Enforcing Type-Safe Linking using
Inter-Package Relationships

M. Dogguy” — S. Glondu" — S. Le Gall”™ —S. Zacchiroli* *

* Laboratoire PPS, UMR 7126
Université Paris Diderot-Paris 7
Case 7014
F-75205 Paris Cedex 13

{dogguy,glondu,zack}@pps. jussieu.fr
** ocamiCore S.AR.L.

sylvain.le-gall@ocamlcore.com

Abstract. Strongly-typed languages rely dink-time checksto ensure that type safety is not
violated at the borders of compilation units. Such checks entail vergfmieeddependencies
among compilation units, which are at odds with the implicit assumptidrackward compat-
ibility that is relied upon by common library packaging techniques adopted I88H®Bree and
Open Source Software) package-based distributions. As a consegpaickage managers are
often unable to prevent users to install a set of libraries which cannot keditogether.

We discuss how to guarantee link-time compatibility using inter-package neddtijos. In do-
ing so, we take into account real-life maintainability problems such as stifpoautomatic
package rebuild and manageability of ABI (Application Binary Interfatefgs by humans.
We present théh_ocaml implementation of the proposed solution, which is currently in use in
the Debian distribution to safely deploy more than 300 OCaml-related paskage

Keywords: static typing, separate compilation, linking, free software, FOSS, distribuggnck-
age, dependency, OCaml, Debian

1. Partially supported by the European Community FP7, MANCOOSI prajeant agree-
ment n. 214898

Résumé long

Les langages fortement typés reposent sur des vérificdtiomsle
I'édition de liens afin de garantir que la slreté du typagenespectée
entre les différentes unités de compilation. Ces vérifioatisont trés
strictes, et incompatibles avec I'usage, dans les digioibs de logiciels
libres utilisant des paquets, qui est de supposer que lésthéxues
sont rétrocompatibles. Ainsi, les gestionnaires de pagait souvent
incapables d’empécher un utilisateur d’installer un erigermcohérent
de bibliothéques.

Une des causes d’'incohérence peut apparaitre au niveapalgety
Dans le cas de langages fortement typés, ce probléme peansiester
guand deux unités de compilation ont été générées avec @esions
différentes du compilateur. Cette source d’'incohérenceéstctée par
I'éditeur de liens qui effectue les tests nécessaires paandgir un en-
semble cohérent ; mais cela peut persister quand il s’agitités sé-
parées.

Pour des langages de bas niveau, tels que le langage C,Utedée
liens effectue quelques veérifications lors de la phase finale

— chaque symbole est résolvable,
—aucun symbole n’est défini plusieurs fois.

Malheureusement, ces vérifications ne sont pas suffisames p
garantir la streté du typage quand il s’agit de langagesriwht typés
tels quel OCaml et Haskell. Aux vérifications habituellesfaildra
rajouter des vérifications de types entre unités de conmgailgtour
garantir la cohérence de I'ensemble. Ces informations destgpnt
habituellement représentées dans un format court et égqsodans
I'unité de compilation produite. Pour I'éditeur de liens, symbole de-
vient donc un nom associé a l'information de type. Ceci pedeadaire
des vérifications plus fines. Ayant cette information pousttes sym-
boles disponibles, il est possible de définir une version pensemble
des unités de compilation, obtenant ainsi une version depathilité
binaire pour la bibliotheque, aussi appelée ABI.

En C, une grande attention est portée sur la compatibilit@itgn
gérée manuellement, lors d’'un changement d’interfacest ihimsi pos-

sible de rajouter des fonctionnalités dans de nouvellesioms tout
en conservant une certaine compatibilité binaire. Parémunent, une
borne inférieure sur la version d’une bibliotheque suffitv@nt a as-
surer le bon fonctionnement d’'un paquet en dépendant. Atraios

en OCaml, la compatibilité binaire est gérée automatiquérpanle

compilateur et le moindre changement sera considéré comooeni

patible par les outils. Ceci améne a repenser le schéma dedimes
utilisé dans les paquets afin de refléter le changement d’ABt goe

ce soit visible a l'utilisateur dés la tentative d’instélben.

Le but de la solution proposée est de détecter les inconilgésb
d’ABI en analysant les dépendances des différents paqueteotés.
Nous établissons donc des critéres pour évaluer notreaokitla com-
parer aux solutions existantes. Les critéres établis sont:

— dépendances correctes;
—inférence des dépendances;
— stabilité des dépendances;
— légéreté des dépendances.

Notre solution, appelée “ABI approximation”, consiste coér un
hash cryptographique par paquet a partir des unités de tatiapiqu’il
fournit. Le résultat calculé et |a liste des unités fourrsiest ensuite en-
registrés dans un registre global, et pourront ainsi éiliség par le
méchanisme d’inférence des dépendances pour d’autrestgadiette
solution a été implémentée en Perl, pour éviter des dépeadanircu-
laires, et vérifie tous les critéres établis. Elle a été éestd plus de 150
paquets sources, produisant prés de 353 paquets bingitas de 2500
modules. Elle a ensuite été déployée dans la distributidridDeavec
succes. Le gain est présent aussi bien pour les utilisatguirae peu-
vent donc plus installer un ensemble incohérent de paguets, aussi
pour les mainteneurs de paquets, qui peuvent désormatieldiacile-
ment I'impact de I'introduction d’une nouvelle version delmtheque.
Une solution similaire a également été adoptée par les erents des
paquets Haskell.

Dans le cadre de ce travail, nous avons été amenés a écrimide
veaux outils pour pouvoir lire les informations dont on adiesa par-
tir des binaires code-octet et des greffons OCaml. Ces outtl€@

soumis aux auteurs de OCaml qui les ont acceptés (et ferdid gara
prochaine version).

