
Enforcing Type-Safe Linking using
Inter-Package Relationships

M. Dogguy* — S. Glondu* — S. Le Gall** — S. Zacchiroli* 1

* Laboratoire PPS, UMR 7126
Université Paris Diderot-Paris 7

Case 7014
F-75205 Paris Cedex 13

{dogguy,glondu,za
k}�pps.jussieu.fr

** OCamlCore S.A.R.L.

sylvain.le-gall�o
aml
ore.
om

Abstract. Strongly-typed languages rely onlink-time checksto ensure that type safety is not

violated at the borders of compilation units. Such checks entail very fine-graineddependencies

among compilation units, which are at odds with the implicit assumption ofbackward compat-

ibility that is relied upon by common library packaging techniques adopted by FOSS (Free and

Open Source Software) package-based distributions. As a consequence, package managers are

often unable to prevent users to install a set of libraries which cannot be linked together.

We discuss how to guarantee link-time compatibility using inter-package relationships. In do-

ing so, we take into account real-life maintainability problems such as support for automatic

package rebuild and manageability of ABI (Application Binary Interface) strings by humans.

We present thedh_o
aml implementation of the proposed solution, which is currently in use in

the Debian distribution to safely deploy more than 300 OCaml-related packages.

Keywords: static typing, separate compilation, linking, free software, FOSS, distribution,pack-
age, dependency, OCaml, Debian

1. Partially supported by the European Community FP7, MANCOOSI project, grant agree-
ment n. 214898

Résumé long

Les langages fortement typés reposent sur des vérificationslors de
l’édition de liens afin de garantir que la sûreté du typage reste respectée
entre les différentes unités de compilation. Ces vérifications sont très
strictes, et incompatibles avec l’usage, dans les distributions de logiciels
libres utilisant des paquets, qui est de supposer que les bibliothèques
sont rétrocompatibles. Ainsi, les gestionnaires de paquets sont souvent
incapables d’empêcher un utilisateur d’installer un ensemble incohérent
de bibliothèques.

Une des causes d’incohérence peut apparaître au niveau du typage.
Dans le cas de langages fortement typés, ce problème peut se manifester
quand deux unités de compilation ont été générées avec deux versions
différentes du compilateur. Cette source d’incohérence estdétectée par
l’éditeur de liens qui effectue les tests nécessaires pour garantir un en-
semble cohérent ; mais cela peut persister quand il s’agit d’unités sé-
parées.

Pour des langages de bas niveau, tels que le langage C, l’éditeur de
liens effectue quelques vérifications lors de la phase finale:

– chaque symbole est résolvable,

– aucun symbole n’est défini plusieurs fois.

Malheureusement, ces vérifications ne sont pas suffisantes pour
garantir la sûreté du typage quand il s’agit de langages fortement typés
tels quel OCaml et Haskell. Aux vérifications habituelles, ilfaudra
rajouter des vérifications de types entre unités de compilation pour
garantir la cohérence de l’ensemble. Ces informations de types sont
habituellement représentées dans un format court et exportées dans
l’unité de compilation produite. Pour l’éditeur de liens, un symbole de-
vient donc un nom associé à l’information de type. Ceci permetde faire
des vérifications plus fines. Ayant cette information pour tous les sym-
boles disponibles, il est possible de définir une version pour l’ensemble
des unités de compilation, obtenant ainsi une version de compatibilité
binaire pour la bibliothèque, aussi appelée ABI.

En C, une grande attention est portée sur la compatibilité binaire,
gérée manuellement, lors d’un changement d’interface. Il est ainsi pos-

2

sible de rajouter des fonctionnalités dans de nouvelles versions tout
en conservant une certaine compatibilité binaire. Par conséquent, une
borne inférieure sur la version d’une bibliothèque suffit souvent à as-
surer le bon fonctionnement d’un paquet en dépendant. Au contraire,
en OCaml, la compatibilité binaire est gérée automatiquement par le
compilateur et le moindre changement sera considéré comme incom-
patible par les outils. Ceci amène à repenser le schéma de dépendances
utilisé dans les paquets afin de refléter le changement d’ABI pour que
ce soit visible à l’utilisateur dès la tentative d’installation.

Le but de la solution proposée est de détecter les incompatibilités
d’ABI en analysant les dépendances des différents paquets concernés.
Nous établissons donc des critères pour évaluer notre solution et la com-
parer aux solutions existantes. Les critères établis sont:

– dépendances correctes;

– inférence des dépendances;

– stabilité des dépendances;

– légèreté des dépendances.

Notre solution, appelée “ABI approximation”, consiste à calculer un
hash cryptographique par paquet à partir des unités de compilation qu’il
fournit. Le résultat calculé et la liste des unités fourniessont ensuite en-
registrés dans un registre global, et pourront ainsi être utilisés par le
méchanisme d’inférence des dépendances pour d’autres paquets. Cette
solution a été implémentée en Perl, pour éviter des dépendances circu-
laires, et vérifie tous les critères établis. Elle a été testée sur plus de 150
paquets sources, produisant près de 353 paquets binaires etplus de 2500
modules. Elle a ensuite été déployée dans la distribution Debian avec
succès. Le gain est présent aussi bien pour les utilisateurs, qui ne peu-
vent donc plus installer un ensemble incohérent de paquets,mais aussi
pour les mainteneurs de paquets, qui peuvent désormais identifier facile-
ment l’impact de l’introduction d’une nouvelle version de bibliothèque.
Une solution similaire a également été adoptée par les mainteneurs des
paquets Haskell.

Dans le cadre de ce travail, nous avons été amenés à écrire de nou-
veaux outils pour pouvoir lire les informations dont on a besoin à par-
tir des binaires code-octet et des greffons OCaml. Ces outils ont été

3

soumis aux auteurs de OCaml qui les ont acceptés (et feront partie de la
prochaine version).

