi-
sion&evision=1301894. Accessed: 2024-06-15.

[25] “Sbom benchmark.” https://sbombenchmark.dev/. Accessed: 2024-11-
11.

[26] Y. Collet and M. Kucherawy, “Zstandard Compression and the ’applica-
tion/zstd’ Media Type.” RFC 8878, Feb. 2021. Accessed: 2024-11-02.

[27] Y. Shafranovich, “Common Format and MIME Type for Comma-
Separated Values (CSV) Files.” RFC 4180, Oct. 2005.

[28] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli, “Identifiers for digital
objects: the case of software source code preservation,” in iPRES 2018-
15th International Conference on Digital Preservation, pp. 1–9, 2018.

[29] “Software identification (swid) tagging.”
https://csrc.nist.gov/Projects/Software-Identification-SWID. Accessed:
2024-11-26.

[30] W. McKinney et al., “pandas: a foundational python library for data
analysis and statistics,” Python for high performance and scientific
computing, vol. 14, no. 9, pp. 1–9, 2011.

[31] “Best practices for naming and directory conventions for sboms
(software bill of materials) in open source projects.” http://sbom-
catalog.openssf.org/sbom-naming.html. Accessed: 2024-11-26.

[32] “Cyclonedx specification overview.” https://cyclonedx.org/specification/
overview/. Accessed: 2024-11-26.

[33] J. Kurkowski, “Tldextract.” https://pypi. org/project/tldextract, 2019.
[34] “Introducing self-service sboms.” https://github.blog/enterprise-

software/governance-and-compliance/introducing-self-service-sboms/.
Accessed: 2024-11-03.

[35] “The ultimate guide to sboms.” https://about.gitlab.com/blog/2022/10/25/
the-ultimate-guide-to-sboms/#gitlab-and-dynamic-sboms. Accessed:
2024-11-03.

[36] G. Dalia, C. A. Visaggio, A. Di Sorbo, and G. Canfora, “Sbom
ouverture: What we need and what we have,” in Proceedings of the
19th International Conference on Availability, Reliability and Security,
ARES 2024, pp. 1–9, ACM, July 2024.

[37] N. Kawaguchi, C. Hart, and H. Uchiyama, “Understanding the ef-
fectiveness of sbom generation tools for manually installed packages
in docker containers,” Journal of Internet Services and Information
Security, vol. 14, pp. 191–212, Aug. 2024.

[38] O. Kagizmandere and H. Arslan, “Vulnerability analysis based on
sboms: A model proposal for automated vulnerability scanning for
ci/cd pipelines,” International Journal of Information Security Science,
vol. 13, pp. 33–42, June 2024.

[39] S. Yu, W. Song, X. Hu, and H. Yin, “On the correctness of metadata-
based sbom generation: A differential analysis approach,” in 2024 54th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 29–36, IEEE, June 2024.

[40] M. F. Rabbi, A. I. Champa, C. Nachuma, and M. F. Zibran, “Sbom
generation tools under microscope: A focus on the npm ecosystem,” in
Proceedings of the 39th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC ’24, pp. 1233–1241, ACM, Apr. 2024.

[41] A. Ambala, “Exploring the dynamics of software bill of mate-
rials (sboms) and security integration in open source projects.”
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-26057, 2024.

[42] “Are SBOMs any good? Preliminary measurement of the quality of open
source project SBOMs.” https://www.chainguard.dev/unchained/are-
sboms-any-good-preliminary-measurement-of-the-quality-of-open-
source-project-sboms, 2022. Accessed: 2024-11-02.

[43] S. Nocera, S. Romano, M. D. Penta, R. Francese, and G. Scanniello,
“Software bill of materials adoption: A mining study from github,”
in 2023 IEEE International Conference on Software Maintenance and
Evolution (ICSME), IEEE, Oct. 2023.

[44] E. J. O’Donoghue, “Using software bill of materials for software supply
chain security and its generation impact on vulnerability detection,”
2024.


	Introduction
	Methods and Reproducibility
	Download of indexes
	Filter for filenames
	Search for regular expressions
	Deduplication of findings
	Removal of records with non-SBOM file extensions
	Download and evaluation of candidate SBOM files
	Metadata addition


	Description of the dataset
	Dataset Use Cases
	Standards
	Filenames
	Popular forges and package repositories

	Limitations
	Related Work
	Conclusion
	References

