
ar
X

iv
:2

20
9.

05
12

6v
1

 [
cs

.D
B

]
 1

2
Se

p
20

22

Extended Technical Report

Robust and Scalable Content-and-Structure Indexing

(Extended Version)

Kevin Wellenzohn ⋅ Michael H. Böhlen ⋅ Sven Helmer ⋅ Antoine Pietri ⋅ Stefano

Zacchiroli

Abstract Frequent queries on semi-structured hierarchical

data are Content-and-Structure (CAS) queries that filter data

items based on their location in the hierarchical structure

and their value for some attribute. We propose the Robust

and Scalable Content-and-Structure (RSCAS) index to ef-

ficiently answer CAS queries on big semi-structured data.

To get an index that is robust against queries with varying

selectivities we introduce a novel dynamic interleaving that

merges the path and value dimensions of composite keys

in a balanced manner. We store interleaved keys in our trie-

based RSCAS index, which efficiently supports a wide range

of CAS queries, including queries with wildcards and de-

scendant axes. We implement RSCAS as a log-structured

merge (LSM) tree to scale it to data-intensive applications

with a high insertion rate. We illustrate RSCAS’s robust-

ness and scalability by indexing data from the Software Her-

itage (SWH) archive, which is the world’s largest, publicly-

available source code archive.

Keywords Indexing ⋅ content and structure ⋅ interleaving ⋅
hierarchical data ⋅ semi-structured data ⋅ XML ⋅ LSM trees

1 Introduction

A lot of the data in business and engineering applications is

semi-structured and inherently hierarchical. Typical exam-

ples are source code archives [2], bills of materials [9], en-

terprise asset hierarchies [14], and enterprise resource plan-

ning applications [15]. A common type of queries on such

data are content-and-structure (CAS) queries [26], contain-

Kevin Wellenzohn E-mail: wellenzohn@ifi.uzh.ch ⋅Michael H. Böhlen
E-mail: boehlen@ifi.uzh.ch ⋅ Sven Helmer E-mail: helmer@ifi.uzh.ch
Department of Informatics, University of Zurich, Zurich, Switzerland

Antoine Pietri E-mail: antoine.pietri@inria.fr

Inria, Paris, France

Stefano Zacchiroli E-mail: stefano.zacchiroli@telecom-paris.fr
LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

ing a value predicate on the content of an attribute and a path

predicate on the location of this attribute in the hierarchical

structure.

CAS indexes are being used to support the efficient pro-

cessing of CAS queries. There are two important properties

that we look for in a CAS index: robustness and scalability.

Robustness means that a CAS index optimizes the average

query runtime over all possible queries. It ensures that an

index can efficiently deal with a wide range of CAS queries.

Many existing indexes are not robust since the performance

depends on the individual selectivities of its path and value

predicates. If either the path or value selectivity is high,

these indexes produce large intermediate results even if the

combined selectivity is low. This happens because existing

solutions either build separate indexes for, respectively, con-

tent and structure [26] or prioritize one dimension over the

other (i.e., content over structure or vice versa) [6,11,42].

Scalability means that even for large datasets an index can

be efficiently created and updated, and is not constrained

by the size of the available memory. Existing indexes are

often not scalable since they rely on in-memory data struc-

tures that do not scale to large datasets. For instance, with

the memory-based CAS index [43] it is impossible to index

datasets larger than 100 GB on a machine with 400 GB main

memory.

We propose RSCAS, a robust and scalable CAS index.

RSCAS’s robustness is rooted in a well-balanced integration

of the content and structure of the data in a single index. Its

scalability is due to log-structured merge (LSM) trees [33]

that combine an in-memory structure for fast insertions with

a series of read-only disk-based structures for fast sequential

reads and writes.

To achieve robustness we propose to interleave the path

and value bytes of composite keys in a balanced manner. A

well-known technique to interleave composite keys is the z-

order curve [31,34], but applying the z-order curve to paths

and values is subtle. Often the query performance is poor

http://arxiv.org/abs/2209.05126v1

because of long common prefixes, varying key lengths, dif-

ferent domain sizes, and data skew. The paths in a hierarchi-

cal structure have, by their very nature, long common pre-

fixes, but the first byte following a longest common prefix

separates data items. We call such a byte a discriminative

byte and propose a dynamic interleaving that interleaves the

discriminative bytes of paths and values alternatingly. This

leads to a well-balanced partitioning of the data with a robust

query performance. We use the dynamic interleaving to de-

fine the RSCAS index for semi-structured hierarchical data.

The RSCAS index is trie-based and efficiently supports the

basic search methods for CAS queries: range searches and

prefix searches. Range searches enable value predicates that

are expressed as a value range and prefix searches support

path predicates that contain wildcards and descendant axes.

Crucially, tries in combination with dynamically interleaved

keys allow us to efficiently evaluate path and value predi-

cates simultaneously.

To scale the RSCAS index to large datasets and sup-

port efficient insertions, we use LSM trees [33] that com-

bine an in-memory RSCAS trie with a series of disk-resident

RSCAS tries whose size is doubling in each step. RSCAS

currently supports only insertions since our main use case,

indexing an append-only archive, does not require updates

or deletes. The in-memory trie is based on the Adaptive

Radix Tree (ART) [21], which is a memory-optimized trie

structure that supports efficient insertions. Whenever the in-

memory RSCAS trie reaches its maximum capacity, we cre-

ate a new disk-based trie. Since disk-based RSCAS tries are

immutable, we store them compactly on disk and leave no

gaps between nodes. We develop a partitioning-based bulk-

loading algorithm that builds RSCAS on disk while, at the

same time, dynamically interleaving the keys. This algo-

rithm works well with limited memory but scales nicely with

the amount of memory to reduce the disk I/O during bulk-

loading.

Main contributions:

– We develop a dynamic interleaving to interleave paths

and values in an alternating way using the concept of

discriminative bytes. We show how to compute this in-

terleaving by a hierarchical partitioning of the data. We

prove that our dynamic interleaving is robust against vary-

ing selectivities (Section 5).

– We propose the trie-based Robust and Scalable Content-

and-Structure (RSCAS) index for semi-structured hierar-

chical data. Dynamically interleaved keys give RSCAS

its robustness. Its scalability is rooted in LSM trees that

combine a memory-optimized trie for fast in-place inser-

tions with a series of disk-optimized tries (Section 6).

– We propose efficient algorithms for querying, inserting,

bulk-loading, and merging RSCAS tries. A combination

of range and prefix searches is used to evaluate CAS

queries on the trie-based structure of RSCAS. Insertions

are performed on the in-memory trie using lazy restruc-

turing. Bulk-loading creates large disk-optimized tries in

the background. Merging is applied when the in-memory

trie overflows to combine it with a series of disk-resident

tries (Section 7).

– We conduct an experimental evaluation with three real-

world and one synthetic dataset. One of the real-world

datasets is Software Heritage (SWH) [2], the world’s

largest archive of publicly-available source code. Our

experiments show that RSCAS delivers robust query per-

formance with up to two orders of magnitude improve-

ments over existing approaches, while offering compa-

rable bulk-loading and insertion performance (Section

8).

2 Application Scenario

As a practical use case we deploy a large-scale CAS index

for Software Heritage (SWH) [13], the largest public archive

of software source code and its development history.1

At its core, Software Heritage archives version control

systems (VCSs), storing all recorded source code artifacts

in a giant, globally deduplicated Merkle structure [28] that

stores elements from many different VCSs using crypto-

graphic hashes as keys. VCSs record the evolution of source

code trees over time, an aspect that is reflected in the data

model of Software Heritage [35]. The data model supports

the archiving of artifacts, such as file blobs (byte sequences,

corresponding to tree leaves), source code directories (inner

nodes, pointing to sub-directories and files, giving them lo-

cal path names), commits (called revisions in this context),

releases (commits annotated with memorable names such as

"1.0"), and VCS repository snapshots. Nodes in the data

model are associated with properties that are relevant for

querying. Examples of node properties are: cryptographic

node identifiers, as well as commit and release metadata

such as authors, log messages, timestamps, etc.

Revisions are a key piece of software development work-

flows. Each of them, except the very first one in a given

repository, is connected to the previous “parent” revision, or

possibly multiple parents in case of merge commits. These

connections allow the computation of the popular diff rep-

resentations of commits that show how and which files have

been changed in any given revision. Computing diffs for all

revisions in the archive makes it possible to look up all revi-

sions that have changed files of interest.

