
Promises, Perils, and (Timely) Heuristics
for Mining Coding Agent Activity

Romain Robbes
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI
Bordeaux, France

romain.robbes@labri.fr

Théo Matricon
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
theo.matricon@inria.fr

Thomas Degueule
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI
Bordeaux, France

thomas.degueule@labri.fr

Andre Hora
Department of Computer Science,

UFMG
Belo Horizonte, Brazil
andrehora@dcc.ufmg.br

Stefano Zacchiroli
LTCI, Télécom Paris, Institut

Polytechnique de Paris
Palaiseau, France

stefano.zacchiroli@telecom-paris.fr

Abstract
In 2025, coding agents have seen a very rapid adoption. Coding
agents leverage Large Language Models (LLMs) in ways that are
markedly different from LLM-based code completion, making their
study critical. Moreover, unlike LLM-based completion, coding
agents leave visible traces in software repositories, enabling the
use of MSR techniques to study their impact on SE practices. This
paper documents the promises, perils, and heuristics that we have
gathered from studying coding agent activity on GitHub.
ACM Reference Format:
Romain Robbes, Théo Matricon, Thomas Degueule, Andre Hora, and Ste-
fano Zacchiroli. 2026. Promises, Perils, and (Timely) Heuristics for Mining
Coding Agent Activity. In 23rd International Conference on Mining Software
Repositories (MSR ’26), April 13–14, 2026, Rio de Janeiro, Brazil. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3793302.3793375

1 Introduction
Large Language Models (LLMs) have had a major impact on the
practice of Software Engineering [19]. One of the first LLMs to be
used in practice was Codex [12], which was the model powering
the initial version of GitHub’s coding assistant, Copilot, starting in
2021. Codex and Copilot immediately triggered a flurry of empirical
studies about both the capacities and limitations of the underlying
model, and how the tool impacted software development (Section 2
details these studies). Unfortunately, few of these studies used Min-
ing Software Repositories (MSR) techniques; they relied instead on
controlled experiments [44], observation studies [6], or surveys [36].
While valuable, the lack of large-scale studies of the phenomenon
limits the generalizability of the findings [53]. The dearth of MSR
studies is for good reason: since coding assistant are used interac-
tively in a code editor, it is essentially impossible to know whether
they were used to author code in a repository, leaving studies with
very rough time-based heuristics as the only option [22], or studies
of other LLMs uses [57].

This work is licensed under a Creative Commons Attribution 4.0 International License.
MSR ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2474-9/2026/04
https://doi.org/10.1145/3793302.3793375

In 2025, a second generation of LLM-powered tools emerged
and is seeing rapid adoption: coding agents. (See Section 3 for a
detailed background on coding agents.) If coding assistants are used
interactively to complete lines or blocks of code, the scope of coding
agents is drastically broader. The key characteristic of coding agents
is autonomy. In ideal scenarios, a developer delegates an entire task
to a coding agent, which performs a sequence of actions in the
code base to accomplish the task, producing a code change that
the developer can review, as a human developer would. The arrival
of reasoning models in late 2024, and the focus of AI industrial
labs to improve tool-calling capabilities allowed agents to quickly
transition from promising academic work in 2024 [10, 62, 65] all the
way to an established tool category in 2025, where all major AI labs,
IDE vendors, and multiple startups propose products. Adoption has
quickly followed: our study of the topic, based on the heuristics
presented here, found that, as of 01/11/2025, between 15.85 and
22.60% of studied GitHub projects adopted coding agents to some
extent, a very large number for products that have been for the vast
majority released this year [48]. Interest and adoption are very high
because of the potential of coding agents. While the scope of the
tasks for which they can be used in full autonomy is limited today,
improvements in model capabilities could change the situation. If
this promise materializes, this could represent a greater change to
the software engineering practice than the first generation of LLM
tools, and the arrival of CASE tools many decades ago.

Given the potential impact of coding agents, studying how they
are used in practice is extremely important. MSR studies have a
major role to play here, providing an alternative viewpoint to con-
trolled experiments [7] or observational studies [31]. It turns out
that coding agents, by their very nature, leave much more traces in
software repositories than code completion LLMs did, making their
study via MSR techniques possible. Section 4 documents the heuris-
tics we were able to identify in order to study this phenomenon,
constituting the first contribution of this paper.

While coding agents leave traces in repositories that we can
study, these come with important caveats: based on our experience
studying agents, we have identified several of these, including that
the observed data is partial, comes from multiple, heterogeneous
agents, and is rapidly changing. On the other hand, there is ample
space for future work studying the impact of coding agents, how

https://orcid.org/0000-0003-4569-6868
https://orcid.org/0000-0002-5043-3221
https://orcid.org/0000-0002-5961-7940
https://orcid.org/0000-0003-4900-1330
https://orcid.org/0000-0002-4576-136X
https://doi.org/10.1145/3793302.3793375
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793302.3793375


MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Robbes et al.

they are used, how changes to the underlying LLMs affect them,
and potentially changes to SE practices. In addition, as coding agent
adoption is high, detecting and excluding coding agent activity will
be necessary for MSR studies focusing on humans. We expand on
the promises, perils and mitigations we formulated in Section 5,
which constitute our second contribution.

Finally, as one of the perils we identify is the rapid rate of change
of coding agents, no paper will remain the definitive resource for
studying coding agent traces in software repositories for long.
While we expect the promises and perils to remain quite stable
over time, heuristics to identify agent activity will change often.
This is why we call for the community to join us in documenting
heuristics in a community-maintained repository, which we have
bootstrapped [47]. The repository also contains sample datasets
of traces found for specific coding agents, in order for researchers
to investigate what coding agent traces look like and help them
plan their studies before delving in massive amounts of real-world
data. This heuristic and data repository is our third contribution;
Section 6 details it. We discuss the limitations and implications of
this work in Section 7, before concluding with Section 8.

2 Related work
Generative AI for SE and Coding assistants such as Github Copilot
have been extensively studied, using a variety of techniques; we
cite but a few, with a more specific focus on MSR studies.

2.1 Studies of coding assistants
Controlled experiments. Early studies of developer productivity

showed mixed results. Peng et al. [44] found 95 programmers com-
pleted HTTP servers 55% faster using Copilot (71 vs 161 minutes).
However, Imai [27] found higher productivity but lower code qual-
ity with Copilot versus pair programming, while Vaithilingam et
al. [58] found participants failed tasks more often with Copilot than
Intellisense due to incorrect code, despite preferring Copilot. Simi-
larly, studies focused on code security yielded contrasting results.
Sandoval et al. [49] and Asare et al. [5] found little or no differences
in terms of security aspects, while Perry et al. [45] found AI-assisted
code was less secure across 6 tasks.

Qualitative studies. Barke et al. [6] identified two usage modes: in
acceleration, developers prefer small, quickly-validated suggestions;
in exploration, they prefer larger suggestions as starting points
when working with unfamiliar APIs. Mozannar et al. [40] observed
21 programmers; they spent 22% of time evaluating suggestions
versus 14% writing code, suggesting acceptance rates underestimate
cognitive overhead. Wang et al. [59] interviewed 17 developers
who emphasized understanding Copilot’s limitations and expressed
concerns about negative impacts on learning.

2.2 MSR studies of generative AI
Telemetry. Telemetry-based approaches are possible in scenarios

where the deployment can be carefully controlled, such as in com-
panies developing the tools themselves. Murali et al. [41] reported
Meta’s CodeCompose achieved 22% acceptance rate and generated
8% of company-wide code. Ziegler et al. [66] found acceptance rate

was the best predictor of perceived productivity among 2,000 Copi-
lot users. Izadi et al. [29] developed an IDE extension and collected
interactions of 1200 users to analyze model failures qualitatively.

Usage in software repositories. Tufano et al. [57] searched for
explicit usage of ChatGPT in GitHub commits, pull requests, and is-
sues. They analyzed ChatGPT usage traces in 467 GitHub instances,
developing a taxonomy of 45 software engineering tasks including
feature implementation, documentation, software quality, and de-
velopment processes. Some usage patterns were unexpected, such
as assistance in motivating proposed changes.

Xiao et al. [63] also look for usage of ChatGPT or Copilot when
explicitly written by developers in software artifacts. They analyze
more than 1,200 Generative AI usages in a qualitative study, focus-
ing on the type of tasks they were used in; in addition they also
analyzed instances of guidelines to regulate the usage of Generative
AI in several projects, and also analyzed churn, finding overall no
significant change in churn post-adoption

This result is in contrast to the white papers authored by Git-
Clear [22, 23], where they compared code churn before and after
the introduction of Copilot, taken as a marker for the first usages of
Generative AI in software repositories. The studies find a higher rate
of churn as time passes and (presumably) generative AI adoption
increases, and a higher incidence of code duplication in the repos-
itories they analyze. However, in the absence of specific markers
to detect the usage of Generative AI it is more difficult to untangle
the effects of Generative AI from other factors.

MSR mining challenges. Xiao et al. [64] curated a dataset of
shared ChatGPT conversations with ChatGPT on software engi-
neering topics. This dataset was used for the 2024 challenge, in
which a variety of aspects were analyzed by 18 challenge submis-
sions. Concurrent to this work, Li et al. [34] curated a dataset of
agent pull requests, to be used for the 2026 challenge.

