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Abstract—With the increasing popularity of LLM-based code
completers, like GitHub Copilot, the interest in automatically
detecting AI-generated code is also increasing—in particular in
contexts where the use of LLMs to program is forbidden by
policy due to security, intellectual property, or ethical concerns.

We introduce a novel technique for AI code stylometry, i.e.,
the ability to distinguish code generated by LLMs from code
written by humans, based on a transformer-based encoder
classifier. Differently from previous work, our classifier is capable
of detecting AI-written code across 10 different programming
languages with a single machine learning model, maintaining
high average accuracy across all languages (84.1% ± 3.8%).

Together with the classifier we also release H-AIRosettaMP,
a novel open dataset for AI code stylometry tasks, consisting
of 121 247 code snippets in 10 popular programming languages,
labeled as either human-written or AI-generated. The experi-
mental pipeline (dataset, training code, resulting models) is the
first fully reproducible one for the AI code stylometry task. Most
notably our experiments rely only on open LLMs, rather than
on proprietary/closed ones like ChatGPT.

Index Terms—code stylometry, large language models, AI
detection, code generation, data provenance, deep learning

I. INTRODUCTION

LLM-based code completers [8], [24], [39] (or code LLMs
for short in this paper), as exemplified by GitHub Copilot1, are
becoming popular automatic programming tools among soft-
ware developers. Preliminary evaluations of code LLM results
show that they can produce either correct or buggy code [11],
[40], depending on how they are used. Specifically, code LLMs
can be useful assets for expert programmers who quickly learn
to use them well or a liability for novice developers who lack
the experience to skip misleading answers quickly. The real
impact of code LLMs on developer productivity also remains
unclear, with growing interest in defining proper metrics to
evaluate it [1].

Similarly, policy-wise, the use of code LLMs can be
frowned upon or outright forbidden, depending on the context.
Security- and privacy-sensitive environments might forbid
the use of code LLMs hosted by 3rd parties—like Copilot,
hosted by GitHub, or ChatGPT2 by OpenAI—to avoid leaking
internal code in prompts. (Self-hosted open-weight LLMs, like
Code Llama [39] and StarCoder [24] mitigate this issue.) In

1https://github.com/features/copilot/, accessed 2024-09-24
2https://openai.com/chatgpt/, accessed 2024-09-24

teaching contexts, such as schools and universities, the use
of code LLMs can be considered cheating (depending on the
assignment goals), with severe consequences for the students
who use them [18].

Legal and licensing risks are also ongoing concerns when
using code LLMs [38]. Even leaving aside the hot legal topic
of whether training LLMs on third-party unlicensed material is
allowed (or ethical), code LLMs can output verbatim parts of
their training datasets, a phenomenon known as recitation [44],
which might expose their users to legal liabilities [7] if
generated code is integrated into a product put on the market.

A. Problem statement

These practical needs have spawned an interest in auto-
matically recognizing code generated by LLMs, distinguishing
it from code written by humans. This is an instance of the
more general task of automatically detecting who wrote a given
piece of code, known in the literature as code stylometry (or
code authorship attribution, or code author recognition) [6],
[20], [34].

Previous work [7], [18], [19], [23], [33] has already applied
code stylometry techniques to the recognition of “AI authors”
(i.e., code LLMs), with three recurrent characteristics: (1)
detection is possible on a single programming language at a
time; (2) the tested code LLM is a proprietary, non-open tool
or model (e.g., Copilot, or ChatGPT), which hinders scientific
reproducibility and replicability; (3) detection is based on
traditional machine learning techniques (e.g., random forest
classifications, LSTM, or code2vec embeddings).

The goal of this paper is to improve the state-of-the-art
of the detection of AI-written programs, by addressing the
following research question:

RQ1: Is it possible to detect source code generated
by code LLMs, achieving high accuracy across several
different programming languages?

Answering this question affirmatively would improve over
limitation (1) above, which can be particularly annoying in
projects where multiple programming languages are in use,
as it is often the case. Methodologically, we aim to answer
RQ1 following a fully reproducible experimental approach
(addressing limitation 2 above) and using more recent machine
learning techniques (point 3 above) that, as we will see, are

https://github.com/features/copilot/
https://openai.com/chatgpt/


needed to achieve good results in the desired multilingual
setting.

B. Contributions

With this paper we make the following novel contributions:
1) We release a novel, balanced, open dataset for the

AI code stylometry task, which contains 121 247 code
snippets in total, written in 10 different popular pro-
gramming languages: C++, C, C#, Go, Java, JavaScript,
Kotlin, Python, Ruby, Rust. Each snippet is labeled as
either having been authored by a human (to solve a spe-
cific task in the context of the Rosetta Code project [9])
or as generated by StarCoder2 [27] (a state-of-the-art
open code LLM), via code translation from a (human-
authored) snippet written in a different programming
language to solve the same task.

2) We train a transformer-based encoder classifier—a
novel architecture for the AI code stylometry task—
on the above dataset. Using it we answer the stated
research question affirmatively, showing that it is possi-
ble to recognize multilingual AI-generated code, across
10 popular programming languages, with an average
accuracy of 84.1% (± 3.8%).

3) We release an open source tool based on the trained
classifier, which can be used to detect whether code
snippets of interest have been AI-generated or not. The
tools is available both as a hosted version on Hugging
Face3 and as a command line (CLI) tool distributed with
this paper replication package.

4) All our experiments are fully reproducible: the initial
dataset is openly available and can be regenerated using
Rosetta Code data and StarCoder2; the training and
evaluation pipeline is available as part of the replication
package of this paper (see the Data availability statement
at the end).

II. METHODOLOGY

The experimental methodology followed for this work is
depicted in Figure 1. It consists of two parts: (1) dataset
construction, described next, leading to the creation of the
H-AIRosettaMP dataset; (2) model training, described in
Section II-B, leading to multiple classifier models, whose
performances are analyzed in Section IV.