Several aspects make Software Heritage a relevant and

challenging use case for CAS indexing. First, the size of the

1 As of 2021-11-08 the Software Heritage archive contains more
than 11 billion source code files and 2 billion commits, coming from
more than 160 million public software projects. The archive can be
browsed at: https://archive.softwareheritage.org/ .

2

https://archive.softwareheritage.org/

archive is significant: at the time of writing, the archive con-

sists of about 20 billion nodes (total file size is about 1 PiB,

but we will not index within files, so this measure is less

relevant). Second, the archive grows constantly by contin-

uously crawling public data sources such as collaborative

development platforms (e.g., GitHub, GitLab), Linux distri-

butions (e.g., Debian, NixOS), and package manager repos-

itories (e.g., PyPI, NPM). The archive growth ratio is also

very significant: the amount of archived source code arti-

facts grows exponentially over time, doubling every 2 to 3

years [38], which calls for an incremental indexing approach

to avoid indexing lag. For instance, during 2020 alone the

archive has ingested about 600 million new revisions and 3

billion new file blobs (i.e., file contents never seen before).

Last but not least, short of the CAS queries proposed in

this paper, the current querying capabilities for the archive

are quite limited. Entire software repositories can be looked

up by full-text search on their URLs, providing entry points

into the archive. From there, users can browse the archive,

reaching the desired revisions (e.g., the most recent revi-

sion in the master branch since the last time a repository

was crawled) and, from there, the corresponding source code

trees. It is not possible to query the “diff”, i.e., find revisions

that modified certain files in a certain time period, which is

limiting for both user-facing and research-oriented queries

(e.g., in the field of empirical software engineering).

With the approach proposed in this paper we offer func-

tionality to answer CAS queries like the following:

Find all revisions from June 2021 that modify a C file

located in a folder whose name begins with "ext".

This query consists of two predicates. First, a content pred-

icate on the revision time, which is a range predicate that

matches all revisions from the first to the last day of June

2021. Second, a structure predicate on the paths of the files

that were touched by a revision. We are only interested in

revisions that modify files with .c extension and that are

located in a certain directory. This path predicate can be

expressed as /**/ext*/*.c with wildcard ** to match

folders that are nested arbitrarily deeply in the filesystem of

a repository and wildcard * to match all characters in a di-

rectory or file name.

3 Related Work

For related work, two CAS indexing techniques have been

investigated: (a) creating separate indexes for content and

structure, and (b) combining content and structure in one

index. We call these two techniques separate CAS indexing

and combined CAS indexing, respectively.

Separate CAS indexing creates dedicated indexes for, re-

spectively, the content and the structure of the data. Mathis

et al. [26] use a B+ tree to index the content and a struc-

tural summary (i.e., a DataGuide [17]) to index the structure

of the data. The DataGuide maps each unique path to a nu-

meric identifier, called the path class reference (PCR), and

the B+ tree stores the values along with their PCRs. Thus,

the B+ tree stores (value, ⟨nodeId,PCR⟩) tuples in its

leaf nodes, where nodeId points to a node whose content

is value and whose path is given by PCR. To answer a CAS

query we must look at the path index and the value index in-

dependently. The subsequent join on the PCR is slow if in-

termediate results are large. Mathis et al. assume that there

are few unique paths and the path index is small (fewer than

1000 unique paths in their experiments). Kaushik et al. [20]

present an approach that combines a 1-index [29] to evaluate

path predicates with a B+ tree to evaluate value predicates,

but they do not consider updates.

A popular system that implements separate indexing is

Apache Lucene [1], which is a scalable and widely deployed

indexing and search system that underpins Apache Solr and

Elasticsearch. Lucene uses different index types depending

on the type of the indexed attributes. For CAS indexing, we

represent paths as strings and values as numbers. Lucene

indexes strings with finite state transducers (FSTs), which

are automata that map strings to lists of sorted document

IDs (called postings lists). Numeric attributes are indexed in

a Bkd-tree [36], which is a disk-optimized kd-tree. Lucene

answers conjunctive queries, like CAS queries, by evaluat-

ing each predicate on the appropriate index. The indexes re-

turn sorted postings lists that must be intersected to see if

a document matches all predicates of a conjunctive query.

Since the lists are sorted, the intersection can be performed

efficiently. However, the independent evaluation of the pred-

icates may yield large intermediate results, making the ap-

proach non-robust. To scale to large datasets, Lucene imple-

ments techniques that are similar to LSM trees [33] (cf. Sec-

tion 6). Lucene batches insertions in memory before flushing

them as read-only segments to disk. As the number of seg-

ments grows, Lucene continuously compacts them by merg-

ing small segments into a larger segment.

The problem with separate CAS-indexing is that it is not

robust. If at least one predicate of a CAS query is not selec-

tive, separate indexing approaches generate large intermedi-

ate results. This is inefficient if the final result is small. Since

the predicates are evaluated on different indexes, we cannot

use the more selective predicate to prune the search space.

Combined CAS indexing integrates paths and values in

one index. A well-known and mature technology are com-

posite indexes, which are used, e.g., in relational databases

to index keys that consist of more than one attribute. Com-

posite indexes concatenate the indexed attributes according

to a specified ordering. In CAS indexing, there are two pos-

sible orderings of the paths and values: the PV -ordering or-

ders the paths before the values, while the V P -ordering or-

ders the values first. The ordering determines what queries a

composite index can evaluate efficiently. Composite indexes

3

are only efficient for queries that have a small selectivity for

the attribute appearing first. In our experiments we use the

composite B+ tree of Postgres as the reference point for an

efficient and scalable implementation of composite indexes.

IndexFabric [11] is another example of a composite CAS

index. It uses a PV -ordering, concatenating the (shortened)

paths and values of composite keys, and storing them in a

disk-optimized PATRICIA trie [30]. IndexFabric shortens

the paths to save disk space by mapping long node labels

to short strings (e.g., map label ‘extension’ to ‘e’). During

query evaluation IndexFabric must first fully evaluate the

path predicate before it can look at the value predicate since

it orders paths before the values in the index. Since it uses

shortened paths, it cannot evaluate wildcards within a node

label (e.g., ext* to match extension, exterior, etc.). Index-

Fabric does not support bulk-loading.

The problem with composite indexes is that they prior-

itize the dimension appearing first. The selectivity of the

predicate in the first dimension determines the query per-

formance. If it is high and the other selectivity is low, the

composite index performs badly because the first predicate

must be fully evaluated before the second predicate can be

evaluated. As a result, a composite index is not robust.

Instead of concatenating dimensions, it is possible to in-

terleave dimensions. The z-order curve [31,34], for exam-

ple, is obtained by interleaving the binary representation of

the individual dimensions and is used in UB-trees [37] and

k-d tries [32,34,39]. Unfortunately, the z-order curve dete-

riorates to the performance of a composite index if the data

contains long common prefixes [43]. This is the case in CAS

indexing where paths have long common prefixes. The prob-

lem with common prefixes is that they are the same for all

data items and do not prune the search space during a search.

Interleaving a common prefix in one dimension with a non-

common prefix in the other dimension means we prune keys

in one dimension but not the other [25].

LSM trees [33] are used to create scalable indexing sys-

tems with high write throughput (see, e.g., AsterixDB [5],

BigTable [10], Dynamo [12], etc.). They turn expensive in-

place updates that cause many random disk I/Os into out-

of-place updates that use sequential writes. To achieve that,

LSM trees combine a small in-memory tree RM0 with a se-

ries of disk-resident treesR0,R1, . . ., each tree being T times

larger than the tree in the previous level. Insertions are per-

formed exclusively in the main-memory tree RM0 .

Modern LSM tree implementations, see [23] for an ex-

cellent recent survey, use sorted string tables (SSTables) or

other immutable data structures at multiple levels. Gener-

ally, there are two different merge policies: leveling and tier-

ing. With the leveling merge policy, each level i contains

exactly one structure and when the structure at level i grows

too big, this structure and the one at level i + 1 are merged.

A structure on level i + 1 is T times larger than a structure

on level i. Tiering maintains multiple structures per level.