4

1. Introduction

Type safety is a tricky business, even more so when separate compi-
lation is a desired feature. In the world of system-level languages and
linkers [14]—such as the C language and the widespread GNU linker—
very few checks are performed at the final linking stage; a bitof formal-
ization will help in understanding them. Given a set ofcompilation units
{u1, . . . , un} to be linked together, the linker essentially checks a form
of referential integrity, i.e. that all symbols needed by involved compi-
lation units are actually available within the set. We callrequirements
of a compilation unitR(u) the set of required symbols andapplication
binary interface(ABI) of a compilation unitA(u) the set of provided
symbols.

The linker notion of “linkability” can now be grasped as follows:1

Definition 1 (Linkability). link{u1, . . . , un} = ✓ iff:

1)
⋃

i R(ui) ⊆
⋃

i A(ui)

2) ∀i j, i 6= j → A(ui) ∩ A(uj) = ∅

The first condition is the linker’s view of referential integrity: all
referenced symbols must be provided by linked objects; the second
condition avoids multiple definitions.2 No matter the expressivity of
the type system, such a linking discipline cannot help in enforcing
type safetyacross compilation units, if not relying on name mangling
hacks [15] or delegating it to external whole program verification tech-
niques [8].

Moving to the world of functional, statically typed programming
languages, such as OCaml and Haskell, link-time checks get more
thorough mainly because types come into play. Not only cross-module
type compatibility is challenging to verifyper se[1, 11], but also tech-
nical guarantees that ABIs do not change between compile-time of indi-
vidual units and link-time should be type-aware. The solution adopted

1. We do not strive for completeness here, we cover only the linker checks that will help in
comparing with the strongly typed language world. For the same reason, we do not distinguish
between static and dynamic linking.

2. Actually, in some corner cases, the C linker can allow multiple definitions, but that is
uninteresting for our purposes.

5

Listing 1: foo.ml
l e t hello () =

Printf.printf

"Hello !\n"

Listing 2: bar.ml
l e t hello () =

Foo.hello ()

Listing 3: main.ml
l e t _ =

Bar.hello ()

Figure 1: sample OCaml compilation units

by OCaml is, for each compilation unit, to expose two sets ofmodule
names, associating each name to a cryptographic hash orchecksumthat
captures the type information of that module.

Example 1. Let us consider the OCaml sources of Figure 1.

After (bytecode) compilation ofbar.ml—which in turn needs a com-
piled version offoo.ml—the resulting compilation unit contains the
following “assumptions”:

$ o
aml
 -
 foo.ml bar.ml

$ o
amlobjinfo bar.
mo

Unit name: Bar

Interfa
es imported:

807 e
d3a1538992580464
03462
9964 Printf

da00042bb934260afe41d004b
91fe2e Foo

9e3404342379641955461e6944482508 Bar

where we can see thatbar.
mo exports an ABI consisting of the inter-
faceBar with a specific MD5 checksum and that itrequiressome other
checksum-tagged interfaces. Among them we can spotFoo, provided by
foo.ml, andPrintf, provided by the OCaml standard library which is
linked in by default.

If the ABI offoo.
mo changes between the compile-time ofbar.
mo

and the final link-time, the user will incur in the sadly well-known “in-
consistent assumptions” error:

$ o
aml
 -
 foo.ml bar.ml

$ echo "let got
ha () = ()" >> foo.ml

$ o
aml
 -
 foo.ml

$ o
aml
 foo.
mo bar.
mo main.ml

Files bar.
mo and foo.
mo make in
onsistent

6

assumptions over interfa
e Foo

The additional type-aware checks performed by OCaml alreadyfit
in the given simple formalization. It is enough to consider both R(u)
andA(u) to be sets ofpairs 〈m, c〉, wherem is the name of an OCaml
module andc is its associated checksum. The only additional property
checked by the OCaml linker is that, given a set of compilationunits, the
mapping between module names and checksums is a function, i.e. that
a module is not associated with more than one checksum.

Simplifying the characteristics of the standard librarystdlib, the fail-
ure of Example 1 can now be explained as follows:

R(stdlib) = ∅
R(foo.cmo) = {〈Printf, 807ec . . .〉}
R(bar.cmo) = {〈Printf, 807ec . . .〉,

〈Foo, da000 . . .〉 }
A(stdlib) = {〈Printf, 807ec . . .〉}

A(foo.cmo) = {〈Foo, a4293 . . .〉}
A(bar.cmo) = {〈Bar, 9e340 . . .〉}

⋃
u∈M R(u) \

⋃
u∈M A(u) = {〈Foo, da000 . . .〉}

whereM = {stdlib, foo.cmo, bar.cmo}

In order to satisfy Definition 1, the next to last equation wassupposed
to be the empty set, whereas it contains the pair〈Foo, da000 . . .〉.

The ability of the linker to detect this kind of unsound assumptions
comes at a cost: ABIs change more frequently than in the C language
case. Indeed, with system-level linking, the ABI of a given unit can
inhibit linkability only by removing symbols from it. Backward ABI
compatibility—which of course does not imply type safety—can be re-
tained only when adding new symbols, which is an unsurprisingly com-
mon practice in the evolution of C libraries.

With type-aware linking, ABIs break at each change in a module, 3

no matter if it is an addition, a removal, or a simple (type) change, be-

3. Here, we do not distinguish among assumptions on interfaces and assumptions on im-
plementations, these details are postponed to Section 6.

7

cause each such modification will change the checksum of the module.
While C libraries offer (type-unsafe) backward binary compatibility by
default, OCaml libraries have the converse default: they break binary
compatibility at every single change.

Unfortunately for most users of languages such as OCaml and
Haskell, packaging systems and techniques used in mainstream FOSS
(Free and Open Source Software) distributions have been designed with
implicit backward compatibilityfor libraries in mind. Dependencies on
library packages are indeed usually expressed according tothe follow-
ing schema:

Package: my -app

Depends: libfoo1 (>= 1.2.3)

Such a schema implicitly assumes that future versions of thefoo library
will either be binary backward compatible or change the package name
altogether, for instance switching tolibfoo2.