A. Dataset construction

Our goal is to train a machine-learning classifier that can
distinguish human-written from AI-generated code, across sev-
eral programming languages (RQ1). To that end we need first
and foremost a training dataset, covering multiple languages,
and containing snippets labeled as either human-written or AI-
generated. To the best of our knowledge such a dataset did
not exist before, so we set to create one. While doing so, we
pursued the methodological goals of making its construction
fully reproducible and releasing it open data.

3https://huggingface.co/spaces/isThisYouLLM/Human-Ai

1) Programming language selection: As a starting point
for human-written code snippets, we used Rosetta Code [9], a
programming chrestomathy project that collects and publishes
solutions to the same programming tasks in as many different
languages as possible, to showcase similarities and differences
across languages. We retrieved a version of the Rosetta Code
timestamped as July 1st, 2022. The retrieved dataset contained
79 013 code snippets, each representing a solution to one
among 1203 programming tasks in total, written in one among
883 programming languages.

In order to both respond to real-world use cases and maxi-
mize data availability for the later training phase, we selected
our target programming languages for AI code stylometry
based on their popularity. To rank languages by popularity,
we retrieved the TIOBE index [35] ranking, as of May 2024.
From the TIOBE ranking we removed all languages not
present in the training dataset of the open code LLM used
in our experiments, namely StarCoder2-15B [27] (see later
in this section for a discussion of our choice of LLM). To
conclude this step (Popular languages filtering in Figure 1), we
selected the top-10 remaining languages by ranking order—
10 languages being a very significant step forward w.r.t. the
state of the art of AI code stylometry performed on at most 2
languages at a time.

We hence obtained a set of 10 popular programming lan-
guages, together with hand-written snippets in those languages
from Rosetta code, that are also well-known to the code LLM
used later to generated AI-authored snippets: C++, C, C#, Go,
Java, JavaScript, Kotlin, Python, Ruby, Rust.

Before dwelling into details, here are the two key intuitions
behind the next steps:

1) Human-written snippets in the target dataset are unmod-
ified snippets coming from Rosetta Code: they were all
contributed as task solutions by humans participating in
the initiative.

2) AI-written snippets in the target dataset are generated
by a code LLM (specifically: StarCoder2 [27]) using
cross-language translation form a source programming
language src (called the provenance language in the
following) to a destination language dst, as previously
done by Li et al. [23]. Input to the translation is a human-
written snippet coming from Rosetta Code (as per (1)
above); output of the translation is an AI-written snippet
(by StarCoder2) that will be integrated into the target
dataset. Details on the translation step are provided later
in this section.

2) Task balancing: To avoid skewing the AI-written part of
the dataset by translating from a single source programming
language (which might be more affine to one target language
than another), all human-written snippets in the dataset for
a given programming language src have been translated to
all other 9 languages among the 10 selected languages. This
constitute a total of 90 (= 10× 9) sub-datasets, each formed
by a {src, dst} unordered language pair, where src ̸= dst .

The initial 90 (sub-)datasets (before the Translation step

https://huggingface.co/spaces/isThisYouLLM/Human-Ai
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Fig. 1. Experimental methodology. The process is divided into two main steps: (1) The Dataset construction, which starts from the filtered Rosetta Code
dataset and terminates in the H-AIRosettaMP, obtained via code translation, comprising 90 (sub-)datasets. Each dataset is labeled by the author (Human or
AI) and is represented by dst (the language of the dataset) and src language (the provenance of the AI-generated part of the dataset); (2) The model training,
that shows the process leading to 90 monolingual models (one per dataset) and 1 multilingual model.

in Figure 1) have been obtained by selecting snippets from
Rosetta Code in a way that created balanced datasets. Specif-
ically, in each {src, dst} dataset, we only kept Rosetta Code
snippets pertaining to the same task. That is, each solution
written in programming language src is kept in the dataset
{src, dst} if and only if a solution for the same task exists
also for programming language dst, and vice-versa.

After this step, we obtained the balanced 90 (sub-)datasets
shown in Figure 1 just before the Translation step that we
describe next.

3) Translation: Li et al. [23] pioneered using code transla-
tion for building the AI-generated part of datasets for AI code
stylometry. They discussed three alternative methodologies to
do so:

1) Code translation involves providing the generative
model with a code snippet in one programming lan-
guage, asking the model to translate it into a different
language;

2) Functional translation involves providing a natural lan-
guage description of the desired task, asking to generate
a solution;

3) Functional customization involves providing an existing
snippet of code, asking to provide an explanation of what
it does first, and then asking to generate a solution based
on the description.

We considered all three options for our needs and concluded
that (2) and (3) are not suitable option, because in our evalu-
ation (using various code LLMs) they often end up producing
“skeleton code”, with holes that remain to be filled by the
user. Keeping those incomplete snippets in the target dataset
would give an unfair advantage to the AI detector, because they
will be fairly easy to distinguish from complete code snippets
from Rosetta Code (written by humans). We then settled for
code translation (1) and applied it to the 90 balanced datasets

obtained from the previous step.
Specifically, for each (sub-)dataset {src, dst}, we took all

the snippets in it written in the dst programming language,
and used the StarCoder2 [27] generative model to translate
the snippet into the src programming language (Translation
step in Figure 1, further detailed in Figure 2).

The choice of StarCoder2 as code completion model is due
to its being an open model, both in its weights (available for
download and reuse under the terms of the Open RAIL-M v1
license) and in its training dataset (obtained from the Software
Heritage archive [10]). Openness is a strong requirement to
achieve our goal of full reproducibility of the experimental
pipeline, which would not be achievable using closed models
such as Copilot or ChatGPT (and indeed has not been achieved
in previous work in the literature). StarCoder2 achieves 46.3%
accuracy in the HumanEval benchmark [8], a widely used
benchmark for assessing the coding abilities of generative
models, making it outperform coding models like CodeLlama
and DeepSeekCoder [16], [39]. In summary: StarCoder2 is the
best performing code LLM among those that are open enough
to satisfy the reproducibility requirement.