1. Introduction

Type safety is a tricky business, even more so when separatgi<
lation is a desired feature. In the world of system-leveglaamges and
linkers [14]—such as the C language and the widespread GiNdgrt—
very few checks are performed at the final linking stage; aftdibrmal-
ization will help in understanding them. Given a setompilation units
{us,...,u,} to be linked together, the linker essentially checks a form
of referential integrity, i.e. that all symbols needed byoired compi-
lation units are actually available within the set. We cajuirements
of a compilation unitR (u) the set of required symbols aagplication
binary interface(ABI) of a compilation unitA(u) the set of provided
symbols.

The linker notion of “linkability” can now be grasped as folis:?
Definition 1 (Linkability). link{u,...,u,} = OIiff:

DU, R(ui) € U; Aw)
2)Vij, 1#j— Alu) N A(u;) =10

The first condition is the linker's view of referential int&y: all
referenced symbols must be provided by linked objects; do®rsd
condition avoids multiple definition$. No matter the expressivity of
the type system, such a linking discipline cannot help inosmihg
type safetyacross compilation unitsf not relying on name mangling
hacks [15] or delegating it to external whole program vedtiien tech-
niques [8].

Moving to the world of functional, statically typed prograrnmg
languages, such as OCaml and Haskell, link-time checks ge¢ mo
thorough mainly because types come into play. Not only enosdule
type compatibility is challenging to verifger se[1, 11], but also tech-
nical guarantees that ABIs do not change between compike-aimdi-
vidual units and link-time should be type-aware. The solutdopted

1. We do not strive for completeness here, we cover only the linkaxksttbat will help in
comparing with the strongly typed language world. For the same reasotio wot distinguish

between static and dynamic linking.
2. Actually, in some corner cases, the C linker can allow multiple definitiomisthat is

uninteresting for our purposes.

Listing 1: foo.ml Listing 2: bar.m1 Listing 3: main.ml

let hello () = let hello () = let _ =
Printf.printf Foo.hello () Bar.hello ()
"Hello!\n"

Figure 1: sample OCaml compilation units

by OCaml is, for each compilation unit, to expose two setsotiule
namesassociating each name to a cryptographic hasimecksunthat
captures the type information of that module.

Example 1. Let us consider the OCaml sources of Figure 1.

After (bytecode) compilation éfar. mi—which in turn needs a com-
piled version offoo.ml—the resulting compilation unit contains the
following “assumptions™:

$ ocamlc -c foo.ml bar.ml

$ ocamlobjinfo bar.cmo

Unit name: Bar

Interfaces imported:
807ecd3a1538992580464c03462c9964 Printf
da00042bb934260afe41d004bc91fe2e Foo
9e3404342379641955461e6944482508 Bar

where we can see thatr. cmo exports an ABI consisting of the inter-
face Bar with a specific MD5 checksum and thateéuiressome other
checksum-tagged interfaces. Among them we canFspoprovided by
foo.ml, and Printf, provided by the OCaml standard library which is
linked in by default.

If the ABI of foo . cmo changes between the compile-timeef. cmo
and the final link-time, the user will incur in the sadly wellekym “in-
consistent assumptions” error:

$ ocamlc -c foo.ml bar.ml

$ echo "let gotcha () = (0" >> foo.ml

$ ocamlc -c foo.ml

$ ocamlc foo.cmo bar.cmo main.ml

Files bar.cmo and foo.cmo make inconsistent

assumptions over interface Foo

The additional type-aware checks performed by OCaml alrdiady
in the given simple formalization. It is enough to considethoR (u)
and.A(u) to be sets opairs (m, c), wherem is the name of an OCaml
module and: is its associated checksum. The only additional property
checked by the OCaml linker is that, given a set of compilatiits, the
mapping between module names and checksums is a funceothat
a module is not associated with more than one checksum.

Simplifying the characteristics of the standard libratglib, the fail-
ure of Example 1 can now be explained as follows:

R(stdlib) =
R(foo.cmo) =

0
{(Printf,807ec...)}
R(bar.cmo) = {
{
{
{

(
(Printf,807ec...),
(Foo,da000...) }
A(stdlib) = {(Printf,807ec...)}
A(foo.cmo) = {{
A(bar.cmo) = {{

Foo,a4293...)}
Bar,9e340...)}

UueM R(u)\ UueM A(u) = {(Foo,da000...)}
whereM = {stdlib, foo.cmo, bar.cmo}

In order to satisfy Definition 1, the next to last equation wapposed
to be the empty set, whereas it contains the {f&in, da000. . .).

The ability of the linker to detect this kind of unsound asgtions
comes at a cost: ABIs change more frequently than in the C &geu
case. Indeed, with system-level linking, the ABI of a givent wan
inhibit linkability only by removing symbols from it. Backwa ABI
compatibility—which of course does not imply type safetyarde re-
tained only when adding new symbols, which is an unsurgyigicom-
mon practice in the evolution of C libraries.

With type-aware linking, ABIs break at each change in a madule
no matter if it is an addition, a removal, or a simple (typeamhe, be-

3. Here, we do not distinguish among assumptions on interfaces amah@tssns on im-
plementations, these details are postponed to Section 6.

cause each such modification will change the checksum of tule.
While C libraries offer (type-unsafe) backward binary cotipkty by

default, OCaml libraries have the converse default: thewlbtanary
compatibility at every single change.

Unfortunately for most users of languages such as OCaml and
Haskell, packaging systems and techniques used in manstF©OSS
(Free and Open Source Software) distributions have beegreebwith
implicit backward compatibilityor libraries in mind. Dependencies on
library packages are indeed usually expressed accorditigp tmllow-
ing schema:

Package: my-app
Depends: libfool (>= 1.2.3)

Such a schema implicitly assumes that future versions afdhdibrary
will either be binary backward compatible or change the pgekname
altogether, for instance switching 1abfoo?2.