Our work. Based on the heuristics presented in this paper, we
have investigated the adoption of coding agents on GitHub [48],
and their propensity to write over-mocked tests [26].

2.3 Studies of coding agents
Given their recency, studies of coding agents are still few and far-
between. Given the small amount of studies and their mixed results,
we see this as an ideal ground for MSR studies to complement this
emerging body of evidence.

Becker et al. [7] performed a controlled experiment of software
developers using Cursor. Developers believed that using Cursor
reduced completion time of tasks by 20%, but it actually increased
task completion time by 19%. Many potential factors could explain
this slowdown. Notable ones include less than 44% of code genera-
tions accepted, 9% of the time spent cleaning AI code. Importantly,
the agent used had limited capabilities, and was used in interactive
rather than autonomous mode.

Kumar et al. [31] performed an observation study of 19 develop-
ers using Cursor. There were two categories of participants: those
who tried to delegate their entire task to the agent, and those that
collaborated with the agent to decompose the task in subtasks, and
have the agent solve each subtask. Participants provided the agent
several kinds of information, notably contextual information from



Mining Coding Agent Activity: Promises and Perils MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

the task description and the environment, and expert information
based on prior repository knowledge. Indeed, the main barrier to
effective agent use was when it lacked this tacit knowledge.

Bouzenia and Pradel [11] analyzed 120 agent interaction logs as
they were attempting to solve bugs from the SWE-bench bench-
mark. While these traces come from less established agents, and
are not the result of genuine human interactions but rather byprod-
ucts of a benchmark, they provide useful insights, highlighting the
differences in behaviour between the agents in terms of the length
of their interaction traces, the type of interactions in them, and the
differences between succesful and failing attempts.

3 Coding agents
While there are multiple definitions of an agent, we use the follow-
ing one: an agent is an LLM executing in a loop in order to fulfill
a goal, and that is provided access to tools in order to access its
environments. The agent loop is then conceptually simple:

(1) query the LLM with a sequence of interactions (initially, just
the task description);

(2) parse the response for the presence of tool usages and end
of task;

(3) if tool calls are present: optionally ask the user for permission
before executing sensitive tools;

(4) if task has not ended: add the response to the sequence of
interactions, replacing tool calls with their results.

The loop executes until the LLM determines it has completed the
task, in which case its response indicates it, ending the conversation.

The first component contributing to the agent is the LLM itself.
Modern LLMs have improved significantly on important capabil-
ities necessary for agentic use cases. In particular, the capability
to reliably generate structured outputs is crucial for reliable tool
calling, and the abilities of reasoning models to generate and exploit
long reasoning traces are critical to solve longer tasks.

The agent’s harness is the second component of an agent. The
harness is responsible for providing the model with the list of
available tools, and detecting when the model generates a tool call
(using a structured format, such as JSON, containing e.g. the name
of the tool and its possible parameters).

Tool use. Access to tools is a key differentiator with coding as-
sistants. While coding assistants are provided a context for their
completion, it is computed beforehand by the IDE. In contrast, tool
use enables much more autonomous workflows. For example:
• Using search tools and file reading tools, an agent can explore
the code base and dynamically find the right context for its task,
instead of relying on the IDE’s context;

• Using file writing tools, a compiler, and executing test cases, the
agent can iterate on its solution until it is correct, leveraging
error messages (if any) to improve it;

• If the agent has determined that it has completed the task, it
may commit changes or author a pull request, summarizing the
changes in the process.
Tools range from the simple to very complex: some agents use

little more than shell access (the agent writes shell commands to
support a variety of tools, e.g., calling the compiler, running tests,
using git), up to using e.g. the model context protocol to interface

with complex systems such as controlling a web browser, querying
a database, or using a ticket repository.

With these capabilities coding agents have been employed to
perform a variety of tasks, ranging from updating dependencies,
fixing simple bugs, or writing documentation, up to implementing
larger scoped features and their tests, refactor code, or porting
software from one programming language to another.

Autonomy and oversight. Agents can have varying degrees of
autonomy, depending on the sensitivity of the task, the degree of
oversight a developer wants to invest, the environment setup, and
the individual workflow of each agent. Depending on their prompt,
agent may ask developers for feedback on the task (e.g., write a
plan to implement a feature and submit it for feedback). Moreover,
most agents allow human oversight by interrupting the agent’s
activity and add additional guidance before resuming.

Agents may require human oversight when they are using tools;
each tool can have individual permissions, ranging from allowing
all uses of a given tool, allowing the use on a case-by-case basis
(with human approval), to systematically forbidding a tool. A key
advantage of allowing tool use without human intervention is that
it makes the agent fully autonomous, which frees up the developer
to work on other tasks, rather than closely steering the agent.

Uses. There are a breadth of uses for coding agents, ranging from
“vibe coding” [17, 20] with little to no supervision, up to serious
practice withmuchmore oversight [31]. Coding agents already have
the potential to help developers being more productive (although
for early coding agents, the evidence is mixed [7]), and to feel less
alienated in their work (e.g., by spending less time on menial tasks).
Uses may evolve over time: in particular, technical solutions (e.g.,
development in a container [14, 16]) make full autonomy less risky
as the impact of the agent is controlled. Some advocate to leverage
the agent’s autonomy to the maximum, such as the use of parallel
agents working on multiple tasks at once.

4 Traces and heuristics
For our coding agent studies [26, 48], we have gathered a set of
heuristics that detect their presence in software repositories. We
focus on GitHub, the most common coding platform; furthermore,
due to its widespread use, some agents such as Copilot leverage
GitHub functionalities (e.g., activity in pull requests). We derive our
heuristics from an extensive manual investigation of known agents,
involving checking their documentation for mentions of specific
artifacts, and analysis of repositories identified as using agents for
visible traces. This leads to a tentative list, which we validate with
targeted GitHub searches and manual checks to select heuristics
that return enough results to be useful (e.g., hundreds), and do not
have too many false positives upon inspection of the results.

Table 1 shows the heuristics we have detected so far, across
multiple categories of GitHub artifacts. Importantly, we do not
expect all of these specific heuristics to remain unchanged in the
long term (see Peril 4 of velocity). This is why we distill these
heuristics in a set ofmore general detection strategies, across several
categories of GitHub artifacts, that we expand on below.



MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Robbes et al.

Table 1: Agent detection heuristics and approximate GitHub match counts on 20/10/25 (click to browse results; file queries
require GitHub login). The table includes the top 10 agents and generic heuristics, limiting to heuristics with more than 500
matches. See a more complete and up to date table in the repository [47] (direct link: click here).

Tool File Commit co-author or author Branches Labels Total
Generic AGENTS.md (37.5K) - - ai-generated (1.9K) 39.4K
Aider aider (44.7K) aider@aider.chat (40.8K) - - 85.9K
Claude
Code

CLAUDE.md (110.0K) .claude/ (141.0K)
.github/workflows/claude (5.4K)

Claude (author, 38.2K) noreply@anthropic.com
(2.7M) claude@anthropic.com (2.3K)

claude/ (20.7K) - 3.0M

Cline .clinerules (1.7K) .cline/ (558) memory-bank/ (23.0K)
memory_bank/ (1.6K)

cline (11.0K) cline@example.com (3.3K) - - 41.1K

Codex .codex/ (3.3K) codex/ (2.1M) codex (2.3M) 4.4M
Copilot copilot-instructions.md (45.3K) .github/instructions/

(13.3K) .copilot/ (1.3K) .github/workflows/copilot/ (1.6K)
Copilot (190.0K) copilot-swe-agent (35.5K) copilot/ (338.0K) - 626.0K

Cursor .cursor/ (98.3K) .cursorrules (16.6K) CURSOR.md (1.3K) cursor (206.0K) cursoragent@cursor.com (40.7K) cursor/ (209.0K) - 571.9K
Devin - devin-ai-integration (14.8K) devin/ (49.8K) - 64.6K
Gemini GEMINI.md (8.4K) .gemini/ (4.8K) gemini-code-assist (22.5K) gemini-cli (3.5K) Gemini 2.5 Pro

(11.2K) Gemini 2.5 Flash (4.2K)
- - 54.6K

Kiro .kiro/ (42.2K) - - - 42.2K
OpenHands openhands@all-hands.dev (35.9K) openhands-agent

(author, 34.5K)
- 71.1K

Promise 1: Presence of Traces
Coding agents leave many visible traces in software repositories,
in files, commits, issues, and pull requests, detectable by specific
heuristics, and more generic detection strategies.

4.1 Files
Several types of files indicate that a coding agent is used in a repos-
itory: Configuration files toggle a variety of settings; Rules and
Guidance files affect their behavior when working in the repository.

Configuration files. Like many tools, agents can be configured,
and these settings are often found in configuration files that follow
naming conventions. A repository containing such a configuration
file indicates that an agent has been set up at least once in the
repository. Moreover, depending on the specific agent, some of the
settings inside the file can offer insights on how the agent works.

In particular, some configuration files will contain information
on the permissions the agent has been granted, i.e., which actions
it can take autonomously (e.g. reading files), which actions require
developer approval (e.g. writing files), and which actions are not
allowed (e.g. accessing the internet). Studies may use these settings
to compare repositories where agents are granted high autonomy,
versus repositories where agents are supervised more closely.