The advantage of the backward compatibility assumption is that
inconsistent software installations, where installed libraries lack the
needed objects to be linkable, are detected at the dependency level and
can hence be spotted by package managers. Given that there isno re-
liable mapping between library versions and ABIs (new versions can
change ABIs, but are not forced to), we observe that with the OCaml
linking discipline the advantage of spotting linkability errors at the de-
pendency level is gone.

As most OCaml users on distributions such as Debian4 have expe-
rienced in the recent past, it indeed frequently happens that upgrades
involving OCaml libraries might temporarily leave the buildtoolchain
in an inconsistent state,5 requiring users to: recompile dependent li-
braries by hand, rollback the upgrade (if possible), or simply wait for
fixed packages (of all involved libraries) from the distribution.

In this paper we show how to make the packaging system aware
of complex and frequently changing ABIs used by languages such as

4. http://www.debian.org
5. For example, http://bugs.debian.org/
gi-bin/bugreport.
gi?bug=238727

(retrieved October 2009); similar reports are very frequent during transitions from one OCaml
version to the next, since all libraries need to be rebuilt.

8

OCaml and Haskell, hence shielding users from the installation of non-
linkable libraries. Attempting to do so will amount to trying to install a
package whose dependencies cannot be satisfied. We achieve that result
by coalescing ABIs in a single human-readable checksum—calledABI
approximation—which is then reified as a “virtual” package known to
the packaging system,de factoclosing the gap between coarse-grained
inter-package relationships and fine-grained inter-unit linking assump-
tions.

1.1. Paper structure

The next section introduces some concepts of package-basedFOSS
distributions that will be needed throughout the paper. Section 3 states
the goals and requirements for the solution we look for; Section 4 re-
views the state of the art against them. The proposed solution is de-
scribed and analyzed in Section 5; its actual implementation—in the
context of the Debian distribution and for the OCaml language—is dis-
cussed in Section 6.

From now on, we will focus on the OCaml language and its pack-
aging in Debian, but reasoning and choices are general enough to be
ported to similar languages (with strong typing and inspectable link-
ing assumptions) and distributions (based on binary packages). In fact,
for what concerns Debian, the discussed concepts have recently been
adopted by the Haskell library stack as well.

2. Packaging basics

2.1. Packages

In most FOSS distributions—and, more generally, in component-
based systems [16]—software components are managed asbinary pack-
ages[2] which define the granularity at which users can add or remove
software.

A binary package is essentially a bundle of data (executables, docu-
mentation, media, etc.) to be deployed on the file system. Additionally,
binary packages are described by meta-information which include com-

9

plex inter-package relationshipsthat describe the static requirements to
run properly on a target system. Requirements are expressed in terms
of other binary packages, possibly with restrictions on thedesired ver-
sions. Both positive requirements (dependencies) and negative require-
ments (conflicts) are supported by most packaging systems.

Example 2. An excerpt of the meta-data of theo
amlnet library in
Debian currently reads:

1 Package: libo
amlnet -o
aml -dev

2 Vers ion: 2.2.9 -3

3 Depends: o
aml -nox -3.10.2 , o
aml -findlib ,

4 libo
amlnet -o
aml (= 2.2.9 -3) ,

5 libp
re -o
aml -dev (>= 5.11.1) ,

6 lib
ryptgps -o
aml -dev (>= 0.2.1)

7 Prov ides: libequeue -o
aml -dev ,

8 libnet
lient -o
aml -dev ,

9 librp
 -o
aml -dev

10 C o n f l i c t s : libequeue -o
aml -dev (<< 2.2.3 -1) ,

11 libnet
lient -o
aml -dev (<< 2.2.3 -1) ,

12 librp
 -o
aml -dev (<< 2.2.3 -1)

13 D e s c r i p t i o n: OCaml appli
ation -level Internet

14 libraries -
ore libraries

In this short but representative example we can recognize the distin-
guishing features of inter-package relationships [7]:

– dependencies on other libraries, tools, and the OCaml interpreter
(line 3) which can either be versioned (e.g.libo
amlnet-o
aml—
the runtime part of the package shown) or non-versioned
(e.g.o
aml-findlib);

– conflicts with some libraries (line 10), in the example withsuper-
seded packages now included intolibo
amlnet-o
aml-dev itself;

– virtual packages(line 7), i.e. the ability to declarefeaturespro-
vided by the owning “real” package so that others can depend on (or
conflict with) feature names. In the examplelibo
amlnet-o
aml-dev

provides old library names such aslibequeue-o
aml-dev; de-
pendencies on it by other packages can be satisfied by installing
libo
amlnet-o
aml-dev. The other typical use case of vir-

10

Figure 2: package (auto-)building

tual packages is to add an indirection layer over system services
(e.g.mail-transport-agent), which stays in between packagespro-
viding the service (e.g.postfix or exim4) and packages needing it
(e.g.
ron).

2.2. Auto-building and binNMUs

Source packagesare a different type of packages which contain the
source code. Compiling them produces binary packages.6

Source packages are usually manipulated by human packagemain-
tainers contributing to specific distributions. The mapping between
source and binary packages is one to many; for instance, theo
amlnet

source package produces the package shown in Example 2 together with
eight other binary packages. Also, there exists a many-to-manybuild-
dependencyrelation among source packages and the binary packages
needed to build them.

The natural work-flow of packages is rather complex [9], the part
that mostly concerns us is sketched in Figure 2. Maintainersupload
source packages to a package queue, together with the corresponding
binary packages; considered as a whole, such an upload is said to be a
sourceful upload. Given that maintainers usually only own a machine

6. According to established conventions, we use “packages” to refer tobinary packages,
and explicitly “source packages” for the others.

11

for a single architecture,auto-builders(or buildds) pick up the uploaded
source package and rebuild the corresponding binary packages for each
architecture supported by the distribution (about a dozen,in the case of
Debian).