The advantage of the backward compatibility assumptiorhat t
inconsistent software installations, where installedadlites lack the
needed objects to be linkable, are detected at the depentiet and
can hence be spotted by package managers. Given that theveeas
liable mapping between library versions and ABIs (new versitan
change ABIs, but are not forced to), we observe that with ther@lCa
linking discipline the advantage of spotting linkabilityrers at the de-
pendency level is gone.

As most OCaml users on distributions such as Debizave expe-
rienced in the recent past, it indeed frequently happensuihgrades
involving OCaml libraries might temporarily leave the buitblchain
in an inconsistent state requiring users to: recompile dependent li-
braries by hand, rollback the upgrade (if possible), or $ymyait for
fixed packages (of all involved libraries) from the disttibon.

In this paper we show how to make the packaging system aware
of complex and frequently changing ABIs used by languagek asc

4. http://www.debian.org

5. For example, http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=238727
(retrieved October 2009); similar reports are very frequent duragsttions from one OCaml
version to the next, since all libraries need to be rebuilt.

OCaml and Haskell, hence shielding users from the instafiaif non-
linkable libraries. Attempting to do so will amount to trgo install a
package whose dependencies cannot be satisfied. We adraévesult

by coalescing ABIs in a single human-readable checksum-eatABI
approximatior—which is then reified as a “virtual” package known to
the packaging systerdge factoclosing the gap between coarse-grained
inter-package relationships and fine-grained inter-umiimg assump-
tions.

1.1. Paper structure

The next section introduces some concepts of package-F&388
distributions that will be needed throughout the papertiSe@ states
the goals and requirements for the solution we look for; iBact re-
views the state of the art against them. The proposed soligide-
scribed and analyzed in Section 5; its actual implementatio the
context of the Debian distribution and for the OCaml languagedis-
cussed in Section 6.

From now on, we will focus on the OCaml language and its pack-
aging in Debian, but reasoning and choices are general énoulge
ported to similar languages (with strong typing and inspielet link-
ing assumptions) and distributions (based on binary pajadn fact,
for what concerns Debian, the discussed concepts havethebeen
adopted by the Haskell library stack as well.

2. Packaging basics
2.1. Packages

In most FOSS distributions—and, more generally, in comptne
based systems [16]—software components are manadmalaay pack-
ages[2] which define the granularity at which users can add or r&mo
software.

A binary package is essentially a bundle of data (execusadlecu-
mentation, media, etc.) to be deployed on the file systemitidddlly,
binary packages are described by meta-information whidkid®e com-

plexinter-package relationshipthat describe the static requirements to
run properly on a target system. Requirements are expresgedis

of other binary packages, possibly with restrictions ondbsired ver-
sions. Both positive requiremenidggpendencigsand negative require-
ments ¢onflicty are supported by most packaging systems.

Example 2. An excerpt of the meta-data of theaminet library in
Debian currently reads:

Package: libocamlnet -ocaml -dev

Version: 2.2.9-3

Depends: ocaml -nox-3.10.2, ocaml-findlib,
libocamlnet -ocaml (= 2.2.9-3),
libpcre-ocaml-dev (>= 5.11.1),

libcryptgps -ocaml-dev (>= 0.2.1)

Provides: libequeue-ocaml-dev,
libnetclient -ocaml -dev,

9 librpc-ocaml-dev

10 Conflicts: libequeue-ocaml-dev (<< 2.2.3-1),
11 libmnetclient-ocaml-dev (<< 2.2.3-1),

12 librpc-ocaml-dev (<< 2.2.3-1)

13 Description: 0Caml application-level Internet
14 libraries - core libraries

O~NO O WN P

In this short but representative example we can recogneéittin-
guishing features of inter-package relationships [7]:

— dependencies on other libraries, tools, and the OCamipiretsr
(line 3) which can either be versioned (elg.bocamlnet-ocaml—
the runtime part of the package shown) or non-versioned
(e.g.ocaml-findlib);

— conflicts with some libraries (line 10), in the example wstiper-
seded packages now included intthocamlnet-ocaml-dev itself;

—virtual packageqline 7), i.e. the ability to declaréaturespro-
vided by the owning “real” package so that others can depenbo
conflict with) feature names. In the examplebocamlnet-ocaml-dev
provides old library names such dsibequeue-ocaml-dev; de-
pendencies on it by other packages can be satisfied by ingtall
libocamlnet-ocaml-dev. The other typical use case of vir-

10

unstable testing

upload

i@

maintainer

legend
| D (bin or src) package

| ——> human action

| —>p» automatic processing
| - distribution release
|

trigger [__] staging area

Figure 2: package (auto-)building

tual packages is to add an indirection layer over systemicssv
(e.g.mail-transport-agent), which stays in between package®-
viding the service (e.gpostfix or exim4) and packages needing it
(e.g.cron).

2.2. Auto-building and binNMUs

Source packageare a different type of packages which contain the
source code. Compiling them produces binary pack&ges.

Source packages are usually manipulated by human packhame
tainers contributing to specific distributions. The mapping betwee
source and binary packages is one to many; for instancecth€lnet
source package produces the package shown in Example Beogéth
eight other binary packages. Also, there exists a manyanyrhuild-
dependencyelation among source packages and the binary packages
needed to build them.

The natural work-flow of packages is rather complex [9], thaet p
that mostly concerns us is sketched in Figure 2. Maintainpisad
source packages to a package queue, together with the pomdisg
binary packages; considered as a whole, such an uploadiisoshe a
sourceful upload Given that maintainers usually only own a machine

6. According to established conventions, we use “packages” to refein&wy packages,
and explicitly “source packages” for the others.

11

for a single architectur@uto-buildergor buildds) pick up the uploaded
source package and rebuild the corresponding binary paskageach
architecture supported by the distribution (about a doretihe case of
Debian).

The only exception to the autobuilding schemeamhitecture inde-
pendenfpackages (oarch:all) that once built on any given architec-
ture, can then be installed on all architectures, for intdecause they
contain portable interpreted code or bytecode. Therefarth:all
packages do not get rebuilt at all, after the first build. Adtained
binary packages flow to the “unstablstiitewhich is ready to be used
by developers and testers in preparation of a future statdase.