To translate a snippet from language src to dst, we give to
StarCoder2 the prompt whose synopsis is shown in Figure 3.
When reading the generated output we select each next token
by taking the one with the highest likelihood (greedy search),
as it is commonplace in translation tasks.

Due to memory and computational limitations, we excluded
snippet pairs {src, dst} that would result in prompts longer
than 1024 tokens, and we set 2048 as the maximum length in
the generative phase. We have also excluded snippet pairs for
which StarCoder2 returned malformed outputs (e.g., empty or
lacking the closing ’’’ delimiter).

After translation, each of the 90 {src, dst} sub-datasets is
now composed of snippets in a single programming language



ARRAY CONCATENATION

print(len(['apple', 'orange']))

PYTHON

public class ArrayLength {
public static void
main(String[] args) {
System.out.println(new
String[]{"apple",
"orange"}.length); } }

JAVA

public class ArrayLength {
public static void
main(String[] args) {
System.out.println(new
String[]{"apple",
"orange"}.length); } }

JAVA

Human labeled part

print(len(['apple', 'orange']))

PYTHON

ROSETTA CODE code
translation

public class Main {
public static void main(String[]
args) {System.out.println(len(new
String[] {"apple", "orange"}));}
  public static int len(String[]varr)
{ return arr.length;}}

JAVA

AI labeled part

Translate this
‘‘‘\n print(len(['apple',
'orange']))  \n’’’
from Python to Java.
Here is the translated
code\n\n’’’

Fig. 2. Code translation step. The human-labeled part of the dataset (the ArrayLength Java class here) is a solution to a task from Rosetta Code (Array
concatenation). The AI-labeled part is obtained via code translation (from Python to Java) using StarCoder 2. Input to the translation is a human-written
solution for the same task, in a different programming language.

Translate this ‘‘‘\n CODE_SNIPPET \n’’’
from SOURCE_LANGUAGE to TARGET_LANGUAGE.
Here is the translated code\n\n’’’

Fig. 3. Synopsis of the prompt given to StarCoder2 for translating a given
code snippet (CODE_SNIPPET in the text) from a source programming
language (SOURCE_LANGUAGE) to a target one (TARGET_LANGUAGE).
A prefix of the desired answer (Here is the...) is provided because
StarCoder2 has not been fine-tuned for chat-based interaction and is strictly
a completion model.

(dst), labeled as either human-written (by a Rosetta Code con-
tributor) or AI-written (by StarCoder2 via code translation).

All together, the 90 sub-datasets form a single reproducible
dataset, called H-AIRosettaMP, which we release publicly
as open data for others to experiment with. H-AIRosettaMP
comprises 121 247 snippets, with 1127 unique tasks in 10
popular programming languages.

Note how the H-AIRosettaMP dataset satisfies multiple
important requirements for the AI code stylometry task. As
discussed by Caliskan-Islam [20] as an important feature:
it contains multiple snippets, authored by multiple authors
(grouped in two, in our case: humans vs AI), implementing
different tasks. Specifically, it is not the case that the two
authors are partitioned by task: for each task we have both a
human-authored solution and an AI-authored one. This avoids
the risk that the classifier will learn to distinguish tasks, rather
than authors. Additionally, the dataset satisfies all the require-
ments associated with RQ1, namely: it is multilingual (with
10 languages), it is openly available and fully reproducible.

B. Model training

1) Classifier architecture: Until now, only classical ma-
chine learning techniques (discussed in detail in Section VII)

CodeT5+ 770M Encoder
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Fig. 4. Transformer-based architecture of the Human/AI stylometry classifier.
Input source code is tokenized and provided as input to the CodeT5plus
encoder, which produces as outputs multiple vectorial representations. The
first token (<s> in the figure) is used as input for the classification head,
which produces the final class probability.

have been applied to the AI code stylometry task. On the other
hand, Niu et al. [32] showed how transformer-based architec-
tures are state-of-the-art for several code understanding tasks.
In the context of natural language (as opposed to code), recent
works obtained successful results on AI recognition [25], [30]
using analogous architectures.

In this work, we apply, to the best of our knowledge for
the first time, a transformer-based machine learning archi-
tecture to the task of AI code stylometry. Specifically, we
use CodeT5plus-770M [42], a pre-trained code transformer
architecture, in an encoder setup, as shown in Figure 4. We
provide the model with a tokenized text input and obtain
several vectorial representations as the number of tokens. To
distinguish human- from AI-written code, we add, following
Niu et al. [32], a classification head to the first output repre-



sentation of the model, corresponding to an always present
classification token (see Figure 4). The classification head
consists of a linear layer with a ReLU activation function,
20% dropout, followed by a final linear layer for binary
classification.

2) Undersampling: As we describe below, we have trained
91 classifier models in total: one monolingual model for each
of the 90 {src, dst} sub-datasets + one multilingual model on a
multilingual dataset sampled from the entire H-AIRosettaMP.

Before training the monolingual models, we undersampled
each sub-dataset to the threshold of 470 code snippets for
each Human/AI class, corresponding to the minimum amount
of snippets across all sub-datasets.