The only exception to the autobuilding scheme arearchitecture inde-
pendentpackages (orar
h:all) that once built on any given architec-
ture, can then be installed on all architectures, for instance because they
contain portable interpreted code or bytecode. Thereforear
h:all

packages do not get rebuilt at all, after the first build. All obtained
binary packages flow to the “unstable”suitewhich is ready to be used
by developers and testers in preparation of a future stable release.

In certain circumstances (e.g. library transitions), binary packages
can be rebuilt without intervention on their source packages. This is
needed to fix builds performed in malformed environments (e.g. buggy
compiler), to ensure that a package still builds against a new version
of a library it depends upon, or precisely to trigger a rebuild against
a new (shared) library when the package built against the oldlibrary
is not binary compatible with the new one. To that end, maintainers
can trigger rebuilds by requesting abinNMU, a historic and unfortunate
name standing for “binary Non-Maintainer Upload”. For our needs, the
important aspect of binNMUs is that during these no changes can be
performed to thesourcepackage.

2.3. Dependency inference

But how can a binary package change if its source package remains
unchanged?

The contents of the package (e.g. binary files) can of course change
as the toolchain used to build it changes (compiler, libraries, etc.), but
it turns out that package meta-information such as dependencies can
also change across rebuilds (and hence differ across architectures). In
fact, maintainers can exploit the mechanisms ofdependency interpola-
tion anddependency inferenceto ease the tedious task of maintaining
dependency information.

12

Example 3. The dependency information of themldonkey-server
package read as follows in themldonkey sourcepackage:

Package: mldonkey -server

Depends: adduser , mime -support , u
f ,

${shlibs:Depends}, ${mis
:Depends}

whereas in the resulting binary package they read:

Package: mldonkey -server

Depends: adduser , mime -support , u
f , libbz2 -1.0,

lib
6 (>= 2.3.2) , libjpeg62 ,

libfreetype6 (>= 2.2.1) , libg

1 (>= 1:4.1.1) ,

zlib1g (>= 1:1.1.4) ,

libgd2 -noxpm (>= 2.0.36~ r
1~dfsg) |

libgd2 -xpm (>= 2.0.36~ r
1~dfsg),

libpng12 -0 (>= 1.2.13 -4) , libstd
 ++6 (>= 4.2.1) ,

deb
onf | deb
onf -2.0

What is going on in Example 3 is that interpolated variables—
expressed in${this:form}—get expanded during build according to
dependency inference. While maintainers can use custom expansion
mechanisms, the common way to expand variables is to rely upon spe-
cific registries. For instance, the${shlibs:Depends} variable expands
to all dependencies that can be inferred by C shared library relation-
ships [3].

To that end, each C shared library installed on the system
provides a shlibs file which is in essence a record of tuples
〈libraryname, packagename, versionpredicate〉 which contributes to
the C shared library registry. For instance, thelibpng12-0 pack-
age provides a record〈libpng12, libpng12-0, (>= 1.2.13-4)〉.
When themldonkey-server package gets built, all executables it
ships are inspected for relationships with C shared libraries (using
tools like objdump). Since the/usr/bin/mldonkey-server exe-
cutable needs a C library calledlibpng12 to be loaded, a lookup for
that library name in the registry provides the matching dependency
libpng12-0 (>= 1.2.13-4) which is then added to the expansion of
${shlibs:Depends}.

13

3. Requirements

The goal of the solution we are looking for is to detect type-aware
linking incompatibilities at the dependency level. As there are several
possible solutions to that problem, we define in this sectiona set of
contingent requirements, mostly inherited from the context.

The first obvious requirement is goal fulfillment.

Requirement 1 (Dependency soundness). All binary packages ship-
ping compilation units should satisfy thedependency soundnessprop-
erty.

Property 1 (Dependency soundness). 7 A packagep shipping OCaml
compilation units{u1, . . . , un} hassound dependencieswith respect to
a repositoryR if and only if for all healthy installationI 3p, it holds
that link({u j9q 2Rj fpg q 2I andq shipsu}) = ✓

Intuitively, a package has sound dependencies if all compilation units
shipped by its (transitive) dependencies can be linked together. De-
pendency soundness is clearly not a local property—i.e. it cannot be
decided by considering a package in isolation—but this is not surpris-
ing given that our notion of linking is geared towards obtaining a self-
contained executable.

Requirement 2(Dependency inference). Given a source packagesand
its build-dependenciesB = {p 1, . . . , pn}, the dependencies that ensure
soundness on all binary packages obtained by buildings, should be
inferrableon the basis ofB and its (transitive) dependencies.

Acknowledging that OCaml ABIs change very frequently, Require-
ment 2 asks for a mechanism of dependency inference (see Section 2)
that relieves maintainers from the error-prone task of maintaining by
hand the needed dependencies.

7. The notions ofhealthy installationandgenerated subrepository, notedR|Π, are easily
explained. An installation is a set of installed packages, it is healthy if all dependencies are
satisfied and no conflicts occur among installed packages; a generated subrepository is a repos-
itory subset obtained as the closure of the “depends on” relation starting from a given set of
packages. Formal details can be found in [12].

14

Requirement 3(binNMU-safety). If a packagep has sound dependen-
cies, performing a binNMU on it should not make its dependencies un-
sound.

This requirement not only means that inferred dependenciesshould
not be tied to source package version, but also that we cannotrely
on sourceful uploads. Hence, solutions requiring changes to be in-
corporated in source packages at each rebuild (including most notably
binNMU-driven rebuilds) are not suitable for the task.

All dependencies ensuring soundness should be recomputed during
build, on the basis of the build environment. While binNMU-safety
mimics the homonymous accepted best-practice of packaging, it is also
a real need to reduce maintenance burden. Since transitionsfrom one
compiler version to the next require rebuilding all packages, and given
that distributions like Debian contain nowadays more than ahundred
OCaml-related source packages, the ability to do transitions via binN-
MUs is crucial for the maintainability of the whole stack in package-
based binary distributions.

Requirement 4 (Light dependencies). All inter-package relationships
needed to ensure dependency soundness should be terse, readable,
human-manageable.