When a level i fills up with T structures, they are merged

into a structure on level i + 1. We discuss the design deci-

sions regarding LSM-trees and RSCAS in Section 6.2.

An LSM tree requires an efficient bulk-loading algo-

rithm to create a disk-based RSCAS trie when the in-memory

trie overflows. Sort-based algorithms sort the data and build

an index bottom-up. Buffer-tree methods bulk-load a tree by

buffering insertions in nodes and flushing them in batches

to its children when a buffer overflows. Neither sort- nor

buffer-based techniques [7,3,8] can be used for RSCAS be-

cause our dynamic interleaving must look at all keys to cor-

rectly interleave them. We develop a partitioning-based bulk-

loading algorithm for RSCAS that alternatingly partitions

the data in the path and value dimension to dynamically in-

terleave paths and values.

The combination of the dynamic interleaving with wild-

cards and range queries makes it hard to embed RSCAS into

an LSM-tree-based key-value (KV) store. While early, sim-

ple KV-stores did not support range queries at all, more re-

cent KV-stores create Bloom filters for a predefined set of

fixed prefixes [27], i.e., only range queries using these pre-

fixes can be answered efficiently. SuRF was one of the first

approaches able to handle arbitrary range queries by stor-

ing minimum-length prefixes in a trie so that all keys can

be uniquely identified [45]. This was followed by Rosetta,

which stores all prefixes for each key in a hierarchical series

of Bloom filters [24]. KV-stores supporting ranges queries

without filters have also been developed. EvenDB optimizes

the evaluation of queries exhibiting spatial locality, i.e., keys

with the same prefixes are kept close together and in main

memory [16]. REMIX offers a globally sorted view of all

keys with a logical sorting of the data [46]. The evaluation

of range queries boils down to seeking the first matching el-

ement in a sorted sequence of keys and scanning to the end

of the range. CAS queries follow a different pattern. During

query evaluation, we simultaneously process a range query

in the value dimension and match strings with wildcards at

arbitrary positions in the path dimension. The prefix shared

by the matching keys ends at the first wildcard, which can

occur early in the path. We prune queries with wildcards by

regularly switching back to the more selective value dimen-

sion.

4 Background

4.1 Data Representation

We use composite keys to represent the paths and values of

data items in semi-structured hierarchical data.

Definition 1 (Composite Key) A composite key k is a two-

dimensional key that consists of a path k.P and a value k.V ,

4

Table 1: A set K1..9 = {k1, . . . ,k9} of composite keys

Path Dimension P Value Dimension V (64 bit unsigned integer) Revision R (SHA1 hash)
k1 /Sources/Map.go$ 2019-10-17 17:17:46 (000000005DA8942A) r1 (A1A606B0B3 . . .)
k2 /crypto/ecc.h$ 2020-11-24 22:48:36 (000000005FBD8DC4) r2 (D44739D8F8 . . .)
k3 /crypto/ecc.c$ 2020-11-24 22:48:36 (000000005FBD8DC4) r2 (D44739D8F8 . . .)
k4 /Sources/Schema.go$ 2019-10-17 17:19:24 (000000005DA8948C) r3 (41D17A7B4D . . .)
k5 /fs/ext3/inode.c$ 2020-06-24 01:20:41 (000000005EF29C59) r4 (9698D9F506 . . .)
k6 /fs/ext4/inode.h$ 2020-05-14 11:56:02 (000000005EBD23C2) r5 (FFCAAE8F57 . . .)
k7 /fs/ext4/inode.c$ 2020-11-24 17:05:30 (000000005FBD3D5A) r6 (688D973CBE . . .)
k8 /Sources/Schedule.go$ 2019-10-17 17:32:11 (000000005DA8978B) r7 (9907EE0A7B . . .)
k9 /Sources/Scheduler.go$ 2019-10-17 17:32:11 (000000005DA8978B) r7 (9907EE0A7B . . .)

1 5 9 13 17 21 1 2 3 4 5 6 7 8

and each key stores a reference k.R as payload that points

to the corresponding data item in the database.

Given a dimension D ∈ {P,V } we write k.D to access

k’s path (ifD = P) or value (if D = V). Composite keys can

be extracted from popular semi-structured hierarchical data

formats, such as JSON and XML. In the context of SWH we

use composite keys k to represent that a file with path k.P

is modified (i.e., added, changed, or deleted) at time k.V in

revision k.R.

Example 1 Table 1 shows the set K1..9 = {k1, . . . ,k9} of

composite keys (we use a sans-serif font to refer to con-

crete instances in our examples). We write K
2,5,6,7 to refer

to {k2,k5,k6,k7}. Composite key k2 denotes that the file

/crypto/ecc.h$ was modified on 2019-07-20 in revi-

sion r2. In the same revision, also file /crypto/ecc.c$

is modified, see key k3. ◻

We represent paths and values as byte strings that we

access byte-wise. We visualize them with one byte ASCII

characters for the path dimension and italic hexadecimal num-

bers for the value dimension, see Table 1. To guarantee that

no path is a prefix of another we append the end-of-string

character $ (ASCII code 0x00) to each path. Fixed-length

byte strings (e.g., 64 bit numbers) are prefix-free because

of the fixed length. We assume that the path and value di-

mensions are binary-comparable, i.e., two paths or values

are <, =, or > iff their corresponding byte strings are <, =,
or >, respectively [21]. For example, big-endian integers are

binary-comparable while little-endian integers are not.

Let s be a byte-string, then ∣s∣ denotes the length of s

and s[i] denotes the i-th byte in s. The left-most byte of a

byte-string is byte one. s[i] = ǫ is the empty string if i > ∣s∣.
s[i, j] denotes the substring of s from position i to j and

s[i, j] = ǫ if i > j.

Definition 2 (Longest Common Prefix) The longest com-

mon prefix lcp(K,D) of a set of keys K in dimension D is

the longest prefix s that all keys k ∈ K share in dimension

D, i.e.,

lcp(K,D) = s iff

∀k ∈K(k.D[1, ∣s∣] = s) ∧
∄l(l > ∣s∣ ∧ ∀k, k′ ∈K(

l ≤min(∣k.D∣, ∣k′.D∣) ∧ k.D[1, l] = k′.D[1, l]))

Example 2 The longest common prefix in the path and value

dimensions of the nine keys in Table 1 is lcp(K1..9, P) =
/ and lcp(K1..9, V) = 00000000. If we narrow down

the set of keys to K
5,6 the longest common prefixes be-

come longer: lcp(K5,6, P) = /fs/ext and lcp(K5,6, V) =
000000005E. ◻

4.2 Content-and-Structure (CAS) Queries

Content-and-structure (CAS) queries contain a path predi-

cate and value predicate [26]. The path predicate is expressed

as a query path q that supports two wildcard symbols. The

descendant axis ** matches zero to any number of node la-

bels, while the * wildcard matches zero to any number of

characters in a single label.

Definition 3 (Query Path) A query path q is denoted by q =
/λ1/λ2/. . ./λm. Each label λi is a string λi ∈ (A∪ {*})+,

whereA is an alphabet and * is a reserved wildcard symbol.

The wildcard * matches zero to any number of characters in

a label. We call λi = ** the descendant axis that matches

zero to any number of labels.

Definition 4 (CAS Query) CAS query Q(q, [vl, vh]) con-

sists of a query path q and a value predicate [vl, vh]. Given a

set K of composite keys, CAS queryQ returns the revisions

k.R of all composite keys k ∈ K for which k.P matches q

and vl ≤ k.V ≤ vh.

Example 3 CAS query Q(/**/ext*/*.c, [2021-06-01,

2021-06-30]) matches all revisions (a) committed in June

2021 that (b) modified a C file located in a folder that be-

gins with name ext, anywhere in the directory structure of

a software repository. ◻

5

4.3 Interleaving of Composite Keys

We integrate path k.P and value k.V of a key k by interleav-

ing them. Table 2 shows three common ways to integrate

k.P and k.V of key k9 from Table 1. Value bytes are writ-

ten in italic and shown in red, path bytes are shown in blue.

The first two rows show the path-value and value-path con-

catenation (IPV and IV P), respectively. The byte-wise inter-

leaving IBW in the third row interleaves one value byte with

one path byte. Note that none of these interleavings is well-

balanced. The byte-wise interleaving is not well-balanced,

since all value-bytes are interleaved with a single label of

the path (/Sources).