Other interesting settings may include the availability of MCP
servers, that provide agents with additional tools. These settings
provide valuable context on the usage of a given agent and its
capabilities. Other settings can regulate how the agent advertises
its presence via commits. In general though, the settings are highly
tool specific (see the Peril 3 of diversity). Settings can be found
either in a specific repository, but also, as some developers do, in
repositories storing configuration specifically (dotfiles).

Rules and Guidance files are more specific to coding agents. They
contain natural language instructions that the agent should comply
with when working in the repository. Almost always, these files
follow the markdown format. These files are concatenated to the
LLM’s prompt to affect its behavior. The files might have a project-
level scope (applying to the entire project), or a smaller scope (e.g.,
a module), in which case they are included in the prompt only if the

agent is working in this module. These files may be human-written,
but it is also common that they are generated by the agent.

Rules provide specific natural language instructions that the
agent should follow. Example include following certain coding
conventions, or how to perform specific actions. Some rules might
be very generic, other very specific to the project (documenting a
specific convention, running a command) 1.

Guidance files also primarily contain natural language, but have
a broader scope. They may document higher-level knowledge about
a project or a module 2, such as its architecture and its main compo-
nents, or provide rationale for certain decisions. They may contain
detailed task descriptions highlighting the steps to solve a specific
task 3. In both cases, the files may be generated by the agent as
summaries of the code base, or plans to implement a task. Guidance
files may also describe tactics and strategies that the LLM should
use to tackle problems in general 4. The space of instructions is very
large, and is a promising area of study (see Promise on Potential).

Rules and guidance file encode tacit knowledge about the project,
or software development, or even problem solving in general. As
such, they are valuable artifacts that are useful beyond a single
developer. This is why they are often committed in the repository
to be shared, although some developers elect not to commit them.

Detection. Many of these files follow established naming con-
ventions, making them easy to detect (e.g., CLAUDE.md). In some
cases, the files themselves may vary, but the directory they are
in follows a naming convention (e.g., .cursor/). However, some
naming patterns can have false positives (e.g., Aider guidance file
is often called CONVENTIONS.md, but many repositories use this to
document coding conventions for developers, not agents).

4.2 Commits
Several agents (but not all) can be given the capability to commit on
behalf of the developer, and may (or may not) advertise it. Agents
can either be given access to a specific tool to commit, or (more
commonly), simply use their shell tool to commit on behalf of

1Click to browse a simple cursor rules file
2High-level project description example
3Example detailed implementation plan
4Example guidance with strategy

https://github.com/labri-progress/agent-mining/blob/main/heuristics.md
https://agents.md
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28AGENTS%5C.md%29%24/&type=code
https://github.com/search?q=label%3Aai-generated%20type%3Apr&type=pullrequests
https://aider.chat/
https://github.com/search?q=Co-authored-by%3A%22aider%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22aider%40aider.chat%22&type=commits
https://www.claude.com/product/claude-code
https://www.claude.com/product/claude-code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28CLAUDE%5C.md%29%24/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.claude%5C/%29/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.github%5C/workflows%5C/claude%29/&type=code
https://github.com/search?q=author%3A%22Claude%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22noreply%40anthropic.com%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22noreply%40anthropic.com%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22claude%40anthropic.com%22&type=commits
https://github.com/search?q=head%3Aclaude/%20type%3Apr&type=pullrequests
https://cline.bot/
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.clinerules%29%24/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.cline%5C/%29/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28memory%5C-bank%5C/%29/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28memory_bank%5C/%29/&type=code
https://github.com/search?q=Co-authored-by%3A%22cline%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22cline%40example.com%22&type=commits
https://openai.com/codex
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.codex%5C/%29/&type=code
https://github.com/search?q=head%3Acodex/%20type%3Apr&type=pullrequests
https://github.com/search?q=label%3Acodex%20type%3Apr&type=pullrequests
https://github.com/features/copilot
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28copilot%5C-instructions%5C.md%29%24/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.github%5C/instructions%5C/%29/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.github%5C/instructions%5C/%29/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.copilot%5C/%29/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.github%5C/workflows%5C/copilot%29/&type=code
https://github.com/search?q=Co-authored-by%3A%22Copilot%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22copilot-swe-agent%22&type=commits
https://github.com/search?q=head%3Acopilot/%20type%3Apr&type=pullrequests
https://cursor.com/
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.cursor%5C/%29/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.cursorrules%29%24/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28CURSOR%5C.md%29%24/&type=code
https://github.com/search?q=Co-authored-by%3A%22cursor%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22cursoragent%40cursor.com%22&type=commits
https://github.com/search?q=head%3Acursor/%20type%3Apr&type=pullrequests
https://devin.ai/
https://github.com/search?q=Co-authored-by%3A%22devin-ai-integration%22&type=commits
https://github.com/search?q=head%3Adevin/%20type%3Apr&type=pullrequests
https://gemini.google.com/
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28GEMINI%5C.md%29%24/&type=code
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.gemini%5C/%29/&type=code
https://github.com/search?q=Co-authored-by%3A%22gemini-code-assist%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22gemini-cli%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22Gemini%202.5%20Pro%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22Gemini%202.5%20Pro%22&type=commits
https://github.com/search?q=Co-authored-by%3A%22Gemini%202.5%20Flash%22&type=commits
https://kiro.dev/
https://github.com/search?q=path%3A/%28%3F%3A%5E%7C%5C/%29%28%5C.kiro%5C/%29/&type=code
https://github.com/All-Hands-AI/OpenHands
https://github.com/search?q=Co-authored-by%3A%22openhands%40all-hands.dev%22&type=commits
https://github.com/search?q=author%3A%22openhands-agent%22&type=commits
https://github.com/search?q=author%3A%22openhands-agent%22&type=commits
https://github.com/adobe/data/blob/main/.cursorrules
https://github.com/Windscribe/Android-App/blob/main/CLAUDE.md
https://github.com/marcusgoll/robinhood-algo-trading-bot/blob/c05474f63df1aa0a92aee061592ea25dfd13f6d9/specs/order-management/plan.md
https://github.com/bigcapitalhq/bigcapital/blob/develop/.cursor/commands/speckit.clarify.md


Mining Coding Agent Activity: Promises and Perils MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

the developer. Agents authoring a commit will often compose the
commit message themselves and summarize changes, rather than
asking the user. They can advertise their presence in several ways:
• By adding themselves as a co-author of the commit, with the user
as main author. In this case, they add the “Co-authored-by:”
trailer to the commit. Of note, agents may not adhere to the
convention exactly, occasionally using different casings.5

• Less commonly, as the author of the commit, similarly to how
bots such as dependabot operate.

• Some agents such as Claude Code also add additional trailers
to the commit, such as “Generated by: Claude”.

Depending on the agent or developer workflow, the commits may
be authored by the agent completely autonomously, or include
developer oversight or edits.

Detection. Maintaining a list of known author/co-author names
makes the detection of agent-authored commits straightforward.
More advanced heuristics might be possible.

4.3 Pull requests
Some agents workflows include Pull Requests (PR): the agent will
author one or more commits, and additionally author a PR that is
submitted for review on GitHub, with an appropriate summary. A
PR is richer than a commit; notably, it allows other GitHub users
to comment on the PR, and for developers to decide to merge the
PR or not. These agents may revise their work when a developer
comments on the PR and indicates that additional changes should be
made, often also appending a comment in response (in addition to a
commit). Bots submitting PRs are not new (e.g. dependabot), but the
PRs submitted by agents can have amuch broader scope. Depending
on user instructions and the capabilities of the agents, submitted
PRs can range from simple bug fixes to entire new features.6

Detection. Some agents such as Codex follow patterns when
workingwith PRs, notably by advertising their presence in the name
of the branch used in the repository (e.g. codex/branch-name).
They may also assign labels to their PR. In addition, agents may
submit their PR either as the user that triggered the agent, or as a
specific user that can be detected. They may, in some cases, pro-
vide links to the coding agent session that led to the PR; the links
themselves are, unfortunately, often inaccessible. Finally, agents
may interact with developers in the PR itself via comments.

4.4 Issues
Issues submitted by and assigned to bots are not new. Some agents
support the same kind of interactions, especially when they act as a
specific user or are associated with GitHub actions. The issue in this
case acts as a task description for the agent. This is interesting since
it gives additional visibility on the process. As documented in the
Peril of Partial Observability, the initial prompt given to the agent
is not necessarily documented; issues solve this in some case.7

Detection. Participation in issues can be detected if the user as-
sociated with the agent is mentioned or responds in the issue.

5Example co-authored commit
6Example PR with user/agent interaction, implementing a feature
7Example with a user assigning an issue to OpenHands, which creates a PR in response

4.5 Users
Like other bots, some agents are associated with specific GitHub
users. Although users may not carry much information, their pres-
ence itself is a signal. Users allow additional functionality, such as
assigning an issue to an agent, or allowing it to comment on PRs.

Detection. Via a list of known agent users.

5 Promises, perils and mitigations
5.1 Coding agent adoption is real
Promise 2: Adoption is real and significant
As of October 2025, the adoption of coding agents is already
clearly visible on GitHub.