Albeit admittedly very informal, this requirement is meantto en-
sure that package dependencies remain manageable by humans. Even
if there is no clear definition for that, discussions within the Debian
project between OCaml maintainers, the release team8, and users have
given evidence that solutions like a simple dump of all MD5 require-
ments as dependencies would not be acceptable. Indeed, during release
management, quality assurance, or simply broken dependency analysis
within a package manager, such dependencies will be too many(one for
each ABI requirement) and too unfriendly. Requirement 4 attempts to
convey this and similar desiderata.

15

Package: libfoo -o
aml -dev

Vers ion: 1

Package: libbar -o
aml -dev

Vers ion: 1

Depends: libfoo -o
aml -dev (>= 1)

Bui ld -Depends: libfoo -o
aml -dev (>= 1)

Package: main

Vers ion: 1

Bui ld -Depends: libbar -o
aml -dev (>= 1)

Figure 3: Past Debian dependency scheme for OCaml-related packages

4. Related work

Until the adoption of the solution presented in this paper, the Debian
distribution was using the natural dependency scheme [10] depicted in
Figure 3, where the snippets of Figure 1 are considered shipped by pack-
ages with corresponding names.

The drawbacks of that solution are twofold: no dependency infer-
ence (the maintainer writes dependencies by hand), no dependency
soundness (there is no guarantee that future versions will preserve
ABI compatibility). Note that stricter version predicates,such as
e.g.libfoo-o
aml-dev (>= 1), libfoo-o
aml-dev (<< 2), (as it was
done for Haskell packages in Debian until very recently) will not pro-
vide soundness either, because version numbers are denselyordered.

In 2005, a helper tool calleddh_o
aml was proposed [17] to ease
the burden of maintaining OCaml-related dependencies,9 mimicking
the architecture of theshlibs registry for C shared libraries. Depen-
dencies generated by (old-style)dh_o
aml follow the scheme of Fig-
ure 3. The obtained solution hence also fulfills Requirement 2, but not
yet Requirement 1 (arguably the most important one).

8. The release team is a group of Debian developers who coordinate transitions, goals and
deadline for the next stable release.

9. http://bugs.debian.org/
gi-bin/bugreport.
gi?bug=328422, retrieved Oc-
tober 2009

16

$ rpm -qRp o
aml -o
amlnet *.rpm

o
aml(Arg) = b6513be035d
9
8a458
189
d8841700

o
aml(Array) = 9
9fa5f11e2d6992
427dde4d1168489

o
aml(Bigarray) = f
2b6
88ffd318b9f111abe46ba99902

o
aml(Buffer) = 23 af67395823b652b807
4ae0b581211

... snipped 67 moreo
aml(*) deps

$ rpm --provides -qp o
aml -o
amlnet *.rpm

o
aml(Equeue) = 329 e036bb2778b249d6763d22407af19

o
aml(Ftp_
lient) =

d36822b105ea
ef219a2b6e0331ba34b

o
aml(Ftp_data_endpoint) =

f279805d
3b7
ed5d8554f92e287
889

o
aml(Generate) = 418 dedddda65b04bd
4d0
6e9fb918d4

... snipped 110 moreo
aml(*) virtual packages

Figure 4: Sample dependencies (on the left) and provided features (on
the right) according to the Fedora solution, for theo
amlnet library.

The Fedora and Red Hat distributions, and after them other RPM-
based distributions such as OpenSUSE and Mandriva, adopt a differ-
ent solution [4]. At the end of the build, they automaticallyinspect all
OCaml bytecode objectsui shipped by each binary package and, for
each pair〈m, c〉 2R(u i), they add a dependency on a virtual package
in the OCaml namespace which has the full MD5 checksum as its ver-
sion; pairs inA(ui) are similarly handled to generate the list of provided
virtual packages. No intermediate registry is used.

Fedora’s solution provides soundness (up to a technical detail dis-
cussed in Section 6) and implicit dependency inference, however it fails
lightness. As it can be seen in Figure 4, it bloats package lists with one
virtual package/dependency per exported/required OCaml module; that
can also have a performance hit on dependency resolution, indistribu-
tions the size of Debian. Such solution ultimately exposes users and
members of relevant teams to checksum strings which are bothmean-
ingless for humans as well as being overly long.

17

Table 1: Review of linkability enforcement solutions
Req. 1 Req. 2 Req. 3 Req. 4

Solution soundness inference binNMU lightness
past Debian
status quo

✗ ✗ ✓ ✓

+
old-style
dh_o
aml

✗ ✓ ✓ ✓

current Fedora
guidelines

✓ ✓ ✓ ✗

ABI evolution
tracking

✓ ✓ ✗ ✓

ABI
approximation

✓ ✓ ✓ ✓

The last alternative solution we are aware of isABI evolution
tracking [17]: it establishes an injective mapping between pack-
age ABIs and integers. The integer ideally represents ABI “ver-
sion” and is used to establish human-friendly virtual package names
(e.g.libp
re-o
aml-dev-1) that provide soundness. Unfortunately,
this solution defeats binNMU-safety. Indeed, to avoid ABI version
clashes the mapping should be either maintained by hand (similarly to
what happens with C symbols tracking [5], where unexpected changes
at build time trigger build failures), or obtained via automatic mono-
tonic increase of ABI versions. For the latter, we would need to preserve
somewhere a history of past ABI numbers, which has no place to stay
during binNMUs: network is not accessible to avoid non-deterministic
builds and source packages cannot be changed.

Table 1 reviews the state of the art against the requirementsof Sec-
tion 3. The last line corresponds to the solution we propose,described
in next section.

5. ABI approximation

To overcome the limitations of the discussed approaches, wehave
devised a solution based on the idea of computing a single approxima-

18

Figure 5: ABI approximation: architecture

tion of the ABIs of all compilation units shipped by a given package.
We call this solutionABI approximation; its architecture is sketched in
Figure 5.