In certain circumstances (e.g. library transitions), bnpackages
can be rebuilt without intervention on their source packag€his is
needed to fix builds performed in malformed environments. (@uggy
compiler), to ensure that a package still builds againstva version
of a library it depends upon, or precisely to trigger a rabagainst
a new (shared) library when the package built against thdilmidry
Is not binary compatible with the new one. To that end, maiets
can trigger rebuilds by requestindbaaNMU, a historic and unfortunate
name standing for “binary Non-Maintainer Upload”. For oeeds, the
important aspect of binNMUs is that during these no changeshe
performed to thesourcepackage.

2.3. Dependency inference

But how can a binary package change if its source package mesmai
unchanged?

The contents of the package (e.g. binary files) can of couraege
as the toolchain used to build it changes (compiler, lilesgretc.), but
it turns out that package meta-information such as depeeRican
also change across rebuilds (and hence differ across ectimies). In
fact, maintainers can exploit the mechanisms@bendency interpola-
tion anddependency inferende ease the tedious task of maintaining
dependency information.

12

Example 3. The dependency information of th€donkey-server
package read as follows in the donkey sourcepackage:

Package: mldonkey-server
Depends: adduser, mime - support , ucf,
${shlibs:Dependst, ${misc:Dependst

whereas in the resulting binary package they read:

Package: mldonkey-server

Depends: adduser, mime -support, ucf, 1libbz2-1.0,
libc6 (>= 2.3.2), libjpeg62,

libfreetype6 (>= 2.2.1), libgccl (>= 1:4.1.1),
zliblg (>= 1:1.1.4),

libgd2 -noxpm (>= 2.0.36"rcl~dfsg) |

libgd2-xpm (>= 2.0.367rcl7dfsg),

libpngl2-0 (>= 1.2.13-4), libstdc++6 (>= 4.2.1),
debconf | debconf-2.0

What is going on in Example 3 is that interpolated variables—
expressed i${this:form}—get expanded during build according to
dependency inference. While maintainers can use custormsiqoa
mechanisms, the common way to expand variables is to rely spe-
cific registries For instance, th§{shlibs:Depends} variable expands
to all dependencies that can be inferred by C shared libeation-
ships [3].

To that end, each C shared library installed on the system
provides ashlibs file which is in essence a record of tuples
(lib n , k n , sin di t) which contributes to
the C shared library registry. For instance, thibpng12-0 pack-
age provides a recor@libpngl2, libpngl2-0, (>= 1.2.13-4)).
When themldonkey-server package gets built, all executables it
ships are inspected for relationships with C shared libsausing
tools like objdump). Since the/usr/bin/mldonkey-server exe-
cutable needs a C library calledbpng12 to be loaded, a lookup for
that library name in the registry provides the matching depacy
libpngl2-0 (>= 1.2.13-4) which is then added to the expansion of
${shlibs:Depends}.

13

3. Requirements

The goal of the solution we are looking for is to detect typexiae
linking incompatibilities at the dependency level. As thare several
possible solutions to that problem, we define in this sectizget of
contingent requirements, mostly inherited from the contex

The first obvious requirement is goal fulfillment.

Requirement 1 (Dependency soundnesd)ll binary packages ship-
ping compilation units should satisfy tlependency soundnegsp-
erty.

Property 1 (Dependency soundness) A package shipping OCaml
compilation units{u, ..., u, } hassound dependenciegth respect to
a repository if and only if for all healthy installation , it holds
that link ({u and shipsu}) =0

Intuitively, a package has sound dependencies if all catipii units
shipped by its (transitive) dependencies can be linkedtbhege De-
pendency soundness is clearly not a local property—i.eannot be
decided by considering a package in isolation—but this tssnopris-
ing given that our notion of linking is geared towards obitagna self-
contained executable.

Requirement 2(Dependency inferencelsiven a source packageand

its build-dependencies={ ,..., .}, the dependencies that ensure
soundness on all binary packages obtained by buildinghould be
inferrableon the basis of and its (transitive) dependencies.

Acknowledging that OCaml ABIs change very frequently, Reguire
ment 2 asks for a mechanism of dependency inference (se@rSayt
that relieves maintainers from the error-prone task of taaiing by
hand the needed dependencies.

7. The notions ohealthy installationandgenerated subrepositoryoted R, are easily
explained. An installation is a set of installed packages, it is healthy if allrtkpeies are
satisfied and no conflicts occur among installed packages; a genarbtegasitory is a repos-
itory subset obtained as the closure of the “depends on” relation startingd given set of
packages. Formal details can be found in [12].

14

Requirement 3(binNMU-safety) If a package has sound dependen-
cies, performing a binNMU on it should not make its dependengn-
sound.

This requirement not only means that inferred dependersties|d
not be tied to source package version, but also that we camehot
on sourceful uploads. Hence, solutions requiring changesetin-
corporated in source packages at each rebuild (includingt matably
binNMU-driven rebuilds) are not suitable for the task.

All dependencies ensuring soundness should be recomputedd
build, on the basis of the build environment. While binNMUetg
mimics the homonymous accepted best-practice of packaigisglso
a real need to reduce maintenance burden. Since transitmnsone
compiler version to the next require rebuilding all packagnd given
that distributions like Debian contain nowadays more thdmuadred
OCaml-related source packages, the ability to do transitiaa binN-
MUs is crucial for the maintainability of the whole stack iagkage-
based binary distributions.

Requirement 4 (Light dependencies)All inter-package relationships
needed to ensure dependency soundness should be tersablesad
human-manageable.