As of mid-October 2025, our study of the extent of adoption
of coding agents on GitHub estimates that between 15 to 19% of
GitHub projects show traces of coding agents. Furthermore, the
adoption is growing steeply. Thus, we expect future adoption to
grow significantly in the coming months and years, and for coding
agents to take a larger place in software development.

In addition, our study identified repositories with a wide variety
of coding agent use, from the experimental (a handful of commits
co-authored by a coding agent), to the pervasive (repositories where
the majority of commits are co-authored by coding agents).

To give additional insight on the wealth of information available,
Table 1 provides some counts on the frequency of each heuristics via
simple queries to GitHub’s web interface in order to estimate their
count. While this count is not precise, does not offer us information
about the number of repositories in which the heuristics are found
(i.e., some heuristics may match with a repository multiple times),
and may contain false positives, we can already get a sense of the
adoption. Notably, the most popular tools have been visibly used
to author millions of commits and pull requests.

Promise 3: Study potential
The visible traces left by agents give us a window in their impact
on software engineering.

For the first time, agent-based automation is visible, at scale,
thanks to the traces generated by coding agents. Previous studies
using MSR techniques, such as the one of Tufano et al. [57] or
the one of Xiao et al. [63], relied on deliberate annotations by
developers; while very valuable, these studies could not have the
same level of exhaustiveness. Coding agents traces allow us to
finally reliably detect LLM-generated code, unveiling a level of
automation that was previously hidden. Given the wealth of traces
available, we think that many MSR studies could be done on the
adoption and impact of coding agents in software engineering.

For instance, while the GitClear whitepapers [22, 23], in the
absence of stronger signals, used a time-based delimiter (“before
Copilot” vs “after Copilot”), mining coding agent traces allow us
to compare repositories that explicitly use agents with those that
do not. The traces are also much more precise, as they have fine
degree of granularity, down to individual commits and PRs.

Studying code produced with coding agents will allow us to
have a clearer understanding of the impact of coding agents on

https://github.com/Num8398893/Num8398893/commit/23286b375c7706da993fd1a27ac8554a36d7253c
https://github.com/microsoft/vscode/pull/271364
https://github.com/OpenHands/docs/issues/36


MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Robbes et al.

issues such as code quality, or code defects. Importantly, longitu-
dinal analyses of repositories can study the longer-term impact
of coding agent use. Analyzing commits and PRs over time will
give us insights on the true impact of coding agents on developer
productivity. Analyzing the success of PRs (in terms of merge rates,
rework, etc.), can give us insights on the factors that influence the
success or failure of coding agents. These may be broader than
individual PRs: analyses of characteristics of repositories (e.g. how
does a repository’s code quality affect agent performance?) and
their impact on the use and success of coding agents will be insight-
ful. For instance, we expected to find higher adoption of coding
agents in smaller repositories; we were surprised to find that larger
repositories had comparable (if not higher) rates of adoption [48].

Promise 4: Mining developer–agent interactions
The visible traces left by agents offer a unique opportunity to
observe how developers interact with AI code models.

While interactions between developers and LLMs were previ-
ously confined to private chat environments, the emergence of
coding agents as active participants in shared social spaces (e.g.
pull requests, issues, code reviews) presents new opportunities
to systematically study human–AI collaboration. The interaction
traces left by these agents capture not only their outputs but also
developers’ responses: accepting, rejecting, or refining their contri-
butions. Unlike conventional LLM use, these public traces reveal
how developers articulate their needs, review and correct the agent
contributions, and steer their behavior. They can also reveal how
developers might restructure their workflows and documentation
to “make space” for agents to effectively contribute to their projects.

Mining these interactions can enhance our understanding of the
task distribution between developers and agents, identifying which
activities developers delegate to agents and which they retain under
their control. It also enables analysis of review dynamics, including
how developers critique or modify agent outputs and, conversely,
how agents propose changes to human-written code. More broadly,
these records provide a unique perspective on the successes and
failures of coding agents in practice, exposing frictions and pain
points in developer–agent interactions. This information will in-
form the design of new agents and allow for a better integration of
their capabilities into developer spaces and workflows.

Promise 5: Study agent knowledge
The files that coding agents leverage in their tasks are a very
rich source of information.

Agent rules and guidance files are critical for coding agents to
work well. As mentioned in Section 3, these files can contain several
kinds of valuable knowledge: 1) rules and conventions that agents
should follow; 2) more general knowledge about the repository (e.g.,
high-level organization); 3) detailed task descriptions and plans; 4)
general tactics and strategies to solve problems. While this is an
early classification, we believe that a full qualitative study of the
contents of these files will be extremely instructive and valuable
to know more about how agents are used in practice. For instance,
while most repositories have straightforward guidance files, some

users go to considerable lengths to define extensive and sophisti-
cated guidance, covering a variety of dimensions (e.g. documenting
project context, technical choices, architectural patterns, etc.).

After having built a better understanding of the knowledge in
these files, many other studies are possible. Possible studies include
for instance studies of the effectiveness of the rules encoded in the
files (e.g., to which extent do coding agents follow the conventions?),
or whether they impact coding agent success (e.g., to which extent
do high-quality specifications influence coding agent success?).

Finally, agent configuration could also allow studies, e.g. whether
and how the availability of advanced tools via the Model Context
Protocol or similar mechanisms is leveraged by agents.

5.2 Agent detection: the devil is in the details
Peril 1: Partial observability
We can not observe all agent activity, only parts of it.

Mitigations: (1) Additional heuristics (2) Gather more data
While coding agent leave valuable traces, they offer only a partial

view of the activity of coding agents. Moreover, due to the Peril 3
of diversity, some of the partial information is agent-specific. The
missing information can come from several dimensions.

First, different agents or developer workflows will share differ-
ent types of information. For instance, while several agents sign
co-authored commits, others do not. Some agents may not support
committing on behalf of the developers and, even when they do, de-
velopers may not be willing to adopt this workflow, andmay instead
commit manually. Finally, even if a developer does use an agent
that commits on their behalf, they may not be willing to advertise
it. Some agent configuration files (e.g. Claude Code) will co-sign
commits by default, but have some settings to disable this feature;
alternatively, we have seen examples of guidance files explicitly
telling the agent not to sign commits under any circumstances. As
a consequence, our study of coding agent adoption, finds that more
than 40% of projects that have markers of usage of coding agents do
not have any markers at the commit level [48], making it difficult
to ascertain to which degree these projects have adopted coding
agents (they may, after all, simply not be using the agent).

The converse is true: due to differences in terms of workflow,
agents may advertise their presence via commits and pull requests,
but not via files. Increasingly, other agents may use standard files
such as AGENTS.md, making the detection of specific agents more
difficult. Finally, even if agent rules and guidance files are useful
knowledge that should be shared in the repository, a significant
portion of are not. Our coding agent adoption study estimates
that 20% of projects that have agent guidance or configuration files
choose to exclude all of them from commits via the .gitignore [48].
Harder to quantify, developers may store their agent configuration
in separated repositories (e.g. a dotfiles repository).

Even when commits, pull requests and files are present, they only
represent the final output of the coding agent. In general, what was
the input (the initial prompt) is not present, except when the agent
is explicitly assigned an issue (in which case the issue description
is the prompt). Depending on their guidance, agents may be asked
to write down plans before implementing changes, which is a step
removed from the initial prompt, but is certainly closer.



Mining Coding Agent Activity: Promises and Perils MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Also missing in most cases is the amount of involvement of
developers in supervising the agent. Since only the end result is
shown in commits, it is hard to know if the developers closely
supervised the agent (or edited the code) or not. Here, pull requests
may be more informative, particularly if they contain developer-
agent interactions via comments, showing part of the interactions.

Finally, several agents (e.g. Codex) do record very detailed traces
of the agent’s execution, including prompts, interactions, and tool
calls (much like is available on SWE-bench [11]). In the case of
Codex, links to these traces is even provided as part of the pull
request. However, these links require authentication on OpenAI’s
servers, and are not publicly accessible.

Mitigation for Peril 1: Additional heuristics.
Additional heuristics can remediate parts of the Peril 1 of Partial

observability. The first is to identify repositories where it is very
likely to apply, by identifying know patterns that reduce observabil-
ity. Examples include the presence of .gitignore files excluding
agent configuration files, checking for known settings that affect
the agent’s harness (e.g. disabling commit signing), or guidance
with similar goals (although this is more challenging to detect).

A second way is to detect artifacts that are likely to be made
at least partially by coding agents. Several heuristics can be de-
vised for this, exploiting for instance LLM tendencies to thoroughly
document their work in commit messages or pull requests (often
better than developers), or their usage of Emojis. Other heuristics
might use process metrics (e.g. looking for changes in the rate of
commits or pull requests [35]). Work to do this already exist for
text snippets [39], or for code [54], but repository-level heuristics
and information might prove useful signals. Needless to say, these
heuristics should be evaluated carefully. In this regard, the availabil-
ity of data with clear markers for usage of coding agents might be
useful to define training, validation, or test sets to evaluate simple
or elaborate heuristics to detect unlabeled coding agent activity.
On the other hand, changes to model capabilities over time may
change the nature of the problem, making detection an arms race
between improving models and detectors.