Table 2: Key k9 is interleaved using different approaches.

Approach Interleaving of Key

IPV (k9) = /Sources/Scheduler.go$000000005DA8978B

IV P (k9) = 000000005DA8978B/Sources/Scheduler.go$

IBW (k9) = 00/00S00o00u5DrA8c97e8Bs/Scheduler.go$

5 Theoretical Foundation – Dynamic Interleaving

We propose the dynamic interleaving to interleave the paths

and values of a set of composite keys K , and show how to

build the dynamic interleaving through a recursive partition-

ing that groups keys based on the shortest prefixes that dis-

tinguish keys from one another. We introduce the partition-

ing in Section 5.1 and highlight in Section 5.2 the properties

that we use to construct the interleaving. In Section 5.3 we

define the dynamic interleaving with a recursive partition-

ing and develop a cost model in Section 5.4 to analyze the

efficiency of interleavings.

The dynamic interleaving adapts to the specific charac-

teristics of paths and values, such as common prefixes, vary-

ing key lengths, differing domain sizes, and the skew of the

data. To achieve this we consider the discriminative bytes.

Definition 5 (Discriminative Byte) The discriminative byte

dsc(K,D) of keys K in dimension D is the first byte for

which the keys differ in dimension D, i.e., dsc(K,D) =
∣lcp(K,D)∣ + 1.

Example 4 Table 3 illustrates the position of the discrimina-

tive bytes for the path and value dimensions for various sets

of composite keys K . Set K9 = {k9} contains only a single

key. In this case, the discriminative bytes are the first posi-

tion after the end of k9’s byte-strings in the respective di-

mensions. For example, k9’s value is eight bytes long, hence

the discriminative value byte of {k9} is the ninth byte. ◻

Discriminative bytes are crucial during query evaluation

since at their positions the search space can be narrowed

down. We alternate in a round-robin fashion between dis-

criminative path and value bytes in our interleaving. Each

Table 3: Illustration of the discriminative bytes for K
1..9

from Table 1 and various subsets of it.

Composite Keys K dsc(K,P) dsc(K,V)

K
1..9 2 5

K
1,4,8,9 10 7

K
4,8,9 14 7

K
8,9 18 9

K
9 23 9

discriminative byte partitions a set of keys into subsets, which

we recursively partition further.

5.1 ψ-Partitioning

Theψ-partitioning of a set of keysK groups composite keys

together that have the same value at the discriminative byte

in dimension D. Thus, K is split into at most 28 non-empty

partitions, one partition for each value (0x00 to 0xFF) of

the discriminative byte in dimension D.

Definition 6 (ψ-Partitioning) The ψ-partitioning of a set

of keys K in dimension D is ψ(K,D) = {K1, . . . ,Km} iff

1. (Correctness) All keys in a set Ki have the same value

at K’s discriminative byte in dimension D:

– ∀k, k′ ∈Ki (k.D[dsc(K,D)] = k′.D[dsc(K,D)])
2. (Disjointness) Keys from different sets Ki ≠ Kj do not

have the same value at K’s discriminative byte in D:

– ∀k ∈Ki, k
′ ∈Kj(

k.D[dsc(K,D)] ≠ k′.D[dsc(K,D)])
3. (Completeness) Every key in K is assigned to a set Ki.

All Ki are non-empty.

– K = ⋃1≤i≤mKi ∧∅ ∉ ψ(K,D)

Let k ∈ K be a composite key. We write ψk(K,D) to

denote the ψ-partitioning of k with respect to K and dimen-

sion D, i.e., the partition in ψ(K,D) that contains key k.

Example 5 Let K1..9 be the set of composite keys from Ta-

ble 1. The ψ-partitioning of selected sets of keys in dimen-

sion P or V is as follows:

– ψ(K1..9, V) = {K1,4,8,9,K5,6,K2,3,7}
– ψ(K1,4,8,9, P) = {K1,K4,8,9}
– ψ(K4,8,9, V) = {K4,K8,9}
– ψ(K8,9, P) = {K8,K9}
– ψ(K9, V) = ψ(K9, P) = {K9}

The ψ-partitioning of key k9 with respect to sets of keys and

dimensions is as follows:

– ψk9(K1..9, V) = K1,4,8,9

– ψk9(K1,4,8,9, P) = K4,8,9

– ψk9(K4,8,9, V) = K8,9

– ψk9(K9, V) = ψk9(K9, P) = K9. ◻

6

5.2 Properties of the ψ-Partitioning

We work out four key properties of the ψ-partitioning. The

first two properties, order-preserving and prefix-preserving,

allow us to evaluate CAS queries efficiently while the other

two properties, guaranteed progress and monotonicity, help

us to construct the dynamic interleaving.

Lemma 1 (Order-Preserving) ψ-partitioning ψ(K,D) =
{K1, . . . ,Km} is order-preserving in dimension D, i.e., all

keys in setKi are either strictly greater or smaller in dimen-

sion D than all keys from another set Kj:

∀1 ≤ i, j ≤m, i ≠ j ∶ (∀k ∈Ki,∀k
′ ∈Kj ∶ k.D < k′.D)∨

(∀k ∈Ki,∀k
′ ∈Kj ∶ k.D > k′.D)

All proofs can be found in Appendix A.

Example 6 The ψ-partitioning ψ(K1..9, V) is equal to the

partitions {K1,4,8,9, K5,6, K2,3,7}. It is order-preserving in

dimensionV . The partitions cover the following value ranges

(denoted in seconds since the Unix epoch):

– [0x5D 000000, 0x5DFFFFFF]; approx. 06/2019 – 12/2019

– [0x5E 000000, 0x5EFFFFFF]; approx. 01/2020 – 07/2020

– [0x5F 000000, 0x5FFFFFFF]; approx. 08/2020 – 12/2021

The value predicate [07/2019,09/2019) only needs to con-

sider partition K
1,4,8,9, which spans keys from June to De-

cember, 2019, since partitions do not overlap. ◻

Lemma 2 (Prefix-Preserving) ψ-partitioning ψ(K,D) =
{K1, . . . ,Km} is prefix-preserving in dimensionD, i.e., keys

in the same set Ki have a longer common prefix in dimen-

sion D than keys from different sets Ki ≠Kj:

∀1 ≤ i, j ≤m, i ≠ j ∶ ∣lcp(Ki,D)∣ > ∣lcp(Ki ∪Kj ,D)∣ ∧
∣lcp(K,D)∣ = ∣lcp(Ki ∪Kj,D)∣

Example 7 Theψ-partitioningψ(K1..9, P) = {K1,4,8,9,K2,3,

K
5,6,7} is prefix-preserving in dimension P . For example,

K
1,4,8,9 has a longer common path prefix lcp(K1,4,8,9, P) =

/Source/ than keys across partitions, e.g., lcp(K1,4,8,9 ∪
K
2,3, P) = /. Query path /Source/S*.go only needs to

consider partition K
1,4,8,9. ◻

Lemmas 1 and 2 guarantee a total ordering among the

sets ψ(K,D) = {K1, . . . ,Km}. In our RSCAS index we

order the nodes by the value at the discriminative byte such

that range and prefix queries can quickly choose the correct

subtree.

The next two properties allow us to efficiently compute

the dynamic interleaving of composite keys.

Lemma 3 (Guaranteed Progress) Let K be a set of com-

posite keys for which not all keys are equal in dimension D.

ψ(K,D) guarantees progress, i.e., ψ splits K into at least

two sets: ∣ψ(K,D)∣ ≥ 2.

Guaranteed progress ensures that each step partitions the

data and when we repeatedly apply ψ(K,D), we eventually

narrow a set of keys down to a single key. For each set of

keys that ψ(K,D) creates, the position of the discrimina-

tive byte for dimension D increases. This property of the

ψ-partitioning holds since each set of keys is built based on

the discriminative byte and to ψ-partition an existing set of

keys we need a discriminative byte that is positioned further

down in the byte-string. For the alternate dimension D, i.e.,

D = P if D = V and D = V if D = P , the position of the

discriminative byte remains unchanged or increases.