Before training the multilingual model, we want to make
sure that: (1) AI-written snippets, generated via code transla-
tion, come from a uniform distribution of source languages
before the translation; (2) for both AI-written and human-
written snippets, only a single solution for a given task is
present (to avoid learning about the task, rather than learning
about the author style). To ensure these properties, we pro-
cessed the 10 languages one by one. For each language dst, we
collect 470+470 = 940 snippets (half AI-written, half human-
written). When collecting AI-written snippets, we sample
across the other 9 provenance languages src, with a uniform
distribution. When collecting both AI-written and human-
written snippets, we never select more than one solution for
the same task; at most, the solution to the same task can
hence appear twice in a given programming language, once
as human-written and once as AI-written.

As an additional data cleaning step, we also removed
all leading and trailing spaces from all code snippets (both
human-written and AI-written) because AI-translated snippets
exhibit recognizable heading/trailing spacing patterns, and we
wanted to avoid unfairly advantaging classifiers that might
learn from them (in real-world use cases those spaces would
most likely not be preserved as is).

3) Training: We adjusted the model hyperparameters, start-
ing from the setup proposed by Wang et al. [42], picking a
subset of the dataset (all languages with Python provenance
except for the Python language, translated from C++) and
validated the model, obtaining a hyper-parameter setup for the
rest of the experiments. We used AdamW [26] as an optimizer
with a weight decay of 0.01. We trained each model for 15
epochs, multiplying the learning rate after 10 epochs by a 0.1
factor, with an initial learning rate of 2e-05.

After training the 90 monolingual models, we observed
different results for the same dst language, coming from
datasets with different provenance language src (see Sec-
tion IV for details). We inspected this phenomenon by testing
the best model for a language dst on datasets with different
src provenance.

To obtain a model capable of handling several different
languages as input, we trained the multilingual model using
the entire H-AIRosettaMP dataset (after undersampling).

All models were trained with an 80%/20% training/test split.

We then compared our results with the best-performing
results in the literature [23], [33]. Our classifiers were trained
on the novel H-AIRosettaMP dataset, which is different from
datasets used in previous works. Thus, for a fair comparison,
we re-trained Li et al. and Oedingen et al. [23], [33] classifiers
over our dataset.

We trained at first four baseline models following Li et
al. [23] two methodologies (Random Forest and J48) over our
Java and C++ sub-datasets with Kotlin provenance (because it
obtained the best performances across all src provenances).
The models were trained and evaluated using the same
methodology of Li et al., with 10-fold cross-validation.

As our last comparison, we trained a baseline model follow-
ing the best-performing methodology of Oedingen et al [33]
over our Python dataset (also with Kotlin provenance).

4) Evaluation: We evaluated each of the trained monolin-
gual classifiers on the respective dataset (in-distribution test),
noting down the resulting accuracy. We evaluated in the same
way the trained multilingual classifier on its own dataset (in-
distribution test), which contains snippets in all languages and
translated from all src languages (for the AI-labeled part).

We evaluated the 5 baseline models on different datasets
(see Table IV for reference): RF Java and J48 Java base-
lines on the Java sub-dataset with translation from Kotlin
(best average accuracy among all src provenance languages
for Java); RF C++ and J48 C++ on the C++ sub-dataset
(provenance: Kotlin); XGB-TF-IDF Python on the Python
sub-dataset (provenance: Kotlin). Finally, we evaluated the
monolingual models needed for comparison with baselines on
out-distribution languages with Kotlin provenance, except for
Kotlin itself, where Go provenance was used.

III. DATASET

The H-AIRosettaMP dataset is released publicly as part
of our replication package (on Zenodo, see Data availability
statement at the end of the paper) and also mirrored on
Hugging Face.4 The dataset comes in tabular form, with one
row per snippet, for a total of 121 247 rows. Each column in
the table provides some information about the snippet:

• task_name, task_url, task_description:
information about the Rosetta Code [9] task that the
snippet implements, respectively: the task name (e.g.,
Array concatenation), URL on the Rosetta Code website
(e.g., http://rosettacode.org/wiki/Array concatenation),
and natural language description of the task.

• language_name: the programming language in which
the code snippet is written, one of: C++, C, C#, Go, Java,
JavaScript, Kotlin, Python, Ruby, Rust.

• code: the actual, full source code of the snippet as a
string.

• target: a binary label denoting whether the snippet is
human- or AI-written.

• set: the name of the specific sub-dataset, e.g.,
"Java_from_C++" for the Java snippet dataset whose

4https://huggingface.co/datasets/isThisYouLLM/H-AIRosettaMP
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Fig. 5. Distribution of unique tasks for which solutions are present in the
dataset per language. For each task, both a human-written and an AI-written
snippet is always provided. Overlapping tasks denote the number of tasks for
which multiple AI-written solutions are present, with a guarantee that they
have been translated from all other programming languages in the dataset.

AI-written parts were obtained via translation from C++
(the human-written snippets, on the other hand, were
natively written in Java).

As a simple descriptive statistics, Table I shows the average
length of code snippets in the entire dataset by programming
language, measured as the number of characters. We conducted
a t-test for each language between the Human and AI-labeled
groups of snippets with α = 0.05 after having tested data nor-
mality and variance. When looking at the breakdown between
AI- and human-written snippets, we see that six languages out
of ten significantly differ in number of characters (p < 0.05
Table I). The noticeable differences in snippet lengths between
AI- and human-written code suggest that length could be a
predictive feature in code detection models.

We recall from Section II-A that the generation of AI-
labeled snippets in the dataset is followed by task balancing,
ensuring that each language-specific sub-dataset contains pairs
of human-written/AI-written snippets solving the same task.
Figure 5 shows the number of unique tasks (or, equivalently,
the number of snippet pairs) for which solutions are present
in each sub-dataset, aggregated by programming language.
It also shows, for each language, the number of tasks for
which there are solutions coming from all other provenance
languages (“Overlapping tasks” in the figure).

Due to the uneven distribution of task solutions across
languages in Rosetta Code, different languages in the dataset
show a different number of tasks present. On the other hand,
dataset users interested in avoiding the effect of translation
provenance on AI-generated snippets can safely work in the
subset of overlapping tasks.