Mitigation for Peril 1: Gather more data
Another mitigation is to collect more complete data. Similarly to

how developer interaction data can be collected via telemetry [38],
some agents provide functionality to record more information, via
explicit telemetry [15] or user-defined hooks [13, 18]. This is how-
ever a significant undertaking.

Peril 2: Agent multiplicity
There are many agents, leaving traces in very different ways.

Mitigations: (1) Unequal adoption, (2) Knowledge sharing.
As can be seen in Table 1, there are large number of agents, with

a wide range of different heuristics. This number is still growing:
while the first were released in 2024, and there were a dozen in early
2025, the last few months have seen the total reach three dozen
agents. The large number of agents make it more challenging to
keep track of them, and to search for effective heuristics in all cases.
Using only some heuristics will miss agent uses, which may be
problematic for a study that values exhaustiveness.

Mitigation for Perils 2 and 3: Unequal adoption
While many different agents are available, most of the adoption

is focused on a few agents. Currently, Claude, Codex, Cursor and
Copilot are the most popular and captures more than 80% of the
adoption, whereas agents like OpenHands or Jules see compara-
tively little usage. This can be seen in Table 1 by looking at the
counts of each heuristic; our study of agent adoption points to-
wards a similar conclusion. Thus, a possible strategy for studies is
to focus on the subset of agents that captures the majority of the
usage. This reduces the cost of carrying out the study since less
heuristics have to be developed and validated, at the expense of
increased false negatives. That said, studies of smaller agents are
still useful, to study their specific characteristics and the impact of
these characteristics on the way they work.

Previous work on JavaScript front-ends frameworks [21] or ver-
sion control [43] show that tool adoption is highly dependent on
popularity of the framework, creating a phenomenon of “the rich
get richer”. While this is still quite early to observe this effect, and
this might change in the future, we see the emergence of a win-
ner takes all phenomenon, in which a very small subset of coding
agents captures most use, leading to less agents in the long term.

Peril 3: Diversity
Each agent works differently, and this may be necessary to con-
sider in any data analysis.

Mitigations: (1) Unequal adoption, (2) Knowledge sharing.
Each agent has a different harness, exposing different capabilities.

For instance, some agents such as Codex submit their changes via
pull requests; others like Claude tend to use the Co-authored-by
commit trailer, or other conventions (e.g. full authorship).

Beyond the need to develop specific heuristics, these changes
affect the workflow developers follow while using the tools, which,
depending on the study, may be important to take into account.
Examples of this include the way that agents work with pull re-
quests: PRArena [4] is a website that tracks, for a set of agents, the
merge rate of their pull requests, using heuristics similar to the ones
presented in this paper. Some agents, such as Codex, favor private
iteration on PRs, while others, such as Copilot, will submit a PR
and favor public iteration with developer via GitHub PR comments.
This is clearly visible in the difference between the PR merge rates:
among all PRs, Codex has a much higher merge rate (86.6% on
20/10/2025) than Copilot (63.2%); however, if one excludes “draft”
PRs, Copilot’s merge rate jumps to 93.1%. Even more importantly,
PRArena has no information on Claude Code, despite it being one
of the most prominent agents (our study finds it has the highest
adoption level): this is because Claude Code’s workflow did not
include PRs until very recently (september 29, 2025). The problem
is broader: while some agents can author PRs or commits, other
agents do not (also see the Peril 1 of Partial observability).

Another dimension of variability is how agents use guidance
files. Earlier agents such as Cursor put more emphasis on simpler
rules (possibly reflecting the limited capacities of earlier models).
Most agents now use free-form guidance files (e.g. AGENTS.md,
CLAUDE.md), where the user (or the agent) can summarize infor-
mation deemed important. Some agents incentivize their users to
adopt sophisticated guidance systems (e.g. Cline’s memory bank
pattern, or Kiro’s steering). As these instructions vary considerably,
we expect them to influence the behavior of the agents.



MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Robbes et al.

This is mitigated by the previous two mitigations: only a few
agents are widely used and this will keep going with less agents in
the long term making it easier for data analysis.

Peril 4: High velocity
Practices evolves very quickly, with far reaching implications.

Mitigations: (1) Revisit studies, (2) Standardization, (3) Knowledge
sharing.

The adoption of agents, their functionality, and their usage
changes rapidly, for many reasons. First, the capacities of the under-
lying LLMs is still evolving, and this influence the agents capabilities.
Kwa et al. estimate that the duration of tasks that LLMs can solve
autonomously doubles every 7 months [32, 33]. This impacts the
tasks that are delegated to coding agents over time.

This rate of change is also visible in the Peril 2 of Agent multi-
plicity: many agents exist; new ones are regularly introduced; and
existing ones change, sometimes impacting heuristics. For instance,
Cursor transitioned from storing rules in a single .cursorrules
file to a .cursor directory with more general guidance. Another ex-
ample is the AGENTS.md file: originally, this was the default file used
for guidance by the Codex agent. There is now a standardization
effort around this format, with a growing number of coding agents
supporting it. As a consequence, this heuristic is no longer a marker
for the Codex agent, but rather a general marker for coding agent
usage in a given repository. In addition, since guidance files are text
files, it is easy for an agent to use the guidance of other agents: for
instance, Zed’s agent looks for files used by other popular agents
and incorporates it as its own guidance [28].

As a consequence, the detection of agent traces needs to be reg-
ularly updated to keep up with the fast pace of releases. Combined
with the perils of multiplicity and diversity, this is challenging,
which is why we introduce heuristic repository (see Section 6). If
the trend of standardization continues, it is possible that it will
become both easier to detect agent use in general, but more difficult
to detect the usage of individual agents; this will make it more
challenging to take into account the diversity of coding agents.

Another manifestation of the Peril 4 of velocity is the importance
of data freshness. While datasets are very important in MSR re-
search, changes to coding agents mean that datasets of their activity
will age more rapidly than traditional MSR datasets, particularly if
the capacities of coding agents continue to evolve rapidly.

Mitigation for Peril 4: Revisit studies
Given the changes to the capacities of LLMs and their accompany-

ing changes to the capabilities of agents, and the use that is made
of these agents, we think that some studies may benefit from being
revisited regularly in order to check how their conclusions evolve
with time. For instance, a study on the quality of code generated by
agents may be revisited if one suspects the evolving capacities may
have resulted in higher code quality. Automation helps; studies that
use manual annotation will be more difficult to revisit, although
partial automation with LLMs can help [2].

Mitigation for Peril 4: Standardization
Initiatives like the Agentic AI Foundation [1] host standards

such as the website AGENTS.md or the MCP. Some projects adopt
guidelines to recognize and standardize contributions by coding
agents. Perhaps more standards will emerge, simplifying studies.

5.3 Beyond agent detection
Promise 6: Model upgrades
Coding agent traces enable the study of the impact of new model
release on the use of coding agents.

As the capabilities of the underlying models drive the capabilities
of agents and their usage, studies of their actual impact would be
very useful. As models have clear release dates, and some agents
have large amounts of data, this becomes feasible, e.g. by comparing
commits done in time periods in which a newer version of a model
was released, with an older time period.

Peril 5: Multiple Models
Some coding agents support multiple models, so determining
which model is used is not trivial, or perhaps impossible.

Several agents provide multiple models for their users, yet the
traces left do not specify which model (or model version) was used.
For instance, Copilot can be used with GPT-5, Sonnet and many
other, yet there is no indication of the model used. This limits the
ability to study the impact of a specific model release. Coding agents
specific to a model vendor are much more likely to use a model
from that vendor, however, and some coding agents (such as Aider)
do specify which model was used to author a commit. In other
cases, the agent’s configuration files may provide some clues, as
the models to use can be specified there.

Peril 6: Scientific reproducibility
Coding agents are non-deterministic and often based on closed,
proprietary LLMs, undermining scientific reproducibility.

Mitigations: (1) Open coding agents, (2) Replication packages.
LLMs are non-deterministic [8]: they can provide different re-

sults starting from identical inputs (project status, prompt, etc.),
and even with a fixed random seed (with batch inference [24]). Fur-
thermore, most coding agents are currently based on LLMs that are
closed and/or proprietary [37], as a whole or in part [61], and ac-
cessed via remote APIs. In other cases the models are available, but
only provide the final model weights. In rare cases (e.g., OLMo [42]),
all LLM parts—training datasets, training pipeline, model weights,
inference code—are available and released under traditional open
source licenses [37, 61]. The agent themselves, implemented in
software, are available under licenses with varying degrees of open-
ness, while the inference stack is most often opaque and can affect
performance [55]. The inference stack may include “model routers”
that allow to switch the underlying model, based on the query.

These factors make it either impossible or very hard to replicate
the activities of coding agents, potentially undermining the scien-
tific reproducibility of empirical experiments that analyze them.

MSR research will focus on existing traces, which overwhelm-
ingly come from “closed” systems. For studies that focus on traces
only, this might not be as problematic, but specific study designs
may face more limitations. Studies that require running coding
agents (e.g. a study of agent success/failure factors that wishes to
establish a causality link) or LLMs (e.g., to automate manual anno-
tations) will face reproducibility issues. Closed models or inference
stacks make it impossible to archive the models or even precisely



Mining Coding Agent Activity: Promises and Perils MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

identify the used versions, as they can be silently altered by the
model operators, compounding the Peril of Multiple Models. API
models access can also be deprecated and suspended, such as Ope-
nAI’s original Codex model. Likewise, research interested in the
impact of training data will not be possible with closed systems.