Lemma 4 (Monotonicity of Discriminative Bytes) LetKi

be one of the partitions of K after partitioning in dimension

D. In dimension D, the position of the discriminative byte

in Ki is strictly greater than in K . In dimension D, the dis-

criminative byte is equal or greater than in K , i.e.,

Ki ∈ ψ(K,D) ∧Ki ⊂K ⇒
dsc(Ki,D) > dsc(K,D) ∧ dsc(Ki,D) ≥ dsc(K,D)

Example 8 The discriminative path byte of K1..9 is 2 while

the discriminative value byte of K1..9 is 5 as shown in Ta-

ble 3. For partition K
1,4,8,9, which is obtained by partition-

ing K
1..9 in the value dimension, the discriminative path

byte is 10 while the discriminative value byte is 7. For parti-

tion K
4,8,9, which is obtained by partitioning K

1,4,8,9 in the

path dimension, the discriminative path byte is 14 while the

discriminative value byte is still 7. ◻

Monotonicity guarantees that each time we ψ-partition a

set K we advance the discriminative byte in at least one di-

mension. Thus, we make progress in at least one dimension

when we dynamically interleave a set of keys.

These four properties of the ψ-partitioning are true be-

cause we partition K at its discriminative byte. If we parti-

tioned the data before this byte, we would not make progress

and the monotonicity would be violated, because every byte

before the discriminative byte is part of the longest com-

mon prefix. If we partitioned the data after the discrimi-

native byte, the partitioning would no longer be order- and

prefix-preserving. Skipping some keys by sampling the set

is not an option, as this could lead to an (incorrect) parti-

tioning using a byte located after the actual discriminative

byte.

Example 9 K
1..9’s discriminative value byte is byte five. If

we partitioned K
1..9 at value byte four we would get {K1..9}

and there is no progress since all keys have 0x00 at value

byte four. The discriminative path and value bytes would

remain unchanged. If we partitioned K
1..9 at value byte six

we would get {K1,4,8,9,K2,3,6,7,K5}, which is neither order-

nor prefix-preserving in V . Consider keys k3,k6 ∈ K2,3,6,7

and k5 ∈ K5. The partitioning is not order-preserving in V

7

ρ(k,K,D) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(K,D) ○ ρ(k,ψk(K,D),D) if ∣K∣ > τ ∧ψk(K,D) ⊂K

ρ(k,K,D) if ∣K∣ > τ ∧ψk(K,D) =K ∧ψk(K,D) ⊂K

(K,�) otherwise

Fig. 1: Definition of partitioning sequence ρ(k,K,D) for a threshold τ ≥ 1. Operator ○ denotes concatenation, e.g., a ○ b =
(a, b) and a ○ (b, c) = (a, b, c).

since k6.V < k5.V < k3.V . The partitioning is not prefix-

preserving in V since the longest common value prefix in

K
2,3,6,7 is 00000000, which is not longer than the longest

common value prefix of keys from different partitions since

lcp(K2,3,6,7 ∪K5, V) = 00000000. ◻

5.3 Dynamic Interleaving

To compute the dynamic interleaving of a composite key

k ∈ K we recursively ψ-partition K while alternating be-

tween dimension V and P . In each step, we interleave a

part of k.P with a part of k.V . The recursive ψ-partitioning

yields a partitioning sequence (K1,D1), . . . , (Kn,Dn) for

key k with K1 ⊃ K2 ⊃ ⋅ ⋅ ⋅ ⊃ Kn. We start with K1 = K
and D1 = V . Next, K2 = ψk(K1, V) and D2 = D1 = P .

We continue with the general scheme Ki+1 = ψk(Ki,Di)
and Di+1 = Di. This continues until we reach a set Kn that

contains at most τ keys, where τ is a threshold (explained

later). The recursive ψ-partitioning alternates between di-

mensions V and P until we run out of discriminative bytes

in one dimension, which meansψk(Ki,D) =Ki. From then

on, we can only ψ-partition in dimension D until we run

out of discriminative bytes in this dimension as well, that is

ψk(Ki,D) = ψk(Ki,D) = Ki, or we reach a Kn that con-

tains at most τ keys. The partitioning sequence is finite due

to the monotonicity of the ψ-partitioning (see Lemma 4),

which guarantees that we make progress in each step in at

least one dimension.

Definition 7 (Partitioning Sequence) The partitioning se-

quence ρ(k,K,D) = ((K1,D1), . . . , (Kn,Dn)) of a com-

posite key k ∈K is the recursiveψ-partitioning of the sets to

which k belongs. The pair (Ki,Di) denotes the partitioning

ofKi in dimensionDi. The partitioning stops whenKn con-

tains at most τ keys or Kn cannot be further ψ-partitioned

in any dimension (Kn.D = � in this case). ρ(k,K,D) is

defined in Figure 1.

Example 10 Below we illustrate the step-by-step expansion

of ρ(k9,K1..9, V) to get k9’s partitioning sequence. We set

τ = 2.

ρ(k9,K1..9, V)
= (K1..9, V) ○ ρ(k9,K1,4,8,9, P)
= (K1..9, V) ○ (K1,4,8,9, P) ○ ρ(k9,K4,8,9, V)
= (K1..9, V) ○ (K1,4,8,9, P) ○ (K4,8,9, V) ○ ρ(k9,K8,9, P)
= (K1..9, V) ○ (K1,4,8,9, P) ○ (K4,8,9, V) ○ (K8,9,�)

Note the alternating partitioning in, respectively, V and P .

We only deviate from this if partitioning in one of the di-

mensions is not possible. Had we set τ = 1, K8,9 would be

partitioned once more in the path dimension. ◻

To compute the full dynamic interleaving of a key k we

set τ = 1 and continue until the final setKn contains a single

key (i.e, key k). To interleave only a prefix of k and keep a

suffix non-interleaved we increase τ . Increasing τ stops the

partitioning earlier and speeds up the computation. An index

structure that uses dynamic interleaving can tune τ to trade

the time it takes to build the index and to query it. In Section

6 we introduce a memory-optimized and a disk-optimized

version of our RSCAS index. They use different values of τ

to adapt to the underlying storage.

We determine the dynamic interleaving IDY(k,K) of a

key k ∈ K via k’s partitioning sequence ρ. For each ele-

ment in ρ, we generate a tuple with strings sP and sV and

the partitioning dimension of the element. The strings sP
and sV are composed of substrings of k.P and k.V , ranging

from the previous discriminative byte up to, but excluding,

the current discriminative byte in the respective dimension.

The order of sP and sV in a tuple depends on the dimension

used in the previous step: the dimension that has been cho-

sen for the partitioning comes first. Formally, this is defined

as follows:

Definition 8 (Dynamic Interleaving) Let k ∈ K be a com-

posite key and let ρ(k,K,V) = ((K1,D1), . . . , (Kn,Dn))
be the partitioning sequence of k. The dynamic interleaving

IDY(k,K) = (t1, . . . , tn, tn+1) of k is a sequence of tuples

ti, where ti = (sP , sV ,D) ifDi−1 = P and ti = (sV , sP ,D)
if Di−1 = V . The tuples ti, 1 ≤ i ≤ n, are determined as

follows:

ti.sP = k.P [dsc(Ki−1, P), dsc(Ki, P) − 1]
ti.sV = k.V [dsc(Ki−1, V), dsc(Ki, V) − 1]
ti.D =Di

8

To correctly handle the first tuple we define dsc(K0, V) =
1, dsc(K0, P) = 1 and D0 = V . The last tuple tn+1 =
(sP , sV ,R) stores the non-interleaved suffixes along with

revision k.R:

tn+1.sP = k.P [dsc(Kn, P), ∣k.P ∣]
tn+1.sV = k.V [dsc(Kn, V), ∣k.P ∣]
tn+1.R = k.R ◻

Example 11 We compute the tuples for the dynamic inter-

leaving IDY(k9,K1..9) = (t1, . . . , t5) of key k9 using the

partitioning sequence ρ(k9,K1..9, V) from Example 10. The

necessary discriminative path and value bytes can be found

in Table 3. Table 4 shows the details of each tuple of k9’s dy-

namic interleaving with respect to K
1..9. The final dynamic

interleavings of all keys from Table 1 are displayed in Ta-

ble 5. We highlight in bold the values of the discriminative

bytes at which the paths and values are interleaved, e.g., for

key k9 these are bytes 5D, S, and 97. ◻

Table 4: Computing IDY(k9,K1..9).
t sV sP D
t1 k9.V [1,4] = 00000000 k9.P [1,1] = / V

t2 k9.V [5,6] = 5DA8 k9.P [2,9] = Sources/ P

t3 k9.V [7,6] = ǫ k9.P [10,13] = Sche V

t4 k9.V [7,8] = 978B k9.P [14,17] = dule �
t5 k9.V [9,8] = ǫ k9.P [18,22] = r.go$

Unlike static interleavings I(k) that interleave a key k in

isolation, the dynamic interleaving IDY(k,K) of k depends

on the set of all keys K to adapt to the data. The result is a

well-balanced interleaving (compare Tables 2 and 5).