Albeit admittedly very informal, this requirement is medaten-
sure that package dependencies remain manageable by huBhaarms
if there is no clear definition for that, discussions withire tDebian
project between OCaml maintainers, the release feamd users have
given evidence that solutions like a simple dump of all MDguiee-
ments as dependencies would not be acceptable. Indeendgdelease
management, quality assurance, or simply broken dependeratysis
within a package manager, such dependencies will be too (oaeyfor
each ABI requirement) and too unfriendly. Requirement 4 gitsrto
convey this and similar desiderata.

15

Package: libfoo-ocaml -dev
Version: 1

Package: libbar -ocaml-dev

Version: 1

Depends: libfoo-ocaml-dev (>= 1)

Build -Depends: 1ibfoo-ocaml-dev (>= 1)

Package: main
Version: 1
Build -Depends: libbar-ocaml-dev (>= 1)

Figure 3: Past Debian dependency scheme for OCaml-relatéagas

4. Related work

Until the adoption of the solution presented in this pages,Debian
distribution was using the natural dependency scheme [@gikcted in
Figure 3, where the snippets of Figure 1 are considered stipy pack-
ages with corresponding names.

The drawbacks of that solution are twofold: no dependentsryin
ence (the maintainer writes dependencies by hand), no depen
soundness (there is no guarantee that future versions vefiepve
ABI compatibility). Note that stricter version predicatesch as
€.¢.libfoo-ocaml-dev (>= 1), libfoo-ocaml-dev (<< 2), (asitwas
done for Haskell packages in Debian until very recently) nlt pro-
vide soundness either, because version numbers are dendeigd.

In 2005, a helper tool calledh_ocaml was proposed [17] to ease
the burden of maintaining OCaml-related dependentiesmicking
the architecture of thehlibs registry for C shared libraries. Depen-
dencies generated by (old-styké)_ocaml follow the scheme of Fig-
ure 3. The obtained solution hence also fulfills Requiremebugnot
yet Requirement 1 (arguably the most important one).

8. The release team is a group of Debian developers who coordinaséitnas, goals and

deadline for the next stable release.
9. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=328422, retrieved Oc-
tober 2009

16

$ rpm -qRp ocaml-ocamlnet*.rpm

ocaml (Arg) = b6513be035dc9c8a458c189cd8841700

ocaml (Array) = 9c9fabf11e2d6992c427dde4d1168489

ocaml (Bigarray) = fc2b6c88ffd318b9fl11labe46ba99902

ocaml (Buffer) = 23af67395823b652b807c4ae0b581211
snipped 67 morecaml (*) deps

$ rpm --provides -gp ocaml-ocamlnet*.rpm

ocaml (Equeue) = 329e036bb2778b249d6763d22407af19

ocaml (Ftp_client) =
d36822b105eacef219a2b6e0331ba34b

ocaml (Ftp_data_endpoint) =
£279805dc3b7ced5d8554£92e287c889

ocaml (Generate) = 418dedddda65b04bdc4d0c6e9fb918d4

shipped 110 morecaml (#) virtual packages

Figure 4: Sample dependencies (on the left) and providadres(on
the right) according to the Fedora solution, for twamlnet library.

The Fedora and Red Hat distributions, and after them other RPM-
based distributions such as OpenSUSE and Mandriva, adoiffea d
ent solution [4]. At the end of the build, they automaticatigpect all
OCaml bytecode objects; shipped by each binary package and, for
each paifm,c) R(u ;), they add a dependency on a virtual package
in the OCaml namespace which has the full MD5 checksum asiis ve
sion; pairs in4(u;) are similarly handled to generate the list of provided
virtual packages. No intermediate registry is used.

Fedora’s solution provides soundness (up to a technicallabs-
cussed in Section 6) and implicit dependency inference gliewit fails
lightness. As it can be seen in Figure 4, it bloats packagewgh one
virtual package/dependency per exported/required OCarmdutapthat
can also have a performance hit on dependency resolutiatistiibu-
tions the size of Debian. Such solution ultimately expossersiand
members of relevant teams to checksum strings which arerheén-
ingless for humans as well as being overly long.

17

Table 1: Review of linkability enforcement solutions

Req. 1 Reg. 2 Req. 3 Req. 4

Solution soundness| inference | binNMU | lightness
past Debian 0 0 0 0
status quo

old-style

dh_ocaml - . - -
cu_rren_t Fedora 0 1 0 1
guidelines
ABI e_volutlon 0 0 a 0
tracking
ABI o O O O 0
approximation

The last alternative solution we are aware of A8l evolution
tracking [17]: it establishes an injective mapping between pack-
age ABIs and integers. The integer ideally represents ABI-“ver
sion” and is used to establish human-friendly virtual paekaames
(e.g.1libpcre-ocaml-dev-1) that provide soundness. Unfortunately,
this solution defeats binNMU-safety. Indeed, to avoid ABFsien
clashes the mapping should be either maintained by handddito
what happens with C symbols tracking [5], where unexpecteshges
at build time trigger build failures), or obtained via autatic mono-
tonic increase of ABI versions. For the latter, we would negareserve
somewhere a history of past ABI numbers, which has no plactayo s
during binNMUSs: network is not accessible to avoid non-tdetsistic
builds and source packages cannot be changed.

Table 1 reviews the state of the art against the requirentérggec-
tion 3. The last line corresponds to the solution we propdsscribed
in next section.

5. ABI approximation

To overcome the limitations of the discussed approachedave
devised a solution based on the idea of computing a single=ainpa-

18

inter package
relationships
ABI(pkg)= pkg : Package: pkg

hash(ABI(u_l), —— u_l Provides:
«vu, ABI(u_n)) —— u_2 [pkg-ABI (pkg)

[REQ(u_1)
—>
| uln _ : lookup

< ABI(u_1), pkg, ABI(pkg) >,

! bar-ABI(bar),
1

1
[baz-ABI(baz)

< ABI(u_n), pkg, ABI(pkg) >

ABI
registry

»
»

store

Figure 5: ABI approximation: architecture

tion of the ABIs of all compilation units shipped by a given kage.
We call this solutionABI approximationits architecture is sketched in
Figure 5.