Mitigation for Peril 6: Open coding agents
Studies can trade off data volume for increased reproducibility by

focusing on the most open coding agents. Using established scales
such as the Modeling Openness Framework [61] or the European
Open Source AI Index [37] will help. Note that, even with fully-open
agents, the problem of LLM non-determinism remains.

Mitigation for Peril 6: Thorough replication packages
Empirical studies conducted using coding agents should report

agent information and/or artifacts in replication packages. For open
agents, the package should include all relevant artifacts (datasets,
models, agent code, etc.). For closed agents, the package should
document as best as possible their versions and deployment details.

Peril 7: Costs shape usage
Coding agents are expensive, and this influences their usage.

Mitigation: (1) Strategic Sampling

LLM inference is compute intensive, particularly for coding
agents. For a single inference turn, processing the LLM’s prompt
has a quadratic complexity with respect to the prompt size, while
generating tokens has a linear complexity (with respect to the
prompt and the previously generated tokens) due thanks to the
key-value cache. This makes inference on long prompts much more
expensive than shorter prompts. Coding agents tend to work on
tasks requiring large prompts, including guidance, relevant context,
tool results, built over multiple turns (e.g. OpenHands routinely
consumes more than a million tokens on SWE-bench tasks [11]).

As a consequence, using coding agent is expensive. The 2025
Stack Overflow survey [50] shows that the majority of intervie-
wees agree that “the cost of using AI agent platforms is a problem”.
Different pricing models exist: flat-rate (with usage limits) and
usage-based. This introduces a discrepancy between users depend-
ing on their resources: open-source contributors might have to
buy their own subscription, opting for lower tiers than developers
working for companies that pay for their access. A few testimonials
advocate that budgets exceeding 1,000$ per developer per month
can be justified [46]. This, in turn, can lead to radically different
usages between open-source repositories and industrial reposito-
ries, where open-source repositories and contributors, vastly more
prevalent on GitHub, may feature lower usage of coding agents. The
effect of this is broader, with developers from different countries
being more or less price-sensitive. In addition price-sensitive users
may also use multiple accounts with free tiers to satisfy their usage
demands. Conclusions on the usage of coding agents should be
made with this context in mind. This also implies that the distribu-
tion of repositories using coding agents may be radically different
than the distribution of open source repositories.

Furthermore, as mentioned in the Peril of High Velocity, the prac-
tice changes very quickly, including pricing: coding agents change
their prices or usage limits over time (e.g. Cursor introducing rate
limits [56]), model inference cost change, which will affect usage.

Mitigation for Peril 7: Strategic Sampling
While there are some usage differences between users that have

higher resources than others (especially those coming from in-
dustry), looking for open-source repositories in which companies
contribute significantly may be helpful in finding users with usages
more representative of those found in industry.

Peril 8: AI coding slop
Coding agents may produce more and larger development ar-
tifacts, of lower quality than those produced by humans. This
“AI coding slop” will make the work of researchers in empirical
software engineering harder.

Traditionally, software development artifacts have a high signal-
to-noise ratio and require significant human effort to produce. For
example, it can take a full day for a developer to fix a thorny bug; at
the end of the day the observable artifact might be a one-line patch,
recorded in Git with an accompanying detailed commit message.
Net result: significant human effort, small artifact of high quality.

“AI slop” [25] is a derogatory term that refers to AI-generated
digital content characterized by its abundance, low quality, and the
perceived little effort put into generating it (causing its low quality).
Coding agents risk polluting the primary sources that researchers in
empirical software engineering study (VCS repositories, collabora-
tive coding platforms, etc.) with “AI coding slop” : abundant, verbose,
and poor-quality development artifacts (commits, pull/merge re-
quests, comments, etc.). Examples include AI-generated security
reports [51], although discerning AI use is much more useful [52].

Although it is too soon to understand the magnitude of this prob-
lem, if AI coding slop is coming, it will materialize at different levels.
First, the number of artifacts researchers will have to analyze will
increase significantly. For example, in our experience it is already
very common to observe very long interaction sequences among
developers and agents in pull request discussions, publicly display-
ing the feedback loop needed to converge to an acceptable result.
Previously, the feedback loop was in the head of (or conversations
among) developers and did not pollute interactions that researchers
study. Second, the size of individual artifacts will also increase, due
to a natural tendency of LLMs to be more verbose than humans.

AI slop spreading to software development artifacts, will require
methodological adaptations. Studies only interested in analyzing hu-
man interactions will now need to filter out agent-human and agent-
agent interactions. This is not an entirely new requirement—MSR
researchers already have to deal with bot detection—but will require
new techniques, tools, and heightened methodological scrutiny.

6 Heuristics and data repository
Mitigation for Perils 2, 3, and 4: Knowledge sharing
The heuristics we have presented are necessarily numerous, var-
ied and change prone due to the Perils of Multiplicity, Diversity,
and Velocity. This makes keeping them up to date challenging.
The best mitigation is to distribute the effort, and share the knowl-
edge. To this extent, we started a repository to easily share this
knowledge with the MSR community, and update it over time. The
repository [47] is in its early stages, but it contains:



MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Robbes et al.

• A brief description of each coding agent (to be expanded over
time), with links for further information;

• A list of heuristics to detect various markers of its presence in
software repositories with their period of validity.

• For heuristics that allow it, links to GitHub queries for interac-
tive browsing and python scripts to gather sample data;

• A list of repositories (ca. 10,000) featuring agent adoption as of
October 2025, allowing targeted data collection.
We call on the MSR community to contribute to this effort, by

expanding the heuristic repository with additional heuristics as
the practices changes, and by giving feedback on the effectiveness
of the existing heuristics, in order to continuously improve them.
While a handful of researchers will have difficulties keeping up
with the velocity of coding agents, we hope that the much larger
MSR research community, will do so in a much more scalable way.

7 Discussion
Limitations. This paper is focused on the promises and perils of

mining coding agent usage, rather than the promises and perils of
coding agent themselves. Issues such as their environmental impact,
impact on the workforce, or intellectual property, while extremely
important, are thus not covered in this paper. Previous work on
promises and perils of mining Git [9] and GitHub [30] also apply.

Our promises, perils, and heuristics are based on our personal
experience conducting MSR studies of coding agents [26, 48]. While
we strive for exhaustivity, we can not guarantee it. In fact, the Peril
4 of velocity implies that parts of the knowledge of this work (at
least the heuristics) will need to be updated over time. The heuristic
and data repository is a key mitigation to ensure this work remains
current; we call on the community to contribute to this effort.

On the accuracy of heuristics. By definition, heuristics are noisy.
We take this in consideration when evaluating individual heuristics.
For instance, this led us to exclude a heuristic for Aider, a guidance
file named CONVENTIONS.md, as most such files contains content
aimed at developers, rather than coding agents. However, the large
quantity of heuristics (more than 100 in the repository so far) makes
a precise evaluation of each heuristic impractical at the scale of a
single research effort. Once again, we see the involvement of the
community in the heuristic and data repository as a key mechanism
to improve this aspect. In the meantime, we can already provide
some general lessons on the accuracy of heuristics:
• The Peril 1 of partial observability indicates that recall is a
general concern: a significant portion of agentic use is still
difficult to detect. The way each tool works influences this.

• Heuristics can have precision issues, and this varies across
categories and per heuristic.

• The precision of author or co-author-based heuristics depends
on the patterns. Heuristics relying on specific author emails, e.g.
<noreply@anthropic.com> have a high precision; Git author
names (e.g. claude) may have lower precision, while references
to specific GitHub user accounts is unambiguous. When possi-
ble, relying on emails (or GitHub accounts) is thus preferable.

• We expect the most variability in precision for files, depending
on how generic or specific a pattern is: a highly specific .kiro/
directory is a precise; a generic CONVENTIONS.md is not.

• Similarly, heuristics for branches and labels may be more or less
specific depending on the pattern; e.g., references to cursor
may refer to the agent, or to the general concept of a cursor
(searching for a cursor/ branch prefix is more specific).
Depending on accuracy a study seeks, some heuristics may use

additional filtering (such as date ranges) or aggregation to refine
the data. In addition, several heuristics might identify the same
artifact. We call on the MSR community to document these cases.

Implications. The principal implication of this work is that the
existence of coding agent traces opens up a vast field of potential
studies of this phenomenon and its impact on Software Engineering.
We provided some examples of such studies, but expect many more.

The implications in terms of potential studies vary with the
degree of effective adoption of coding agents. The examples we
provide (e.g. studies of effects on productivity, or of the factors
influencing the success of agents) assume a “business as usual”
scenario, were developers use coding agents to assist them in the
same tasks that they work on today. However, some have much
more ambitious visions for coding agents. If the observed trend
of doubling the autonomy of agents on tasks every seven months
is sustained for a few years [33], the capabilities of coding agents
will improve significantly, changing the tasks they are given. At
the same time, techniques and tools to handle multiple agents in
parallel emerge [3, 60], which would maximize this effect. If these
trends materialize, then the type, the amount, and the scope of tasks
delegated to agents may change rapidly, in which case software
engineering practices themselves will be affected.