Consider a (binary) packagepkg shipping compilation units
u1, . . . , un (at the top-left of Figure 5). Its ABI approximation—noted
eA(pkg)—is obtained as a cryptographic hash of all ABI pairs of all

compilation units; intuitively: eA(pkg) = hash(A(u1) �����A(u n)),
where�is a concatenation operator which is used to incrementally add
material on which the hash is taken.10

The obtained ABI approximation is then used in two different ways,
both contributing to form the inter-package relationshipsof pkg. For
what concerns the interface exposed bypkg, we directly add a virtual
package obtained by juxtaposingpkg’s name with the ABI approxima-
tion itself. All packages relying on the set of ABIsA(u1), . . . ,A(un)
will depend on such virtual package.

Let us now assume that all dependencies ofpkg itself already have
computed ABI approximations and that they are available at build-time,
which is a sound assumption according to our linking discipline. To
ensure that we can compute the dependencies on the correct virtual
packages—i.e. the virtual packages corresponding to packages able to

10. A more formal description would require more details on the hashing function, on mod-
ule naming conventions, etc. They are omitted for the sake of conciseness. Section 6 neverthe-
less provides some details about the current implementation.

19

satisfy the linking assumptionsR(u1), . . . ,R(un)—we use anABI reg-
istry that stores information about which packages provide whichABI.

The registry is populated by tuples (simplified in Figure 5)
〈m, c, pkg , eA(pkg)〉 where〈m, c〉 2 A(u) for someu shipped bypkg.
Intuitively, each modulem exposed by some compilation unit with
checksumc has a tuple in the registry which relates it with a specific
package name and overall ABI approximation. Technically, the tuples
are computed at build-time and the registry is constructed incremen-
tally by files shipped bypkg itself, similarly to what happens with the
shlibs mechanism.

Using the ABI registry, we can now compute the dependency entries
of pkg which will ensure its linkability. For each〈m, c〉 2 R(ui), we
look up 〈m, c〉 in the registry to get a pair of package name and ABI
approximation; note that〈m, c〉 is expected to be a primary key in any
possible configuration. By juxtaposing the obtained packagename and
approximation as before, we can now emit the appropriate dependency
snippets.

Example 4. The resulting dependencies for theo
amlnet package,
which we have already seenbeforeABI approximation in Example 2,
is as follows.

Package: libo
amlnet -o
aml -dev

Vers ion: 2.2.9 -7

Depends: o
aml -findlib ,

lib
ryptgps -o
aml -dev -139d7 ,

libo
amlnet -o
aml -3rxe6 ,

libp
re -o
aml -dev -kh2
0 ,

o
aml -nox -3.11.1

Prov ides: libequeue -o
aml -dev ,

libnet
lient -o
aml -dev ,

librp
 -o
aml -dev ,

libo
amlnet -o
aml -dev -3rxe6

D e s c r i p t i o n: OCaml appli
ation -level Internet

libraries -
ore libraries

We can notice that the package depends on the external
ryptgps and
p
re libraries with specific ABI approximations, and that it exports an
ABI approximation itself.

20

By comparison with the Fedora dependencies for the same package
(see Figure 4), we observe that the huge amount of provided andex-
pected module checksums is here hidden in the registry and resolved
at build time: the package interface just exposes a single extra virtual
package and one dependency for each external library needed.

To review ABI approximation against the requirements of Section 3,
we start by observing that soundness (Requirement 1) is granted up to
the risk of clashes of different sets of ABIs to the same approximated
ABI. Literature on the birthday paradox [13] gives an approximation
on the number of different, incompatible, versions of a library to have
collision with probabilityp:

n(p;H) �

r

2H ln
1

1� p

were H denotes the ABI approximation space size. In our practical
implementationH = 36 5 (see next section), so we reach the negligible
probability of 1 % of collision with 1103 versions.

Dependency inference (Requirement 2) is trivially providedby the
ABI registry, according to the lookup mechanism described above.

binNMU-safety (Requirement 3) is granted too as all the state,
needed to compute both the inferred dependencies and the exposed ap-
proximated ABI, is not stored in the source package (and hencedoes
not need sourceful uploads to be changed); rather, the stateis kept in
the registry which is contributed to by build-dependenciesof the pack-
age being built.

Finally, we argue that dependency lightness (Requirement 4)is pro-
vided too. While ABI approximated strings are not really meaningful
to humans, they have the benefit of being short (only 5 alphanumeric
characters in the current implementation). Additionally the number of
such strings that are needed for a given binary package is bounded: one
for the exported interface and one for each package dependency, with
the latter set replacing dependencies which would have beenneeded
anyhow, subtituting ABI approximations for version numbers.

The most notable limitation of ABI approximation is the “instability”
of approximations with respect to backwardcompatiblechanges. This

21

is not surprising, given that the solution has been designedprecisely to
cope with frequent backwardincompatible changes. Still, sometimes,
backward compatible changes can happen in a given package, for ex-
ample by adding a new module to a given library without touching any
other existing module. In our formalism that translates to adding a new
couple〈mn e w, cn e w〉 to someA(ui); trivially, property 1 is unaffected
by such addition. Nevertheless, the resulting ABI approximation will
change, since the content on which the hash is computed grows. Prac-
tically, the problem is non-existent, given the low frequency of such
changes and given that—thanks to binNMU-safety—the affected pack-
ages can be fixed by just scheduling their recompilation. We observe
that this issue can be fixed only by allowing to export ABI approxi-
mations whose sizes are linear with respect to the number of modules
shipped by a given package; in essence, that would mean mimicking
Fedora’s solution, getting back most of its disadvantages.

6. Implementation

ABI approximation has been implemented in the context of the De-
bian distribution to manage inter-package dependencies ofall OCaml-
related packages in the distribution. At the time of writing, that amounts
to 158 source packages that build-depend on OCaml, producing353 bi-
nary packages, and providing interfaces for 2502 OCaml modules.

Technically, the implementation is based ondh_o
aml, a helper tool
meant to be compatible with the Debhelper packaging helper suite [6].
Some of its inner workings depends on how OCaml libraries are split
into binary packages, which we briefly highlight below.