Consider a (binary) package@kg shipping compilation units

uy,...,u, (atthe top-left of Figure 5). Its ABI approximation—noted
A(k)—is obtained as a cryptographic hash of all ABI pairs of all
compilation units; intuitively: A(k£) = s (A(u1) Au),

where is a concatenation operator which is used to incrementdllly a
material on which the hash is takéf.

The obtained ABI approximation is then used in two differeays;
both contributing to form the inter-package relationshipgpkg For
what concerns the interface exposedpdkg we directly add a virtual
package obtained by juxtaposipggs name with the ABI approxima-
tion itself. All packages relying on the set of ABK(uy), ..., A(u,)
will depend on such virtual package.

Let us now assume that all dependenciepld itself already have
computed ABI approximations and that they are available id-bume,
which is a sound assumption according to our linking disegl To
ensure that we can compute the dependencies on the correal vi
packages—i.e. the virtual packages corresponding to paskable to

10. A more formal description would require more details on the hashimctibn, on mod-
ule naming conventions, etc. They are omitted for the sake of conc&seBestion 6 neverthe-
less provides some details about the current implementation.

19

satisfy the linking assumptior®(u,), . . ., R(u,)—we use arhBI reg-
istry that stores information about which packages provide wAiBh

The regqistry is populated by tuples (simplified in Figure 5)
(m,c, k ,A(k)) where(m,c) A(u) for someu shipped bypkg
Intuitively, each modulen exposed by some compilation unit with
checksunr has a tuple in the registry which relates it with a specific
package name and overall ABI approximation. Technicallg,ttiples
are computed at build-time and the registry is construatedeimen-
tally by files shipped bykgitself, similarly to what happens with the
shlibs mechanism.

Using the ABI registry, we can now compute the dependencyssntr
of pkgwhich will ensure its linkability. For eackm,c) R(u;), we
look up (m, ¢) in the registry to get a pair of package name and ABI
approximation; note thatn, c) is expected to be a primary key in any
possible configuration. By juxtaposing the obtained packegee and
approximation as before, we can now emit the appropriatergncy
shippets.

Example 4. The resulting dependencies for theaminet package,
which we have already sedrefore ABI approximation in Example 2,
is as follows.

Package: libocamlnet-ocaml-dev
Version: 2.2.9-7

Depends: ocaml -findlib,
libcryptgps -ocaml -dev-139d7,
libocamlnet -ocaml -3rxe6,
libpcre-ocaml -dev-kh2cO,
ocaml -nox-3.11.1

Provides: libequeue-ocaml-dev,
libnetclient -ocaml -dev,
librpc-ocaml -dev,
libocamlnet -ocaml -dev-3rxe6
Description: 0Caml application-level Internet
libraries - core libraries

We can notice that the package depends on the extermalt gps and
pcre libraries with specific ABI approximations, and that it exfsoan
ABI approximation itself.

20

By comparison with the Fedora dependencies for the same gacka
(see Figure 4), we observe that the huge amount of providedeand
pected module checksums is here hidden in the registry asudvesd
at build time: the package interface just exposes a singiea exrtual
package and one dependency for each external library needed

To review ABI approximation against the requirements of Bac3,
we start by observing that soundness (Requirement 1) isegtamt to
the risk of clashes of different sets of ABIs to the same apprated
ABI. Literature on the birthday paradox [13] gives an appnaiion
on the number of different, incompatible, versions of adiyrto have
collision with probability :

() —
were denotes the ABI approximation space size. In our practical

implementation = (see next section), so we reach the negligible
probability of 1 % of collision with 1103 versions.

Dependency inference (Requirement 2) is trivially providsgdthe
ABI registry, according to the lookup mechanism describeal/ab

binNMU-safety (Requirement 3) is granted too as all the state
needed to compute both the inferred dependencies and thsezkpp-
proximated ABI, is not stored in the source package (and hdoes
not need sourceful uploads to be changed); rather, theist&gpt in
the registry which is contributed to by build-dependenckthe pack-
age being built.

Finally, we argue that dependency lightness (Requiremeistptp-
vided too. While ABI approximated strings are not really megful
to humans, they have the benefit of being short (only 5 alpinenic
characters in the current implementation). Additionallg humber of
such strings that are needed for a given binary package redeoli one
for the exported interface and one for each package dependsith
the latter set replacing dependencies which would have heeded
anyhow, subtituting ABI approximations for version numbers

The most notable limitation of ABI approximation is the “iabtlity”
of approximations with respect to backwardmpatiblechanges. This

21

is not surprising, given that the solution has been designecisely to
cope with frequent backwarndcompatible changes. Still, sometimes,
backward compatible changes can happen in a given packagex-f
ample by adding a new module to a given library without tonghany
other existing module. In our formalism that translatesddiag a new
couple(m ,c¢) to someA(w;); trivially, property 1 is unaffected
by such addition. Nevertheless, the resulting ABI approxiomawill
change, since the content on which the hash is computed gfras-
tically, the problem is non-existent, given the low fregogmf such
changes and given that—thanks to binNMU-safety—the adf&pack-
ages can be fixed by just scheduling their recompilation. W&eve
that this issue can be fixed only by allowing to export ABI appro
mations whose sizes are linear with respect to the numberoditas
shipped by a given package; in essence, that would mean kaimgic
Fedora’s solution, getting back most of its disadvantages.

6. Implementation

ABI approximation has been implemented in the context of tee D
bian distribution to manage inter-package dependencied &fCaml-
related packages in the distribution. At the time of writitigat amounts
to 158 source packages that build-depend on OCaml, prod@&Bidi-
nary packages, and providing interfaces for 2502 OCaml nesdul

Technically, the implementation is baseddin ocaml, a helper tool
meant to be compatible with the Debhelper packaging helgéer [5].
Some of its inner workings depends on how OCaml libraries plie s
into binary packages, which we briefly highlight below.