In comparison to previous work in the literature [18], [23],
[33], [43], this dataset provides the ability to develop and test
AI stylometry classifiers along multiple snippet dimensions—
(1) programming language of the snippet, (2) provenance
language (for AI-written snippets, obtained via translation), (3)
snippet length, (4) task implemented by the snippet—allowing

to isolate how each of them influences the performances of AI
code stylometry.

IV. RESULTS

We show the results of our experiments in two separate
tables. We first report, in Table II, accuracy results for all our
models, both monolingual and multilingual. Then we compare,
in Table IV, our best models to the best baselines from the
literature.

We present all results in terms of overall accuracy, which is
defined as the ratio of correctly classified snippets to the total
number of snippets to be classified. In order to establish the
statistical significance of our results, we also conducted t-tests
(see Table III) and ANOVA tests with α = 0.05 after testing
data normality and variance.

In Table II, we depict the results of the experiments across
all languages and provenance. Each monolingual classifier is
tested only on snippets of the same language (in-distribution
results), making the provenance language (i.e., the language
AI-written snippets in the dataset were translated from) vary
across all other languages. Therefore, we show the provenance
language (src) of the snippets in rows, while in the columns,
we display the target language dst, which is the language the
models have been trained on. The table also shows the average
accuracy by provenance language (Prov. accuracy column) and
the average accuracy by tested language (Language accuracy
row). The Multilingual model row provides results for the mul-
tilingual classifier, which has been trained on the multilingual
dataset sampled from H-AIRosettaMP and tested separately
on each language. Finally, the bottom-right cell of Table II
contains the average accuracy of the multilingual model across
the 10 programming languages considered.

The results in Table II show significant differences both in
rows (same provenance language and different destinations)
and columns (different provenances and same destination).
Table III confirms that these differences among the models
are significant, since we observed both for average provenance
accuracies (F−statistic = 2.00 with p = 0.04 in the table)
and average language accuracy (F−statistic = 3.56 with
p < 0.001) relevant values.

In Table IV we compare our models with the baseline ones,
namely J48 and Random forest algorithms from Li et al. [23]
and XGB from Oedingen et al. [33]. All the baselines and
our monolingual models (Java, C++, Python) are trained with
our best dataset, namely the one that provides the best value
for column Prov. accuracy in Table II, that is Kotlin. The test
datasets are also all with Kotlin provenance, except for Kotlin
itself which has Go provenance.

For monolingual models—when analyzing in-distribution
tests—we highlight a substantial positive gap (+7.2% for the
Java language, +8.9% for the C++ language, and +1.5% for
the Python model) compared to the baselines. We notice the
positive gap between the C++ model tested on the Java (out-
distribution test) dataset (+2.4%), showing how, even when
trained on a different language, this methodology performs
better than the one adopted by Li et al. [23]. Out-distribution



TABLE I
AVERAGE LENGTH OF CODE SNIPPETS IN THE H-AIROSETTAMP DATASET, BY PROGRAMMING LANGUAGE, MEASURED IN CHARACTERS. T-TEST

(α = 0.05) IS COMPUTED BETWEEN THE AI-WRITTEN AND HUMAN-WRITTEN GROUPS

Language Snippet length (character avg. ± std) t-test
All AI-written Human-written t-statistic 95% CI p-value

C++ 1183± 67 1061± 73 1306± 82 6.72 168 to 323 < 0.01
C 1094± 57 1077± 91 1112± 44 1.04 -37 to 107 0.31
C# 1248± 69 1240± 103 1257± 76 0.39 -74 to 107 0.69
Go 977± 63 883± 79 1072± 72 5.30 114 to 265 < 0.01
Java 1262± 88 1245± 102 1278± 101 −0.67 -134 to 69 0.51
JavaScript 933± 60 787± 82 1079± 87 7.32 207 to 377 < 0.01
Kotlin 920± 56 872± 91 969± 67 2.60 18 to 178 0.02
Python 744± 57 729± 86 761± 51 0.96 -38 to 102 0.35
Ruby 584± 42 650± 62 518± 36 −5.52 -183 to -82 < 0.01
Rust 992± 54 909± 81 1076± 71 4.63 90 to 243 < 0.01

TABLE II
ACCURACY (%) OF ALL TRAINED CLASSIFIERS WHEN SOLVING THE AI CODE STYLOMETRY TASK.

Language tested

Prov. language C++ C C# Go Java Javascript Kotlin Python Ruby Rust Prov. accuracy
(avg. ± std)

Monolingual models
C++ - 88.3 87.8 91.0 81.4 86.2 91.0 87.2 86.2 84.0 87.0± 2.9
C 89.9 - 90.9 91.5 92.0 90.9 94.1 89.9 88.8 88.8 90.8± 2.0
C# 75.5 87.8 - 93.6 88.3 91.5 92.5 87.8 88.3 88.8 88.2± 4.9
Go 94.7 94.7 87.2 - 90.9 95.2 94.7 84.0 90.4 85.6 90.8± 4.1
Java 91.5 92.0 86.7 92.0 - 89.4 92.5 87.8 88.8 83.0 89.3± 2.9
Javascript 90.9 95.2 88.3 91.5 87.7 - 93.1 85.6 90.4 84.0 89.6± 3.4
Kotlin 98.4 92.0 94.7 92.6 94.1 96.8 - 94.1 94.7 89.9 94.1± 2.4
Python 92.5 95.2 81.9 90.9 90.9 90.9 96.3 - 77.6 85.1 89.0± 5.9
Ruby 90.4 96.3 86.7 93.1 87.7 89.4 94.1 78.2 - 86.2 89.1± 5.0
Rust 88.3 97.8 90.9 87.3 94.7 91.5 87.8 88.8 89.4 - 90.7± 3.3
Language accuracy 90.2 93.2 88.3 91.5 89.7 91.3 92.9 87.0 88.3 86.1 -
(avg. ± std) ± ± ± ± ± ± ± ± ± ±