Compiling a source package results in one or several binary pack-
ages. For example, library source packages usually produce(at least)
two binary packages:

1) aruntimepackage, containing all the objects that might be needed
at runtime by software linked to the library;

2) a developmentpackage, containing all the objects that might be
needed to compile software that uses the library.

22

In the OCaml world, the runtime package typically contains stubs to C
libraries (the so called “bindings”) that are dynamically loaded when
running pure bytecode executables (.so), and the development package
contains interfaces in source (.mli or .ml) and compiled (.
mi) form,
along with compiled module objects (.
mo, .
ma, .
mx, .o, .
mxa,
.a), META files and (mostlyo
amldo
-generated) documentation. A
library might have no runtime package at all if it is meant to be always
statically linked, which happens quite often with pure-OCaml libraries.
However, when a library can be dynamically loaded by a program that
supports plugins, the runtime package can also provide.
ma, .
mxs,
andMETA files.

A library can be further split into several sub-components.This is
usually left at the package maintainer’s discretion, and choices can vary
between distributions. A typical reason for splitting a library is optional
dependencies that might be needed only by some compilation units.
Each resulting component might then have its runtime and development
packages. Finally, there are also non-library packages shipping OCaml
binaries.

Overall,dh_o
aml distinguishes three classes of (binary) packages:
runtime, development, and others. We henceforth consider as alibrary
a development package together with its runtime package, ifany. For
example, theo
amlnet source package produces the following binary
packages:

– libo
amlnet-o
aml: core library (runtime);

– libo
amlnet-o
aml-dev: core library (development);

– libo
amlnet-o
aml-do
: documentation;

– libo
amlnet-o
aml-bin: miscellaneous tools;

– libo
amlnet-gtk2-o
aml-dev: GTK2 layer (development);

– libo
amlnet-ssl-o
aml: SSL layer (runtime);

– libo
amlnet-ssl-o
aml-dev: SSL layer (development);

– libnethttpd-o
aml-dev: HTTP daemon libraries (develop-
ment);

– libapa
he2-mod-o
amlnet: Apache2 module.

Among them, four OCaml libraries can be recognized:

23

– libo
amlnet-o
aml/-dev,

– libo
amlnet-gtk2-o
aml-dev (without runtime),

– libo
amlnet-ssl-o
aml/-dev, and

– libnethttpd-o
aml-dev (without runtime).

To inspect OCaml compilation units (a required ability to implement
ABI approximation), the OCaml standard distribution provides some
useful tools:

o
amlobjinfo reads assumptions of bytecode objects (.
mi, .
mo

and.
ma files), as shown in Example 1;

o
amldumpapprox reads assumptions of native code objects (.
mx,
.
mxa files).

While OCaml bytecode objects make assumptions only on inter-
faces, native code objects may also make assumptions on implementa-
tions, due to code inlining across compilation units. Theseassumptions
are stored in.
mx files, which might hence be useful even if the module
they represent are included in a.
mxa file.

Most notably, the above tools lack the ability to inspect bytecode ex-
ecutables and native plugins (.
mxs). Such abilities are much needed
though: bytecode executables might depend on external C stubs and
native plugins are special cases of libraries and should hence be con-
sidered as such. To overcome these limitations, we have implemented
o
amlbyteinfo ando
amlplugininfo; they are currently shipped as
part of theo
aml source package and relied upon bydh_o
aml.

The solution described in section 5 is then implemented in Debian
using two tools:

o
aml-md5sums manages the ABI registry. This tool is meant to be
generic (not Debian-specific). It inspects a set of object files by
calling the most appropriate among the above tools, uses their
output to compute their dependencies and its approximated ABI.
It considers a library as a whole (runtime and development to-
gether);

dh_o
aml is a frontend too
aml-md5sums; it looks for installed ob-
jects and binaries, passes them too
aml-md5sums and fills-

24

in substitution variables corresponding to dependency inference
variables; it distinguishes the three categories of packages:

– a development package provides a hashed virtual package
name, and depends on its own runtime package (that explains the
dependency onlibo
amlnet-o
aml-3rxe6 in Example 4), and
possibly on other development packages;

– a runtime package provides a hashed virtual package name,
and depends only on other runtime packages;

– any other package depends only on runtime packages.

The actual ABI approximation is computed by considering the union
of two different sets ofA(�) for each compilation unit: one for as-
sumptions over interfaces, one for assumptions over implementations
(no matter where they come from: plugin, object, or binary).On a
simple and canonical textual representation of the resulting set, a MD5
checksum is then computed and then taken modulo a fixed hash space.
Currently, such hash space relies on 5 alphanumeric, lowercase, plain-
ASCII characters, accounting for(26 letters + 10 digits) 5 � 60� 106

different ABI approximations. As discussed in the previous section, that
choice gives a negligible clash probability, without sacrificing lightness.

We notice that alternative solutions, such as Fedora’s, arecurrently
not considering assumption on implementations, most likely because
the original tools in the OCaml distributions were not able toinspect
them. As a consequence they only provide soundness up to implemen-
tation incompatibility; unfortunately such incompatibilities are more
likely to occur than interface incompatibility, given thatnot all program-
mers seem to be aware of (or care about) cross-unit code inlining. This
being a minor drawback easily fixable (now that we have provided the
missing tools), we also observe that fixing it naïvely would mean dou-
bling the already large number of depends/provides in Figure 4.

Example 5. Here is an excerpt of dependencies from theo
amlnet

sourcepackage (i.e. before expansion bydh_o
aml):

Package: libo
amlnet -o
aml -dev

Prov ides: libequeue -o
aml -dev ,

libnet
lient -o
aml -dev ,

librp
 -o
aml -dev ,

25

${o
aml:Prov ides}
Depends: o
aml -findlib , ${o
aml:Depends},
${shlibs:Depends}, ${mis
:Depends}

The result of the substitution performed bydh_o
aml in the correspond-
ing binary package can be seen in Example 4.