Compiling a source package results in one or several binati-pa
ages. For example, library source packages usually pro@tdeast)
two binary packages:

1) aruntimepackage, containing all the objects that might be needed
at runtime by software linked to the library;

2) adevelopmenpackage, containing all the objects that might be
needed to compile software that uses the library.

22

In the OCaml world, the runtime package typically containdbstto C
libraries (the so called “bindings”) that are dynamicalbadled when
running pure bytecode executablesd), and the development package
contains interfaces in sourcemli or .m1) and compiled (cmi) form,
along with compiled module objects dmo, .cma, .cmx, .o, .cmxa,
.a), META files and (mostlyocamldoc-generated) documentation. A
library might have no runtime package at all if it is meant godbwvays
statically linked, which happens quite often with pure-OChipnaries.
However, when a library can be dynamically loaded by a progitzat
supports plugins, the runtime package can also provide, .cmxs,
andMETA files.

A library can be further split into several sub-componeriikis is
usually left at the package maintainer’s discretion, aralags can vary
between distributions. A typical reason for splitting adity is optional
dependencies that might be needed only by some compilahds. u
Each resulting component might then have its runtime andldpment
packages. Finally, there are also non-library packagggpstg OCaml
binaries.

Overall,dh_ocaml distinguishes three classes of (binary) packages:
runtime, development, and others. We henceforth consxlafilarary
a development package together with its runtime packagmyif For
example, theocamlnet source package produces the following binary
packages:
—1libocamlnet-ocaml: core library (runtime);
—libocamlnet-ocaml-dev: core library (development);
—libocamlnet-ocaml-doc: documentation;
—libocamlnet-ocaml-bin: miscellaneous tools;
—libocamlnet-gtk2-ocaml-dev: GTK2 layer (development);
—1libocamlnet-ssl-ocaml: SSL layer (runtime);
—libocamlnet-ssl-ocaml-dev: SSL layer (development);

—libnethttpd-ocaml-dev: HTTP daemon libraries (develop-
ment);

—libapache2-mod-ocamlnet: Apache2 module.
Among them, four OCaml libraries can be recognized:

23

—1libocamlnet-ocaml/-dev,
—libocamlnet-gtk2-ocaml-dev (without runtime),
—1libocamlnet-ssl-ocaml/-dev, and
—libnethttpd-ocaml-dev (without runtime).

To inspect OCaml compilation units (a required ability to lempent
ABI approximation), the OCaml standard distribution progdgs®mme
useful tools:

ocamlobjinfo reads assumptions of bytecode objectsmf, .cmo
and . cma files), as shown in Example 1;

ocamldumpapprox reads assumptions of native code objectsng,
.cmxa files).

While OCaml bytecode objects make assumptions only on inter-
faces, native code objects may also make assumptions oanmepka-
tions, due to code inlining across compilation units. Tresgimptions
are stored in cmx files, which might hence be useful even if the module
they represent are included in amxa file.

Most notably, the above tools lack the ability to inspecelogide ex-
ecutables and native pluginscfnxs). Such abilities are much needed
though: bytecode executables might depend on external I§3 stnd
native plugins are special cases of libraries and shouldénee con-
sidered as such. To overcome these limitations, we haveeimgited
ocamlbyteinfo andocamlplugininfo; they are currently shipped as
part of theocaml source package and relied uponddy ocaml.

The solution described in section 5 is then implemented ibidre
using two tools:

ocaml-md5sums manages the ABI registry. This tool is meant to be
generic (not Debian-specific). It inspects a set of objeetfily
calling the most appropriate among the above tools, uses the
output to compute their dependencies and its approximakid A
It considers a library as a whole (runtime and development to
gether);

dh_ocaml is a frontend toocaml-md5sums; it looks for installed ob-
jects and binaries, passes them d@aml-md5sums and fills-

24

in substitution variables corresponding to dependenagranfce
variables; it distinguishes the three categories of paskag

—a development package provides a hashed virtual package
name, and depends on its own runtime package (that explans t
dependency obibocamlnet-ocaml-3rxe6 in Example 4), and
possibly on other development packages;

— a runtime package provides a hashed virtual package name,
and depends only on other runtime packages;

— any other package depends only on runtime packages.

The actual ABI approximation is computed by considering thiem
of two different sets of4() for each compilation unit: one for as-
sumptions over interfaces, one for assumptions over imgfeations
(no matter where they come from: plugin, object, or binar@n a
simple and canonical textual representation of the reguliet, a MD5
checksum is then computed and then taken modulo a fixed hask.sp
Currently, such hash space relies on 5 alphanumeric, losergdain-
ASCII characters, accounting for
different ABI approximations. As discussed in the previcet®n, that
choice gives a negligible clash probability, without sacimg lightness.

We notice that alternative solutions, such as Fedora’scamently
not considering assumption on implementations, mostylikelcause
the original tools in the OCaml distributions were not ablerspect
them. As a consequence they only provide soundness up ternmepl
tation incompatibility; unfortunately such incompatités are more
likely to occur than interface incompatibility, given thadt all program-
mers seem to be aware of (or care about) cross-unit codeniglifhis
being a minor drawback easily fixable (now that we have peithe
missing tools), we also observe that fixing it naively wouleam dou-
bling the already large number of depends/provides in eigur

Example 5. Here is an excerpt of dependencies from th@minet
sourcepackage (i.e. before expansion &y_ocaml):

Package: libocamlnet -ocaml -dev

Provides: libequeue-ocaml-dev,
libnetclient -ocaml -dev,
librpc-ocaml -dev,

25

${ocaml: Provides}
Depends: ocaml-findlib, ${ocaml:Depends},
${shlibs:Dependst, ${misc:Depends

The result of the substitution performeddny ocaml in the correspond-
ing binary package can be seen in Example 4.