In Section 7 we propose efficient algorithms to dynami-

cally interleave composite keys and analyze them for differ-

ent key distributions.

5.4 Efficiency of Interleavings

We propose a cost model to measure the efficiency of in-

terleavings that organize the interleaved keys in a tree-like

search structure. Each node represents the ψ-partitioning of

the composite keys by either path or value, and the node

branches for each different value of a discriminative path or

value byte. We simplify the cost model by assuming that the

search structure is a complete tree with fanout owhere every

root-to-leaf path contains h edges (h is the height). Further,

we assume that all nodes on one level represent a partition-

ing in the same dimension φi ∈ {P,V } and we use a vector

φ(φ1, . . . , φh) to specify the partitioning dimension on each

level. We assume that the number of P s and V s in each φ

are equal. Figure 2 visualizes this scheme.

To answer a query we start at the root and traverse the

search structure to determine the answer set. In the case of

range queries, more than one branch must be followed. A

.

fanout o

φ1 = V

φ2 = P

φ3 = V

φh = P

ςV = 2/3

ςP = 1/3

Fig. 2: The search structure in our cost model is a complete

tree of height h and fanout o.

search follows a fraction of the outgoing branches o origi-

nating at this node. We call this the selectivity of a node (or

just selectivity). We assume that every path node has a se-

lectivity of ςP and every value node has a selectivity of ςV .

The cost Ĉ of a search, measured in the number of visited

nodes during the search, is as follows:

Ĉ(o, h,φ, ςP , ςV) = 1 +
h

∑
l=1

l

∏
i=1

(o ⋅ ςφi
)

If a workload is well-known and consists of a small set

of specific queries, it is highly likely that an index adapted

to this workload will outperform RSCAS. For instance, if

ςV ≪ ςP for all queries, then a VP-index shows better per-

formance than an RSCAS-index. However, it performs badly

for queries deviating from that workload (ςV > ςP). Our

goal is an access method that can deal with a wide range

of queries in a dynamic environment in a robust way, i.e.,

avoiding a bad performance for any particular query type.

This is motivated by the fact that modern data analytics uti-

lizes a large number of ad-hoc queries to do exploratory

analysis. For example, in the context of building a robust

partitioning for ad-hoc query workloads, Shanbhag et al. [41]

found that after analyzing the first 80% of a real-world work-

load the remaining 20% still contained 57% completely new

queries. We aim for a good average performance across all

queries.

Definition 9 (Robustness) A CAS-index is robust if it opti-

mizes the average performance and minimizes the variabil-

ity over all queries.

State-of-the-art CAS-indexes are not robust because they

favor either path or value predicates. As a result they show

a very good performance for one type of query but run into

problems for other types of queries. To illustrate this prob-

lem we define the notion of complementary queries.

Definition 10 (Complementary Query) Given a queryQ =
(ςP , ςV) with path selectivity ςP and value selectivity ςV ,

there is a complementary query Q′ = (ς ′P , ς ′V) with path se-

lectivity ς ′P = ςV and value selectivity ς ′V = ςP

9

Table 5: The dynamic interleaving of the composite keys in K
1..9. The values at the discriminative bytes are written in bold.

k Dynamic Interleaving IDY(k,K1..9)
k1 ((00000000,/, V), (5DA8,Sources/, P), (Map.go$,942A,�), (ǫ, ǫ, r1))
k4 ((00000000,/, V), (5DA8,Sources/, P), (Sche, ǫ, V), (948C,ma.go$,�)), (ǫ, ǫ, r3))
k8 ((00000000,/, V), (5DA8,Sources/, P), (Sche, ǫ, V), (978B,dule,�), (.go$, ǫ, r7))
k9 ((00000000,/, V), (5DA8,Sources/, P), (Sche, ǫ, V), (978B,dule,�), (r.go$, ǫ, r7))
k5 ((00000000,/, V), (5E,fs/ext,�), (3/inode.c$,F29C59, r4))
k6 ((00000000,/, V), (5E,fs/ext,�), (4/inode.h$,BD23C2, r5))
k2 ((00000000,/, V), (5FBD, ǫ, P), (crypto/ecc.,8DC4,�), (h$, ǫ, r2))
k3 ((00000000,/, V), (5FBD, ǫ, P), (crypto/ecc.,8DC4,�), (c$, ǫ, r2))
k7 ((00000000,/, V), (5FBD, ǫ, P), (fs/ext4/inode.c$,3D5A,�), (ǫ, ǫ, r6))

Example 12 Figure 3a shows the costs for a queryQ and its

complementary queryQ′ for different interleavings in terms

of the number of visited nodes during the search. We assume

parameters o = 10 and h = 12 for the search structure and

a dynamic interleaving IDY with τ = 1. IPV stands for path-

value concatenation with φi = P for 1 ≤ i ≤ 6 and φi = V for

7 ≤ i ≤ 12. IVP is a value-path concatenation (with an inverse

φ compared to IPV). We also consider two additional permu-

tations: I1 uses a vectorφ = (V,V,V,V,P,V,P,V,P,P,P,P)
and I2 a vector equal to (V,V,V,P,P,V,P,V,V,P,P,P).
They resemble byte-wise interleavings, which usually ex-

hibit irregular alternation patterns with a clustering of, re-

spectively, discriminative path and value bytes. Figure 3b

shows the average costs and the standard deviation. The num-

bers demonstrate the robustness of our dynamic interleav-

ing: it performs best in terms of average costs and standard

deviation.

ςV =0.1
ςP =0.5

ς′V =0.5
ς
′
P =0.1

0

50

100

(a) Complementary Queries

C
o
st

[1
0
3

n
o
d
es

]

Dynamic Interleaving IDY IPV IVP I1 I2

Avg. Std. Dev.

(b) Robustness

Fig. 3: Robustness of dynamic interleaving.

In the previous example we used our cost model to show

that a perfectly alternating interleaving exhibits the best over-

all performance and standard deviation when evaluating com-

plementary queries. We prove that this is always the case.

Theorem 1 Consider a query Q with selectivities ςP and

ςV and its complementary query Q′ with selectivities ς ′P =
ςV and ς ′V = ςP . There is no interleaving that on average

performs better than the dynamic interleaving with a per-

fectly alternating vectorφDY, i.e.,∀φ ∶ Ĉ(o, h,φDY, ςP , ςV)+
Ĉ(o, h,φDY, ς

′
P , ς

′
V) ≤ Ĉ(o, h,φ, ςP , ςV)+Ĉ(o, h,φ, ς ′P , ς ′V).

Theorem 1 shows that the dynamic interleaving has the

best query performance for complementary queries. It fol-

lows that for any set of complementary queries Q, the dy-

namic interleaving has the best performance.

Theorem 2 Let Q be a set of complementary queries, i.e.,

(ςP , ςV) ∈ Q ⇔ (ςV , ςP) ∈ Q. There is no interleaving φ

that in total performs better than the dynamic interleaving

over all queries Q, i.e.,

∀φ ∶ ∑
(ςP ,ςV)∈Q

Ĉ(o, h,φDY, ςP , ςV)

≤ ∑
(ςP ,ςV)∈Q

Ĉ(o, h,φ, ςP , ςV)

This also holds for the set of all queries, since for ev-

ery query there exists a complementary query. Thus, the dy-

namic interleaving optimizes the average performance over

all queries and, as a result, a CAS index that uses dynamic

interleaving is robust.

Corollary 1 Let Q = {(ςP , ςV) ∣ 0 ≤ ςP , ςV ≤ 1} be the

set of all possible queries. There is no interleaving φ that

in total performs better than the dynamic interleaving φDY

over all queries Q.

We now turn to the variability of the search costs and

show that they are minimal for dynamic interleavings.