We stress that the impact for MSR studies is potentially broader
than this: the already high level of adoption shows that agents
are already used in practice extensively. As mentioned in the Peril
of AI Slop, if, as we expect it to, this trend continues, research
that aims at studying human contributions will need to take this
into account, and exclude contributions from agents, much like bot
activity should be excluded. Our heuristics are a first step for this.

8 Conclusion
In the span of a few months, coding agents have transitioned from
an academic endeavor to products that are used daily by develop-
ers. While LLM-based completion was used to streamline coding
activities and was difficult to observe using MSR techniques, coding
agents can address more tasks, and leave explicit traces in software
repositories, finally enabling the study of AI-assisted coding via
MSR techniques at scale. In this work, we presented heuristics to
detect coding agent activities in files, commits, issues, and pull
requests. More importantly, after having used these heuristics in
MSR studies, we have distilled the promises and perils of mining
coding agent activities. The principal perils being the multiplicity
of diverse, fast changing agents, we invite the MSR community
to contribute to our repository of shared knowledge and heuris-
tics. The main promise being the very large potential for studies
of this phenomenon and its impact on SE practices, we hope the
community will join us in exploring it.

Acknowledgments
This study received financial support from the French State (Invest-
ments for the Future programme, IdEx université de Bordeaux).



Mining Coding Agent Activity: Promises and Perils MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

References
[1] [n. d.]. Agentic AI Foundation (AAIF). https://aaif.io Accessed: 2026-01-26.
[2] Toufique Ahmed, Premkumar Devanbu, Christoph Treude, and Michael Pradel.

2025. Can LLMs Replace Manual Annotation of Software Engineering Artifacts?.
In 22nd IEEE/ACM International Conference on Mining Software Repositories (MSR
’25). 526–538. doi:10.1109/MSR66628.2025.00086 Accessed 2025-10-23.

[3] DevSwarm AI. 2025. DevSwarm — Code in Parallel, Build Unstoppably. https:
//devswarm.ai/. Accessed 2025-10-21.

[4] PR Arena. 2025. PR Arena – AI Coding Agent Leaderboard. https://prarena.ai.
Accessed: 2025-10-20.

[5] Owura Asare, Meiyappan Nagappan, and N Asokan. 2023. A User-centered
Security Evaluation of Copilot. arXiv preprint arXiv:2308.06587 (2023).

[6] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings of
the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111.

[7] Joel Becker, Nate Rush, Elizabeth Barnes, and David Rein. 2025. Measuring the
Impact of Early-2025 AI on Experienced Open-Source Developer Productivity.
arXiv preprint arXiv:2507.09089 (2025).

[8] Adhithya Bhaskar and Victoria Stodden. 2024. Reproscreener: Leveraging LLMs
for Assessing Computational Reproducibility of Machine Learning Pipelines. In
Proceedings of the 2nd ACM Conference on Reproducibility and Replicability, ACM
REP 2024, Rennes, France, June 18-20, 2024. ACM. doi:10.1145/3641525.3663629

[9] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German,
and Prem Devanbu. 2009. The promises and perils of mining git. In 2009 6th IEEE
International Working Conference on Mining Software Repositories. IEEE, 1–10.

[10] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. 2025. RepairAgent:
An Autonomous, LLM-Based Agent for Program Repair. In 2025 IEEE/ACM 47th
International Conference on Software Engineering (ICSE). IEEE Computer Society,
694–694.

[11] Islem Bouzenia and Michael Pradel. 2025. Understanding Software Engineer-
ing Agents: A Study of Thought-Action-Result Trajectories. arXiv preprint
arXiv:2506.18824 (2025).

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[13] Anthropic / Claude Code. 2025. Claude Code Hooks Guide. https://docs.claude.
com/en/docs/claude-code/hooks-guide. Accessed 2025-10-21.

[14] Anthropic / Claude Code. 2025. DevContainer — Claude Code Documentation.
https://docs.claude.com/en/docs/claude-code/devcontainer. Accessed 2025-10-
21.

[15] OpenAI / Codex. 2025. Config —Observability and Telemetry. https://github.com/
openai/codex/blob/main/docs/config.md#observability-and-telemetry. Accessed
2025-10-21.

[16] Dagger / container use. 2025. container-use — Development environments for
coding agents. https://github.com/dagger/container-use. Accessed 2025-10-21.

[17] Wikipedia contributors. 2024. Vibe coding. https://en.wikipedia.org/wiki/Vibe_
coding. Accessed on 2025-10-20.

[18] Cursor. 2025. Agent Hooks — Cursor Documentation. https://cursor.com/docs/
agent/hooks. Accessed 2025-10-21.

[19] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large language models for software engineering:
Survey and open problems. In International Conference on Software Engineering:
Future of Software Engineering (ICSE-FoSE). IEEE, 31–53.

[20] Ahmed Fawz, Amjed Tahir, and Kelly Blincoe. 2025. Vibe Coding in Practice:
Motivations, Challenges, and a Future Outlook-a Grey Literature Review. arXiv
preprint arXiv:2510.00328 (2025).

[21] Fabio Ferreira, Hudson Silva Borges, and Marco Tulio Valente. 2022. On the (un-)
adoption of JavaScript front-end frameworks. Software: Practice and Experience
52, 4 (2022), 947–966.

[22] William Harding. 2025. AI Copilot Code Quality: Evaluating 2024’s Increased
Defect Rate via Code Quality Metrics. https://www.gitclear.com/ai_assistant_
code_quality_2025_research Accessed on October 13th, 2025.

[23] William Harding and Matthew Kloster. 2024. Coding on Copilot: 2023 Data Sug-
gests Downward Pressure on Code Quality. https://www.gitclear.com/coding_
on_copilot_data_shows_ais_downward_pressure_on_code_quality Accessed on
03 24, 2024.

[24] Horace He and Thinking Machines Lab. 2025. Defeating Nondeterminism in
LLM Inference. Thinking Machines Lab: Connectionism (Sept. 2025). https:
//thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/ Ac-
cessed 2025-10-21.

[25] Alex Hern and DanMilmo. 2024. Spam, junk. . . slop? The latest wave of AI behind
the ‘zombie internet.’. https://www.theguardian.com/technology/article/2024/
may/19/spam-junk-slop-the-latest-wave-of-ai-behind-the-zombie-internet.
The Guardian (2024). Accessed 2025-10-15.

[26] Andre Hora and Romain Robbes. 2026. Are Coding Agents Generating Over-
Mocked Tests? An Empirical Study. In Proceedings of the International Conference

on Mining Software Repositories (MSR 2026). In press.
[27] Saki Imai. 2022. Is github copilot a substitute for human pair-programming? an

empirical study. In Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings. 319–321.

[28] Zed Industries. 2025. Using Rules — Zed AI Documentation. https://zed.dev/
docs/ai/rules. Accessed: 2025-10-20.

[29] Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc Otten, Razvan Mihai Popescu,
and Arie Van Deursen. 2024. Language models for code completion: A practical
evaluation. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1–13.

[30] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining github. In
Proceedings of the 11th working conference on mining software repositories. 92–101.

[31] Aayush Kumar, Yasharth Bajpai, Sumit Gulwani, Gustavo Soares, and Emerson
Murphy-Hill. 2025. Why AI Agents Still Need You: Findings from Developer-
Agent Collaborations in the Wild. arXiv e-prints (2025), arXiv–2506.

[32] Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin,
Sami Jawhar, Megan Kinniment, Nate Rush, Sydney Von Arx, et al. 2025. Mea-
suring ai ability to complete long tasks. arXiv preprint arXiv:2503.14499 (2025).

[33] Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin,
Sami Jawhar, Megan Kinniment, Nate Rush, Sydney Von Arx, et al. 2025. Mea-
suring AI Ability to Complete Long Tasks (up to date web site). https://metr.
org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/. Accessed:
2025-10-20.

[34] Hao Li, Haoxiang Zhang, and Ahmed E. Hassan. 2025. AIDev: Studying AI
Coding Agents on GitHub. https://doi.org/10.5281/zenodo.16919051. Accessed
2025-10-21.

[35] Hao Li, Haoxiang Zhang, and Ahmed EHassan. 2025. The Rise of AI Teammates in
Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping
Software Engineering. arXiv preprint arXiv:2507.15003 (2025).

[36] Jenny T Liang, Chenyang Yang, and Brad A Myers. 2024. A large-scale survey
on the usability of ai programming assistants: Successes and challenges. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1–13.

[37] Andreas Liesenfeld and Mark Dingemanse. 2024. Rethinking open source gen-
erative AI: open washing and the EU AI Act. In The 2024 ACM Conference on
Fairness, Accountability, and Transparency, FAccT 2024, Rio de Janeiro, Brazil, June
3-6, 2024. ACM, 1774–1787. doi:10.1145/3630106.3659005

[38] Walid Maalej, Thomas Fritz, and Romain Robbes. 2013. Collecting and processing
interaction data for recommendation systems. In Recommendation Systems in
Software Engineering. Springer, 173–197.

[39] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and
Chelsea Finn. 2023. Detectgpt: Zero-shot machine-generated text detection using
probability curvature. In International conference on machine learning. PMLR,
24950–24962.