Botho
aml-md5sums anddh_o
aml are implemented in Perl to es-
cape (build-)dependency cycles among the package shippingthem and
theo
aml package itself. Both tools are part of thedh-o
aml source
package,11 which is distributed under the terms of the GNU General
Public License (version 3) and available from its Git repository.12

So far, we have effectively deployed this solution in about 50 source
packages (out of 100 library packages). This deployment revealed not
only dormant packaging errors such as missing dependencies, but also
unrelated errors like libraries re-exporting modules theydo not own.
The most common example of that has been the embedding of theUnix

module into third-party libraries. The remaining packages, and most
notably libraries, are being ported todh_o
aml at the time of writing,
their ported versions are all expected to be shipped with thenext stable
release of Debian (codename “Squeeze”).

The currently knowndh_o
aml-specific limitations are as follows:

– it is theoretically possible to change C stubs in a binary incompat-
ible way while keeping the same interface; it is therefore possible to
install an outdated version of C stubs while satisfying all dependencies
of a bytecode executable. This limitation is inherent to OCaml;

– architecture-independent packages that depend on libraries with
runtime cannot currently benefit from this solution, because the ABI
approximation string depends on the architecture (given assumptions on
implementations are not present on architectures lacking theo
amlopt
native code compiler). This limitation can be solved by computing two
separate ABIs: a native code and a bytecode one; the latter should be
the same on all architectures.

11. http://pa
kages.debian.org/sid/dh-o
aml
12. http://git.debian.org/?p=pkg-o
aml-maint/pa
kages/dh-o
aml.git

26

7. Conclusions and future work

In this paper we have given some insights on the gap existing be-
tween fine-grained dependencies that type-aware linkers consider to en-
force type-safety at compilation units borders and the coarse-grained
dependencies that can be expressed among packages in FOSS bi-
nary distributions. That gap persisting, package managerswill not
be able to defend users from installing libraries of strongly typed lan-
guages that can not be linked together due to annoying “in
onsistent

assumptions” link-time errors.

We have introduced a solution calledABI approximationthat guar-
antees link-time compatibility as long as inter-package relationships are
satisfied. ABI approximation satisfies a set of natural requirements in-
herited from the context: dependency soundness, inference, and light-
ness, as well as binNMU-safety.

ABI approximation has been implemented and deployed in the De-
bian distribution through thedh_o
aml helper, aiming at managing the
dependencies of more than 300 OCaml-related binary packages. On
the premises of this work, also the whole stack of Haskell packages in
Debian is currently migrating to an ABI approximation solution.

Future work consists in some technical fixes whose need was re-
vealed by usingdh_o
aml, such as the observation that comput-
ing a single ABI for bytecode and native-code is incompatiblewith
architecture-independent packages. Also, we are considering design-
ing a mechanism for computing automatically OCaml-related ABIs for
C stubs whose purpose is interacting with the OCaml runtime. That can
be done at C stub compilation-time (where and when the interface of the
matching OCaml objects are known) and then stored in some section of
the resulting object.

References

[1] A.W. Appel and D.B. MacQueen. Separate compilation for Stan-
dard ML. In PLDI 1994: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implemen-
tation, pages 13–23. ACM, 1994.

27

[2] Roberto Di Cosmo, Paulo Trezentos, and Stefano Zacchiroli.
Package upgrades in FOSS distributions: Details and challenges.
In HotSWup’08: Proceedings of First ACM Workshop on Hot Top-
ics in Software Upgrades. ACM, 2008.

[3] Ulrich Drepper. How to write shared libraries.http://people.
redhat.
om/drepper/dsohowto.pdf, 2002. Revision August
2006.

[4] Fedora Project. OCaml packaging guidelines.http://
fedoraproje
t.org/wiki/Pa
kaging/OCaml. Retrieved Oc-
tober 2009.

[5] Raphael Hertzog. dpkg-gensymbols: generate symbols
files (shared library dependency information). Manual
page dpkg-gensymbols(1), on line at http://man.
x/

dpkg-gensymbols(1), July 2007. Retrieved July 2010.

[6] Joey Hess. debhelper debian package: helper programs
for debian/rules. http://pa
kages.debian.org/sid/

debhelper/, 2009. Version 7.0.15.

[7] Ian Jackson and Christian Schwarz. Debian policy manual.http:

//www.debian.org/do
/debian-poli
y/, 2009.

[8] S. C. Johnson. Lint, a C program checker. (65), 1978.

[9] Martin F. Krafft. The Debian system: concepts and techniques.
Open Source Press, 2005.

[10] Sylvain Le Gall, Sven Luther, Samuel Mimram, Ralf Treinen,
and Stefano Zacchiroli. Debian OCaml packaging pol-
icy. http://pkg-o
aml-maint.alioth.debian.org/o
aml_

pa
kaging_poli
y.html/, 2009.

[11] Xavier Leroy. Manifest types, modules, and separate compilation.
In POPL’94: Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 109–
122. ACM, 1994.

[12] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérôme
Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen. Man-
aging the complexity of large free and open source package-based
software distributions. InASE 2006: 21st IEEE/ACM Internation

28

Conference on Automated Software Engineering, pages 199–208.
IEEE CS Press, 2006.

[13] E.H. McKinney. Generalized birthday problem.American Math-
ematical Monthly, 73(4):385–387, 1966.

[14] L. Presser and J.R. White. Linkers and loaders.Computing Sur-
veys (CSUR), 4(3):149–167, 1972.

[15] Diomidis Spinellis. Type-safe linkage for variables and functions.
SIGPLAN Notices, 26(8):74–79, 1991.

[16] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison Wesley Professional, 1997.

[17] Stefano Zacchiroli. Enforcing OCaml link-time com-
patibility using Debian dependencies. Debian wiki:
http://wiki.debian.org/Teams/OCamlTaskFor
e?a
tion=

Atta
hFile&do=get&target=dh-o
aml-design.pdf, January
2009. Design document, retrieved October 2009.

29