Theorem 3 Given a query Q (with ςP and ςV) and its com-

plementary query Q′ (with ς ′P = ςV and ς ′V = ςP), there is

no interleaving that has a smaller variability than the dy-

namic interleaving with a perfectly alternating vector φDY,

i.e., ∀φ ∶ ∣Ĉ(o, h,φDY, ςP , ςV) − Ĉ(o, h,φDY, ς
′
P , ς

′
V)∣ ≤

∣Ĉ(o, h,φ, ςP , ςV) − Ĉ(o, h,φ, ς ′P , ς ′V)∣.

Similar to the results for the average performance, The-

orem 3 can be generalized to the set of all queries.

Note that in practice the search structure is not a com-

plete tree and the fraction ςP and ςV of children that are tra-

versed at each node is not constant. We previously evaluated

the cost model experimentally on real-world datasets [43]

10

n1 (30 bytes)
(00000000,/,V)

n2 (28 bytes)
(5DA8,Sources/,P)

n3 (35 bytes)
(Map.go$,94 2A,�)

{(ǫ, ǫ, r1)}

n4 (22 bytes)
(Sche,ǫ,V)

n5(34 bytes)
(948C,ma.go$,�)

{(ǫ, ǫ, r3)}

n6 (63 bytes)
(978B,dule,�)

{(.go$, ǫ, r7), (r.go$, ǫ, r7)}

n7 (81 bytes)
(5E,fs/ext,�)

{(3/inode.c$,F29C59, r4),
(4/inode.h$,BD23C2, r5)}

n8 (20 bytes)
(5FBD,ǫ,P)

n9 (64 bytes)
(cypto/ecc.,8D C4,�)
{(h$, ǫ, r2), (c$, ǫ, r2)}

n10 (44 bytes)
(fs/ext4/inode.c$,3D 5A,�)

{(ǫ, ǫ, r6)}

Fig. 4: The RSCAS trie for the composite keys K1..9.

and showed that the estimated and true cost of a query are

off by a factor of two on average, which is a good estimate

for the cost of a query.

6 Robust and Scalable CAS (RSCAS) Index

Data-intensive applications require indexing techniques that

make it possible to efficiently index, insert, and query large

amounts of data. The SWH archive, for example, stores bil-

lions of revisions and every day millions of revisions are

crawled from popular software forges. We propose the Ro-

bust and Scalable Content-And-Structure (RSCAS) index

to provide support for querying and updating the content

and structure of big hierarchical data. For robustness, the

RSCAS index uses our dynamic interleaving to integrate the

paths and values of composite keys in a trie structure. For

scalability, RSCAS implements log-structured merge trees

(LSM trees) that combine a memory-optimized trie with a

series of disk-optimized tries (see Figure 5).

6.1 Structure of an RSCAS Trie

RSCAS tries support CAS queries with range and prefix

searches. Each node n in an RSCAS trie includes a dimen-

sion n.D, a path substring n.sP , and a value substring n.sV .

They correspond to fields t.D, t.sP and t.sV in the dynamic

interleaving of a key (see Definition 8). Substrings n.sP and

n.sV are variable-length strings. Dimension n.D is P or

V for inner nodes and � for leaf nodes. Leaf nodes addi-

tionally store a set of suffixes, denoted by n.suffixes. This

set contains non-interleaved path and value suffixes along

with references to data items in the database. Each dynam-

ically interleaved key corresponds to a root-to-leaf path in

the RSCAS trie.

Definition 11 (RSCAS Trie) Let K be a set of composite

keys and let R be a trie. Trie R is the RSCAS trie for K iff

the following conditions are satisfied.

1. IDY(k,K) = (t1, . . . , tm, tm+1) is the dynamic inter-

leaving of a key k ∈ K iff there is a root-to-leaf path

(n1, . . . , nm) in R such that ti.sP = ni.sP , ti.sV =
ni.sV , and ti.D = ni.D for 1 ≤ i ≤ m. Suffix tm+1 is

stored in leaf node nm, i.e., tm+1 ∈ nm.suffixes.

2. R does not include duplicate siblings, i.e., no two sibling

nodes n and n′, n ≠ n′, in R have the same values for

sP , sV , and D, respectively.

Example 13 Figure 4 shows the RSCAS trie for keys K1..9.

The values at the discriminative bytes are highlighted in bold.

The dynamic interleaving IDY(k9,K1..9) = (t1, t2, t3, t4, t5)
from Table 5 is mapped to the root-to-leaf path (n1,n2,n4,
n6) in the RSCAS trie. Tuple t5 is stored in n6.suffixes. Key

k8 is stored in the same root-to-leaf path. For key k1, the

first two tuples of IDY(k1,K1..9) are mapped to n1 and n2,

respectively, while the third tuple is mapped to n3. ◻

6.2 RSCAS Index

The RSCAS index combines a memory-optimized RSCAS

trie for in-place insertions with a sequence of disk-based

RSCAS tries for out-of-place insertions to get good inser-

tion performance for large data-intensive applications. LSM

trees [33,36] have pioneered combining memory- and disk-

resident components, and are now the de-facto standard to

build scalable index structures (see, e.g., [5,10,12]).

We implement RSCAS as an LSM trie that fixes the size

ratio between two consecutive tries at T = 2 and uses the

leveling merge policy with full merges (this combination is

also known as the logarithmic method in [36]). Leveling op-

timizes query performance and space utilization in compar-

ison to the tiering merge policy at the expense of a higher

merge cost [22,23]. Luo and Carey show that a size ratio

of T = 2 achieves the maximum write throughput for lev-

eling, but may have a negative impact on the latency [22].

Since query performance and space utilization are impor-

tant to us, while latency does not play a large role (due to

batched updates in the background), we choose the setup de-

scribed above. If needed the LSM trie can be improved with

the techniques presented by Luo and Carey [22,23]. For ex-

ample, one such improvement is partitioned merging where

multiple tries with non-overlapping key ranges can exist at

11

the same level and when a trie overflows at level i, this trie

needs only to be merged with overlapping tries at level i+1.

Partitioned merges reduce the I/O during merging since not

all data at level i needs to be merged into level i + 1.

Our focus is to show how to integrate a CAS index with

LSM trees. We do not address aspects related to recovery

and multi-user synchronization. These challenges, however,

exist and must be handled by the system. Typical KV-stores

use write-ahead logging (WAL) to make their system recov-

erable and multi-version concurrency control (MVCC) to

provide concurrency. These techniques are also applicable

to the RSCAS index.

The in-memory RSCAS trie RM0 is combined with a se-

quence of disk-based RSCAS tries R0, . . . ,Rk that grow in

size as illustrated in Figure 5. The most recently inserted

keys are accumulated in the in-memory RSCAS trie RM0
where insertions can be performed efficiently. When RM0
grows too big, the keys are migrated to a disk-based RSCAS

trieRi. A query is executed on each trie individually and the

result sets are combined. We only consider insertions since

deletions do not occur in the SWH archive.

Trie RM
0

(0,M] keys

or empty

Trie R0

(0,M] keys

or empty

Trie R1

(M, 2M] keys

or empty

.
Trie Rk

(2k−1M, 2kM] keys

or empty

Memory Disk

RSCAS Index

Fig. 5: The RSCAS index combines memory- and disk-

based RSCAS tries for scalability.

The size of each trie is bounded. RM0 and R0 contain

up to M keys, where M is chosen according to the memory

capacity of the system. With an average key length of 80

bytes in the SWH archive, reasonable values of M range

from tens of millions to a few billion keys (e.g., with M =
108, RM0 requires about 8 GB of memory). Each disk-based

trie Ri, i ≥ 1, is either empty or contains between 2i−1M

keys (exclusive) and 2iM keys (inclusive).

When RM0 is full, we look for the first disk-based trie

Ri that is empty. We (a) collect all keys in tries RM0 and

Rj , 0 ≤ j < i, (b) bulk-load trie Ri from these keys, and (c)

delete all previous tries.

Example 14 Assume we set the number of keys that fit in

memory to M = 10 million, which is the number of new

keys that arrive every day in the SWH archive, on average.

When RM0 overflows after one day we redirect incoming in-

sertions to a new in-memory trie and look for the first non-

empty trieRi. Assuming this isR0, the disk-resident trieR0

is bulk-loaded with the keys in RM0 . After another day, RM0
overflows again and this time the first non-empty trie is R1.