5.9 3.3 3.4 1.7 3.8 3.0 2.3 4.1 4.3 2.3
Multilingual model

Multilingual model accuracy 88.8 88.3 84.0 89.4 82.4 79.3 87.8 79.3 80.8 81.4 84.1± 3.8
Multilingual model F1 88.8 88.8 84.0 89.3 82.4 78.9 87.8 78.8 80.5 81.1 84.0± 4.0
Multilingual model AUC 94.1 94.9 91.8 93.9 89.9 90.4 94.6 90.8 88.6 93.9 92.3± 2.1

TABLE III
HYPOTHESIS TESTS FOR TABLE II: ANOVA TEST RESULTS (α = 0.05)

FOR LANGUAGE ACCURACY; ANOVA TEST FOR PROVENANCE
ACCURACY; T-TEST (α = 0.05) FOR MULTILINGUAL MODEL AND

(MONOLINGUAL) LANGUAGE ACCURACY.

Values t/F-statistic 95% CI p-value
Lang. accuracy (ANOVA) 3.56 - < 0.001
Prov. accuracy (ANOVA) 2.00 - 0.04
Multilingual comp. (t-test) 4.01 2.7 to 8.7 < 0.001

tests for the baselines are not shown as these architectures em-
ploy predefined features—lexical, syntactical (extracted from
the abstract syntax tree of the source code), or deriving from
source code layout—strictly linked to the language used during
training, making the model specific to the designed language
(a net advantage for the approach proposed in this paper).

We notice how the multilingual classifier performs worse
than monolingual classifiers in both Table II and Table IV.
In particular, Table III shows that the multilingual classifier
has an accuracy that is worse than that one of the mono-
lingual model in the average language case (-5.17% avg.
t−statistic = 4.01 with p < 0.001). The multilingual

classifier Table IV, however, does not present outliers in
terms of accuracies, obtaining a model with consistent results,
effective in handling multiple languages and the provenance
phenomenon. In addition to the practical benefits of having
a single model, this is another reason, as we will discuss
in Section V, why the multilingual model is preferable for
detecting AI-generated code in practice.

We also observe that our reimplementations of the baselines
perform worse than the results reported in the original papers
by both Li et al. [23] and Oedingen et al. [33]. Specifically, we
obtained negative gaps of -18.5% with Java [23], -3.5% with
the C++ baseline [23] and -5.2% for the Python baseline [33].
Since we reimplemented the same methodologies and applied
them on our dataset (to perform a fair comparison on an
identical dataset), we attribute these differences to the dataset
itself, suggesting that H-AIRosettaMP is a harder benchmark
than the ones used in previous work—which also makes
intuitive sense, given the fast-paced advances in LLM-based
code generators.



TABLE IV
COMPARISON BETWEEN THE ACCURACY OF BASELINES CLASSIFIERS [23], [33] AND CLASSIFIERS INTRODUCED IN THIS WORK. BEST RESULTS FOR

EACH COLUMN ARE SHOWN IN BOLD.

Tested language
Model Java C++ Python Javascript C# C Go Ruby Rust Kotlin

Baseline models
RF Java [23] 79.3 - - - - - - - - -
J48 Java [23] 86.9 - - - - - - - - -
RF C++ [23] - 85.5 - - - - - - - -
J48 C++ [23] - 89.5 - - - - - - - -
XGB-TF-IDF Python [33] - - 92.6 - - - - - - -

Proposed models
Java (monolingual) 94.1 83.9 87.7 90.6 88.9 80.4 86.7 86.6 85.0 31.3
C++ (monolingual) 89.3 98.4 88.0 90.7 86.7 89.5 86.1 87.0 86.2 24.1
Python (monolingual) 63.1 82.4 94.1 90.2 58.5 83.6 58.7 90.7 84.0 44.1
Multilingual 82.4 88.8 79.3 79.3 84.0 88.3 89.4 80.8 81.4 87.8

V. DISCUSSION

a) Findings: Based on the results presented in Section IV
we can answer the stated research question affirmatively: it is
possible to recognize AI-written programs with high average
accuracy (84.1%), across 10 different programming language
(multilingual code stylometry), with a single trained classifier
based on a transformer-based architecture, novel for this task.

To achieve this, we devised and implemented a fully open
and reproducible methodology and also replicated previous
experiments in the literature [23], [33]. We observe significant
performance differences not only across different datasets
(which is to be expected), but also between accuracies pre-
viously reported in the literature and our replications of the
same experiments with the same architectures. The following
factors might be the cause of these discrepancies:

(1) The language in which the snippets to be recognized
are written in plays an important role. For example, we see a
pattern in our results comparing C snippets (accuracy 93.2%±
3.3) with Rust snippets (86.1% ± 2.3), for a difference of 7
points. It is entirely possible that AI-written code in some
programming languages is intrinsically easier to recognize as
such than code written in other languages. Establishing this
conclusively is an interesting direction for future work.

(2) We also observe significant accuracy differences be-
tween datasets with different provenance languages (i.e., the
languages AI-written code snippets where translated from). In
order to test the impact of this factor, we analyzed models
in the same language but with different provenances for the
testing datasets (Figure 6). More precisely, since for the
same language we have different models (depending on the
provenance language), we first selected the models with the
best provenance accuracy (last column of Table II), namely
the models with Kotlin provenance. We depicted in Figure 6,
with the dashed orange line, the accuracy of these models on
the various languages (that is, we reported in the Kotlin row
of Table II). Then, we compared these accuracies to those
obtained for each language L ̸= Kotlin by averaging the
accuracies of the L model on all the training datasets generated
in L from the other provenances. This is reported in Figure 6
with the blue line.
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20
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100
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Fig. 6. Accuracy of our best-performing monolingual models. The dashed
orange line corresponds to the Kotlin row in Table II (in-distribution). The
solid blue line shows the accuracy of the same models on test sets with
a different language provenance (potentially out-distribution, as is general
translating solutions for the same task from different languages to the same
language will result in different snippets). Model performances degrade
significantly in the latter case.