Both ocaml-md5sums anddh_ocaml are implemented in Perl to es-
cape (build-)dependency cycles among the package shipipang and
the ocaml package itself. Both tools are part of the-ocaml source
package!! which is distributed under the terms of the GNU General
Public License (version 3) and available from its Git repargi 2

So far, we have effectively deployed this solution in abdusburce
packages (out of 100 library packages). This deploymergaied not
only dormant packaging errors such as missing dependeiiciealso
unrelated errors like libraries re-exporting modules tdeynot own.
The most common example of that has been the embedding G ike
module into third-party libraries. The remaining packagesd most
notably libraries, are being ported d_ocaml at the time of writing,
their ported versions are all expected to be shipped witméxé stable
release of Debian (codename “Squeeze”).

The currently knowrih_ocaml-specific limitations are as follows:

—itis theoretically possible to change C stubs in a binacpmpat-
ible way while keeping the same interface; it is thereforagiade to
install an outdated version of C stubs while satisfying alpehdencies
of a bytecode executable. This limitation is inherent to OGam

— architecture-independent packages that depend onidbraith
runtime cannot currently benefit from this solution, beeatise ABI
approximation string depends on the architecture (givearaptions on
implementations are not present on architectures lacki@gdamlopt
native code compiler). This limitation can be solved by catmyg two
separate ABIs: a native code and a bytecode one; the lattatdshe
the same on all architectures.

11. http://packages.debian.org/sid/dh-ocaml
12. http://git.debian.org/?p=pkg-ocaml-maint/packages/dh-ocaml.git

26

7. Conclusions and future work

In this paper we have given some insights on the gap existng b
tween fine-grained dependencies that type-aware linkersiader to en-
force type-safety at compilation units borders and the ssgrained
dependencies that can be expressed among packages in FOSS bi
nary distributions. That gap persisting, package managdrsnot
be able to defend users from installing libraries of strgrigped lan-
guages that can not be linked together due to annoyiingohsistent
assumptions” link-time errors.

We have introduced a solution callédBl approximatiornthat guar-
antees link-time compatibility as long as inter-packad@ti@enships are
satisfied. ABI approximation satisfies a set of natural regnéents in-
herited from the context: dependency soundness, inferemeklight-
ness, as well as binNMU-safety.

ABI approximation has been implemented and deployed in the De
bian distribution through theéh_ocaml helper, aiming at managing the
dependencies of more than 300 OCaml-related binary packagas
the premises of this work, also the whole stack of Haskelkpges in
Debian is currently migrating to an ABI approximation soduti

Future work consists in some technical fixes whose need was re
vealed by usingdh_ocaml, such as the observation that comput-
ing a single ABI for bytecode and native-code is incompativlén
architecture-independent packages. Also, we are comsiddesign-
ing a mechanism for computing automatically OCaml-relat&dsAXor
C stubs whose purpose is interacting with the OCaml runtirhet ¢an
be done at C stub compilation-time (where and when the exterdf the
matching OCaml objects are known) and then stored in somesexft
the resulting object.

References

[1] A.W. Appel and D.B. MacQueen. Separate compilation fanSt
dard ML. In PLDI 1994: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and impleme
tation, pages 13-23. ACM, 1994.

27

2]

[3]

[4]

[5]

Roberto Di Cosmo, Paulo Trezentos, and Stefano Zacchiroli
Package upgrades in FOSS distributions: Details and clupdke

In HotSWup’08: Proceedings of First ACM Workshop on Hot Top-
ics in Software Upgrade®\CM, 2008.

Ulrich Drepper. How to write shared librariegttp://people.
redhat . com/drepper/dsohowto.pdf, 2002. Revision August
2006.

Fedora Project. OCaml packaging guidelines.http://
fedoraproject.org/wiki/Packaging/0Caml. Retrieved Oc-
tober 2009.

Raphael Hertzog. dpkg-gensymbols: generate symbols
files (shared library dependency information). Manual
page dpkg-gensymbols(1l), on line at http://man.cx/
dpkg-gensymbols (1), July 2007. Retrieved July 2010.

[6] Joey Hess. debhelper debian package: helper programs

[7]

[8]
[9]

[10]

[11]

[12]

28

for debian/rules. http://packages.debian.org/sid/
debhelper/, 2009. Version 7.0.15.

lan Jackson and Christian Schwarz. Debian policy manualp :
//www.debian.org/doc/debian-policy/, 2009.

S. C. Johnson. Lint, a C program checker. (65), 1978.

Martin F. Krafft. The Debian system: concepts and techniques
Open Source Press, 2005.

Sylvain Le Gall, Sven Luther, Samuel Mimram, Ralf Treine
and Stefano Zacchiroli. Debian OCaml packaging pol-
icy. http://pkg-ocaml-maint.alioth.debian.org/ocaml_
packaging_policy.html/, 2009.

Xavier Leroy. Manifest types, modules, and separateqtation.

In POPL'94: Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges 109—
122. ACM, 1994.

Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérdme
\Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen. Man-
aging the complexity of large free and open source packageeb
software distributions. IASE 2006: 21st IEEE/ACM Internation

Conference on Automated Software Engineerpages 199-208.
IEEE CS Press, 2006.

[13] E.H. McKinney. Generalized birthday problerAmerican Math-
ematical Monthly73(4):385-387, 1966.

[14] L. Presser and J.R. White. Linkers and loade&Zemputing Sur-
veys (CSURW(3):149-167, 1972.

[15] Diomidis Spinellis. Type-safe linkage for variablasdgunctions.
SIGPLAN Notices26(8):74—-79, 1991.

[16] Clemens Szyperski. Component Software: Beyond Object-
Oriented ProgrammingAddison Wesley Professional, 1997.

[17] Stefano Zacchiroli. Enforcing OCaml link-time com-
patibility using Debian dependencies. Debian wiki:
http://wiki.debian.org/Teams/0CamlTaskForce?action=
AttachFile&do=get&target=dh-ocaml-design.pdf, January
2009. Design document, retrieved October 2009.

29