[40] HusseinMozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2022. Reading
between the lines: Modeling user behavior and costs in AI-assisted programming.
arXiv preprint arXiv:2210.14306 (2022).

[41] Vijayaraghavan Murali, Chandra Maddila, Imad Ahmad, Michael Bolin, Daniel
Cheng, Negar Ghorbani, Renuka Fernandez, and Nachiappan Nagappan. 2023.
CodeCompose: A large-scale industrial deployment of AI-assisted code authoring.
arXiv preprint arXiv:2305.12050 (2023).

[42] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora,
Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin
Schwenk, Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman,
Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison,
Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V. Mi-
randa, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Ran-
gapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh
Hajishirzi. 2025. 2 OLMo 2 Furious. CoRR abs/2501.00656 (2025). arXiv:2501.00656
doi:10.48550/ARXIV.2501.00656

[43] Tihomir Orehovački, Darko Etinger, and Snježana Babić. 2020. Modelling the
adoption of the version control system: an empirical study. In International Con-
ference on Human Systems Engineering and Design: Future Trends and Applications.
Springer, 45–50.

[44] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The impact
of ai on developer productivity: Evidence from github copilot. arXiv preprint
arXiv:2302.06590 (2023).

[45] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do users
write more insecure code with AI assistants?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. 2785–2799.

[46] Vincent Quigley. 2025. First attempt will be 95% garbage: A staff engineer’s
6-week journey with Claude Code. Sanity Blog (Sept. 2025). https://www.sanity.
io/blog/first-attempt-will-be-95-garbage Accessed 2025-10-21.

[47] Romain Robbes, Théo Matricon, Thomas Degueule, Andre Hora, and Stefano
Zacchiroli. 2025. Agent Mining Repository. https://github.com/labri-progress/
agent-mining. Accessed 2025-10-23.

https://aaif.io
https://doi.org/10.1109/MSR66628.2025.00086
https://devswarm.ai/
https://devswarm.ai/
https://prarena.ai
https://doi.org/10.1145/3641525.3663629
https://docs.claude.com/en/docs/claude-code/hooks-guide
https://docs.claude.com/en/docs/claude-code/hooks-guide
https://docs.claude.com/en/docs/claude-code/devcontainer
https://github.com/openai/codex/blob/main/docs/config.md#observability-and-telemetry
https://github.com/openai/codex/blob/main/docs/config.md#observability-and-telemetry
https://github.com/dagger/container-use
https://en.wikipedia.org/wiki/Vibe_coding
https://en.wikipedia.org/wiki/Vibe_coding
https://cursor.com/docs/agent/hooks
https://cursor.com/docs/agent/hooks
https://www.gitclear.com/ai_assistant_code_quality_2025_research
https://www.gitclear.com/ai_assistant_code_quality_2025_research
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/
https://www.theguardian.com/technology/article/2024/may/19/spam-junk-slop-the-latest-wave-of-ai-behind-the-zombie-internet
https://www.theguardian.com/technology/article/2024/may/19/spam-junk-slop-the-latest-wave-of-ai-behind-the-zombie-internet
https://zed.dev/docs/ai/rules
https://zed.dev/docs/ai/rules
https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/
https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/
https://doi.org/10.5281/zenodo.16919051
https://doi.org/10.1145/3630106.3659005
https://arxiv.org/abs/2501.00656
https://doi.org/10.48550/ARXIV.2501.00656
https://www.sanity.io/blog/first-attempt-will-be-95-garbage
https://www.sanity.io/blog/first-attempt-will-be-95-garbage
https://github.com/labri-progress/agent-mining
https://github.com/labri-progress/agent-mining


MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Robbes et al.

[48] Romain Robbes, Théo Matricon, Thomas Degueule, Andre Hora, and Stefano
Zacchiroli. 2026. Agentic Much? Adoption of Coding Agents on GitHub. arXiv
preprint (2026). arXiv:2601.18341 [cs.SE] doi:10.48550/arXiv.2601.18341

[49] Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, and
Brendan Dolan-Gavitt. 2023. Lost at c: A user study on the security implications
of large language model code assistants. In 32nd USENIX Security Symposium
(USENIX Security 23). 2205–2222.

[50] Stack Overflow. 2025. AI | 2025 Stack Overflow Developer Survey: Challenges
with AI Agents. https://survey.stackoverflow.co/2025/ai#3-challenges-with-ai-
agents. Accessed: 2025-10-16.

[51] Daniel Stenberg. 2025. Death by a thousand slops. daniel.haxx.se Blog (14
July 2025). https://daniel.haxx.se/blog/2025/07/14/death-by-a-thousand-slops/
Accessed 2025-10-23.

[52] Daniel Stenberg. 2025. A new breed of analyzers. daniel.haxx.se Blog (10 Oct.
2025). https://daniel.haxx.se/blog/2025/10/10/a-new-breed-of-analyzers/ Ac-
cessed 2025-10-23.

[53] Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of software engineering
research. ACM Transactions on Software Engineering and Methodology (TOSEM)
27, 3 (2018), 1–51.

[54] Hyunjae Suh, Mahan Tafreshipour, Jiawei Li, Adithya Bhattiprolu, and Iftekhar
Ahmed. 2025. An Empirical Study on Automatically Detecting AI-Generated
Source Code: How Far are We?. In 2025 IEEE/ACM 47th International Conference
on Software Engineering (ICSE). IEEE, 859–871.

[55] Anthropic Engineering Team. 2025. A postmortem of three recent issues. An-
thropic Engineering Blog (17 Sept. 2025). https://www.anthropic.com/engineering/
a-postmortem-of-three-recent-issues Accessed 2025-10-22.

[56] Michael Truell. 2025. Clarifying our pricing. Cursor Blog (4 July 2025). https:
//cursor.com/blog/june-2025-pricing Accessed 2025-10-21.

[57] Rosalia Tufano, Antonio Mastropaolo, Federica Pepe, Ozren Dabić, Massimiliano
Di Penta, and Gabriele Bavota. 2024. Unveiling ChatGPT’s Usage in Open Source
Projects: A Mining-based Study. arXiv preprint arXiv:2402.16480 (2024).

[58] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[59] Ruotong Wang, Ruijia Cheng, Denae Ford, and Thomas Zimmermann. 2023.
Investigating and designing for trust in ai-powered code generation tools. arXiv
preprint arXiv:2305.11248 (2023).

[60] Warp. 2025. The Agentic Development Environment — Agents. https://www.
warp.dev/agents. Accessed 2025-10-21.

[61] Matt White, Ibrahim Haddad, Cailean Osborne, Xiao-Yang Liu, Ahmed Abdel-
monsef, and Sachin Varghese. 2024. The Model Openness Framework: Promoting
Completeness and Openness for Reproducibility, Transparency and Usability in
AI. CoRR abs/2403.13784 (2024). arXiv:2403.13784 doi:10.48550/ARXIV.2403.13784

[62] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. 2024.
Agentless: Demystifying llm-based software engineering agents. arXiv preprint
arXiv:2407.01489 (2024).

[63] Tao Xiao, Youmei Fan, Fabio Calefato, Christoph Treude, Raula Gaikovina Kula,
Hideaki Hata, and Sebastian Baltes. 2025. Self-Admitted GenAI Usage in Open-
Source Software. CoRR abs/2507.10422 (2025). arXiv:2507.10422 doi:10.48550/
ARXIV.2507.10422

[64] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024. Devgpt:
Studying developer-chatgpt conversations. In Proceedings of the 21st international
conference on mining software repositories. 227–230.

[65] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. Au-
tocoderover: Autonomous program improvement. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis. 1592–1604.

[66] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming. 21–29.

https://arxiv.org/abs/2601.18341
https://doi.org/10.48550/arXiv.2601.18341
https://survey.stackoverflow.co/2025/ai#3-challenges-with-ai-agents
https://survey.stackoverflow.co/2025/ai#3-challenges-with-ai-agents
https://daniel.haxx.se/blog/2025/07/14/death-by-a-thousand-slops/
https://daniel.haxx.se/blog/2025/10/10/a-new-breed-of-analyzers/
https://www.anthropic.com/engineering/a-postmortem-of-three-recent-issues
https://www.anthropic.com/engineering/a-postmortem-of-three-recent-issues
https://cursor.com/blog/june-2025-pricing
https://cursor.com/blog/june-2025-pricing
https://www.warp.dev/agents
https://www.warp.dev/agents
https://arxiv.org/abs/2403.13784
https://doi.org/10.48550/ARXIV.2403.13784
https://arxiv.org/abs/2507.10422
https://doi.org/10.48550/ARXIV.2507.10422
https://doi.org/10.48550/ARXIV.2507.10422

	Abstract
	1 Introduction
	2 Related work
	2.1 Studies of coding assistants
	2.2 MSR studies of generative AI
	2.3 Studies of coding agents

	3 Coding agents
	4 Traces and heuristics
	4.1 Files
	4.2 Commits
	4.3 Pull requests
	4.4 Issues
	4.5 Users

	5 Promises, perils and mitigations
	5.1 Coding agent adoption is real
	5.2 Agent detection: the devil is in the details
	5.3 Beyond agent detection

	6 Heuristics and data repository
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