As the picture shows, we obtain a significant loss in
accuracy (-17.93% in avg. t−statistic = 8.82 with 95% CI
12.4 to 21.3 and p < 0.001). We believe this phenomenon is
tightly coupled with the methodological choice of producing
AI-written snippets via code translation and would not be
observable under different conditions. We consider that we
have properly mitigated this by training our main classifier to
be multilingual across multiple translation provenances.

Still, the accuracy differences are interesting per se and
pave the way to dedicated future work. We hypothesize that
different ways of inputting—and prompting—the generative
model, both to generate the training datasets and to use the



obtained classifiers, can influence its performance, possibly
leading to detection evasion.

(3) Reproducibility issues. As is way too common in
empirical software engineering [15], studies tend to under-
report the details needed to fully replicate their empirical
findings, particularly so when AI-training is involved. When
replicating baseline results from previous work, we tried our
best, but some artifacts were not available and had to be
reimplemented from scratch. This work contributes to raising
the bar of replicability for AI code stylometry by relying on
and producing only openly available artifacts.

Aside from the above, in Section III, we highlighted two
other factors that can influence detection accuracy: dataset size
and task balancing. We did not explore systematically how
either of them influence the results; it is left as future work.

b) What about ChatGPT?: ChatGPT is one of the most
popular generative AI tools on the market, for both generat-
ing natural language text and program code. We could not
use ChatGPT in our experiments without undermining their
replicability—which is one of our goals and differentiating
aspects w.r.t. previous work. Still, it is interesting to verify how
our reproducible classifiers, trained using only openly available
data, fare against ChatGPT (whose model and training data are
undisclosed).

We tested our multilingual classifier (trained on the H-
AIRosettaMP dataset) on the Human-AI dataset by Oedingen
et al. [33], whose AI part consists of Python code snippets
generated by ChatGPT (at the time and version of their
experiments) starting from natural language prompts. Without
any fine-tuning on ChatGPT data, our multilingual classifier
achieved 72.8% accuracy, with a -6.3% drop from the results
obtained on our dataset. The accuracy gap is more significant
when compared to the results reported by Oedingen et al. [33]:
-25.2% with our model on their dataset. Still, our classifier
results are way above the chance (50% for 2 classes), multi-
lingual, and reproducible.

The accuracy gap can be due to several factors: the LLM
used to generate the AI snippets, the different inputs and
prompts used during generation, hyperparameter tuning, etc.
Ultimately, the important question here is whether, in the
upcoming arm race between AI code generation and AI code
stylometry (to detect it), we can rely on closed models and
datasets or not. We argue we should not and propose a new
baseline for reproducible, multilingual, AI code stylometry
with this work.

VI. LIMITATIONS

External validity: Our approach to the generation of AI-
written snippets in the novel H-AIRosettaMP dataset is repro-
ducible code translation. Our results could be impacted by that
choice. We have explored the possibility only superficially,
by verifying how our classifier performs on the dataset of
Oedingen et al. [33], generated using ChatGPT on natural
language prompts (hence: not code translation), with good
results (cf. Section V). A more thorough analysis of how our

results generalize to other prompting techniques (e.g., natural
language prompts) and LLMs is left as future work. Note
that we share this threat with all related work and that it is
impossible to fully mitigate this threat encompassing closed
LLMs (like ChatGPT) without sacrificing reproducibility.

Reliability: We address reliability threats in the usual way
by releasing a comprehensive replication package covering all
experiments discussed in the paper (see the Data availability
statement at the end). In this respect, we fare better than all
previous works by relying only on openly available datasets
and components, including third-party LLMs.

VII. RELATED WORK

a) Code stylometry: Oman and Cook [34] were the first
to introduce the notion of code stylometry. They hypothesized
that each author is recognizable by a unique coding style called
“fingerprint”. In their pioneering work, they approached the
task using cluster-based classification, introducing an unsu-
pervised technique for inferring the code author.

Caliskan-Islam et al. [20] were the first to use both syn-
tactical features (from ASTs) and lexical features (from con-
crete syntax trees) for code stylometry. They showed how a
random forest classifier can take advantage of both kinds of
information to achieve an accuracy of 53.91% for the Python
language across 229 different authors. Other works followed
the Caliskan approach, e.g., Dauber et al. [12].

More recently, the emergence of word embeddings [28]
introduced a shift in the representation of author fingerprints
from classical machine-learning techniques to deep-learning
ones. Deep learning approaches [3], [6], [22] led to better
author style representation capabilities, most notably by lever-
aging LSTM and code2vec [2] architectures. In terms of code
stylometry accuracy, this resulted in a bump up to 95.90% with
70 different authors [6]. These architectures represent source
code using both syntactical and lexical features.

Our work in this paper is a specific instance of the code
stylometry task, where we aim to distinguish a specific “AI
author” (a code LLM) from human authors. To that end we
introduce the use of a transformer-based architecture [41],
novel for the code stylometry task. Contrary to more traditional
code stylometry work, we do not rely on syntactical features,
but solely on lexical features (token stream).

b) AI detection for natural language: Köbis and
Mossink [21] observed first how the generative capabilities of
LLMs make it difficult to distinguish their (natural language,
in this case) output from human-authored text, paving the way
to research on the topic.

Early studies [5], [14], [17] approached the problem of AI-
generated natural language using stochastic approaches. They
generated AI-labeled samples with GPT-2 [36] and reached
accuracies up to 93% [5].

Liao et al. [25] introduced the use of BERT [13] for recog-
nizing AI-generated natural language. They demonstrated that
this approach results in superior accuracy (96.7%) compared to
traditional machine learning approaches: +7% w.r.t. XGBoost
(decision tree) to a fine-tuned BERT architecture.



Mitchell et al. [29] used an approach based solely on
probabilities sampled from a generative model, reaching 86%
AUROC. Mitrović et al. [30] compared the performance
of different approaches that do not need fine-tuning. They
show that supervised techniques perform better, with a 14%
accuracy increase from a perplexity-based approach (84%) to
DistillBERT (98%).

With respect to these works, we focus on AI code stylome-
try, rather than natural language. We adopt an LLM-based ap-
proach (like [25], [30]), fine tuning the T5plus [42] LLM. For
dataset generation, we use the open-weight StarCoder2 [27]
code LLM.

c) AI code stylometry: Hoq et al. [18] looked at the
problem of AI code stylometry, for educational plagiarism
detection in the context of university computer science class.
Their dataset consists of: (1) student-written Java code from
a publicly-available dataset encompassing multiple problems
with human solutions, and (2) solutions to the same problems
generated by ChatGPT. Their approach relied on both syn-
tactical and lexical features extracted from the code, fed to
both traditional machine learning techniques (random forest)
and deep learning ones, such as code2vec [2]. They reached
accuracies up to 95% (with code2vec).

Both Bukhari et al. [7] and Idialu et al. [19] followed
the same approach on different datasets and programming
languages. The former focused on the C language using the
Lost at C dataset [40] and Codex [8] for AI-generated snippets.
The latter looked at Python code from the CodeChef learning
platform, and generated the AI solutions with GPT-4. Both
studies used random forest classification, reaching respectively
92% accuracy and 91% F1-score.

Yang et al. [43] replicated for AI code stylometry the
probability-based methodology introduced by Mitchell et
al. [29] for natural language. They focused on Java and Python,
data coming from multiple LLMs from OpenAI, reaching
AUCs up to 86.01% for Python and 77.42% for Java.

Oedingen et al. [33] analyzed the discrepancies between
fine-tuned methodologies and zero-shot approaches (like Yang
et al. [43]), showing how the latter struggle to achieve
competitive performances. Using traditional machine learning
techniques (XGB with TF-IDF features), they achieved im-
pressive results (98% accuracy) on the detection of Python
code generated by ChatGPT.

Rahman et al. [37] followed a similar approach, using
a different (but still proprietary) LLM for code generation:
Claude 3 haiku [4]. They reached 82% accuracy on Python.

Li et al. [23] introduced the use of translations (from either
natural language specifications or existing code) to generate
the AI-labeled part of training datasets for AI code stylometry.
Using translation, they aim to reduce the chance of producing
code already present in the training dataset of the code LLM
that is to be recognized as an AI author. They considered
C++ and Java languages (separately), using both ChatGPT
and GPT-4 as generative models. They used random forest
classification, with only lexical features, achieving 93% and
97.8% accuracy for C++ and Java, respectively.

We depart from previous AI code stylometry work in three
ways: (1) we apply for the first time a transformer architecture
to the AI code stylometry task; (2) we are able to recognize
AI-written code across 10 different programming languages
with a single model, achieving an average accuracy of 84.1%;
(3) we rely only on openly-available data and code, enabling
scientific reproducibility and future reuse of our work.

d) GPTSniffer: Independently and in parallel to our
work, Nguyen et al. [31] introduced GPT Sniffer, that tackles
the task of detecting AI-generated coming from a different
perspective than code stylometry, but also using a transformer-
based classifier. Their work is focused on the Java language,
uses ChatGPT as a generative model, and considers the
impact of different data source domains, such as programming
books and data representative of real use-case scenarios that
encompass a mixture of snippets from GitHub repositories and
generated from ad-hoc queries. GPTSniffer performs really
well in domain (100% F1 score training and testing with data
provenance from a Java programming book), degrades a lot
on out-of-domain (56% F1 with real use-case data for testing),
and improves again on a mixed training set (94% F1) and data
alteration techniques (96% F1). In comparison to GPTSniffer,
we rely exclusively on open models for data generation and
classification, ensuring experiment reproducibility, and sup-
ports a larger classification scope of 10 distinct programming
languages with a single model.

VIII. CONCLUSIONS

AI code stylometry consists of automatically detecting
whether an input piece of source code was authored by an
AI (e.g., Copilot or ChatGPT) or a human. In this paper, we
took a fresh look at the problem by revisiting assumptions
made in previous work.

First, we solved the problem in a multilingual setting, sup-
porting 10 different popular programming languages achieving
high average accuracy (84.1%) with a single transformed-
based classifier, a novel architecture for this task.

Second, our experiments are fully reproducible. As building
blocks, we use only openly available data and components,
including our code LLM: StarCoder2. We release openly all
our artifacts: the novel H-AIRosettaMP dataset consisting of
121 247 code snippets in 10 languages, partly human-written
(from Rosetta Code) and partly AI-written (via cross-language
code translation); checkpoint of our trained model; and an
open source CLI tool to use it in practice.

As future work we plan to analyze how snippet generation
impacts detection accuracy, covering: prompt engineering,
used code LLM, the provenance language for code translation,
as well as starting from natural language prompts.

DATA AVAILABILITY

A full replication package containing the dataset, a check-
point of our multilingual model, a command-line tool for using
it on selected code snippets, as well as the source code used
to run all the experiments presented in this paper is available
from Zenodo at https://doi.org/10.5281/zenodo.13908858.

https://doi.org/10.5281/zenodo.13908858
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