Trie R1 is created from the keys in RM0 and R0. At the end

R1 contains 20M keys, and RM0 and R0 are deleted. ◻

An overflow in RM0 does not stall continuous indexing

since we immediately redirect all incoming insertions to a

new in-memory trieRM
′

0 while we bulk-loadRi in the back-

ground. In order for this to work, RM0 cannot allocate all

of the available memory. We need to reserve a sufficient

amount of memory for RM
′

0 (in the SWH archive scenario

we allowedRM0 to take up at most half of the memory). Dur-

ing bulk-loading we keep the old triesRM0 andR0, . . . ,Ri−1
around such that queries have access to all indexed data.

As soon as Ri is complete, we replace RM0 with RM
′

0 and

R0, . . . ,Ri−1 withRi. In practice neither insertions nor queries

stall as long as the insertion rate is bounded. If the insertion

rate is too high and RM
′

0 overflows before we finish bulk-

loading Ri, we block and do not accept more insertions.

This does not happen in the SWH archive since with our

default of M = 108 keys (about 8 GB memory) trie RM
′

0

overflows every ten days and bulk-loading the trie on our

biggest dataset takes about four hours.

6.3 Storage Layout

The RSCAS index consists of a mutable in-memory trieRM0
and a series of immutable disk-based tries Ri. For RM0 we

use a node structure that is easy to update in-place, while we

design Ri for compact storage on disk.

6.3.1 Memory-Optimized RSCAS Trie

The memory-optimized RSCAS trie RM0 provides fast in-

place insertions for a small number of composite keys that

fit into memory. Since all insertions are buffered in RM0 be-

fore they are migrated in bulk to disk, RM0 is in the crit-

ical path of our indexing pipeline and must support effi-

cient insertions. We reuse the memory-optimized trie [43]

that is based on the memory-optimized Adaptive Radix Tree

(ART) [21]. ART implements four node types that are opti-

mized for the hardware’s memory hierarchy and that have a

physical fanout of 4, 16, 48, and 256 child pointers, respec-

tively. A node uses the smallest node type that can accom-

modate the node’s child pointers. Insertions add node point-

ers and when a node becomes too big, the node is resized to

the next appropriate node type. This ensures that not every

insertion requires resizing, e.g., a node with ten children can

sustain six deletions or seven insertions before it is resized.

Figure 6 illustrates the node type with 256 child pointers;

for the remaining node types we refer to Leis et al. [21].

The node header stores the dimensionD, the lengths lP and

lV of substrings sP and sV , and the number of children m.

12

Substrings sP and sV are implemented as variable-length

byte vectors. The remaining space of an inner node (beige-

colored in Figure 6) is reserved for child pointers. For each

possible value b of the discriminative byte there is a pointer

(possibly NULL) to the subtree where all keys have value b

at the discriminative byte in dimension D.

(D, lP , lV ,m) sP sV 00 01 02 FD FE FF

header

Fig. 6: Structure of an inner node with 256 pointers.

The structure of leaf nodes is similar, except that leaf

nodes contain a variable-length vector with references k.R

instead of child pointers.

For the memory-optimized RSCAS trie we set the parti-

tioning threshold τ = 1 meaning thatRM0 dynamically inter-

leaves keys completely. This provides fast and fine-grained

access to the indexed keys.

6.3.2 Disk-Optimized RSCAS Trie

We propose a disk-resident RSCAS trie to compactly store

dynamically-interleaved keys on disk. Since a disk-resident

RSCAS trie is immutable, we optimize it for compact stor-

age. To that end we store nodes gapless on disk and we in-

crease the granularity of leaf nodes by setting τ > 1. We

look at these techniques in turn. We store nodes gapless on

disk since we do not have to reserve space for future in-

place insertions. This means a node can cross page bound-

aries but we found that in practice this is not a problem.

We tested various node clustering techniques to align nodes

to disk pages. The most compact node clustering algorithm

[19] produced a trie that was 30% larger than with gapless

storage as it kept space empty on a page if it could not add

another node without exceeding the page size. Besides being

simpler to implement and more compact, the gapless storage

yields better query performance because less data needs to

be read from disk. In addition to the gapless storage, we in-

crease the granularity of leaf nodes by setting τ > 1. As a

result the RSCAS index contains fewer nodes but the size

of leaf nodes increases. We found that by storing fewer but

bigger nodes we save space because we store less meta-data

like node headers, child pointers, etc. In Section 8.4.1 we

determine the optimal value for τ .

Figure 7 shows how to compactly serialize nodes on

disk. Inner nodes point to other nodes, while leaf nodes store

a set of suffixes. Both node types store the same four-byte

header that encodes dimension D ∈ {P,V,�}, the lengths

lP and lV of the substrings sP and sV , and a numberm. For

inner nodes m denotes the number of children, while for

leaf nodes it denotes the number of suffixes. Next we store

substrings sP and sV (exactly lP and lV bytes long, respec-

tively). After the header, inner nodes storem pairs (bi,ptri),
where bi (1 byte long) is the value at the discriminative byte

that is used to descend to this child node and ptri (6 bytes

long) is the position of this child in the trie file. Leaf nodes,

instead, store m suffixes and for each suffix we record sub-

strings sP and sV along with their lengths and the revision

r (20 byte SHA1 hash).

(D, lP , lV ,m) sP sV b1 ptr
1

. . . bm ptrm node1 . . . nodem

header 4B lP lV 1B 6B 1B 6B

Inner Node:

(D, lP , lV ,m) sP sV l1P l1V s1P s1V r1 . . . lmP lmV smP smV rm

header 4B lP lV 1B 1B l1
P

l1
V

20B 1B 1B lm
P

lm
V

20B

1st suffix mth suffixLeaf Node:

Fig. 7: Serializing nodes on disk.

Example 15 The size of n1 in Figure 4 is 30 bytes: 4 bytes

for the header, 4 bytes for sV , 1 byte for sP , and 3×(1+6) =
21 bytes for the three child pointers and their discriminative

bytes. ◻

7 Algorithms

We propose algorithms for querying, inserting, bulk-loading,

and merging RSCAS tries. Queries are executed indepen-

dently on all in-memory and disk-based RSCAS tries and

the results are combined. Insertions are directed at the in-

memory RSCAS trie alone. Merging is used whenever the

in-memory RSCAS trie overflows and applies bulk-loading

to create a large disk-optimized RSCAS trie.

7.1 Querying RSCAS

We traverse an RSCAS trie in pre-order to evaluate a CAS

query, skipping subtrees that cannot match the query. Start-

ing at the root node, we traverse the trie and evaluate at each

node part of the query’s path and value predicate. Evaluat-

ing a predicate on a node returns MATCH if the full predicate

has been matched, MISMATCH if it has become clear that

no node in the current node’s subtree can match the pred-

icate, and INCOMPLETE if we need more information. In

case of a MISMATCH, we can safely skip the entire subtree.

If both predicates return MATCH, we collect all revisions r

in the leaf nodes of this subtree. Otherwise, we traverse the

trie further to reach a decision.

7.1.1 Query Algorithm

Algorithm 1 shows the pseudocode for evaluating a CAS

query on a RSCAS trie. It takes the following parameters:

the current node n (initially the root node of the trie), a

13

query path q, and a range [vl, vh] for the value predicate.

Furthermore, we need two buffers buffP and buffV (ini-

tially empty) that hold, respectively, all path and value bytes

from the root to the current node n. Finally, we require state

information s to evaluate the path and value predicates (we

provide details as we go along) and an answer set W to col-

lect the results.

Algorithm 1: CasQuery(n, q, [vl, vh],buffV ,buffP , s,W)
1 UpdateBuffers(n.sV , n.sP ,buffV ,buffP)
2 if n is an inner node then

3 matchV ← MatchValue(buffV , vl, vh, s, n)
4 matchP ← MatchPath(buffP , q, s, n)
5 if matchV ≠ MISMATCH ∧ matchP ≠ MISMATCH then

6 for each matching child c of n do

7 CasQuery(c, q, [vl, vh],buffV ,buffP , s,W)

8 else

9 foreach t ∈ n.suffixes do

10 UpdateBuffers(t.sV , t.sP ,buffV ,buffP)
11 matchV ← MatchValue(buffV , vl, vh, s, n)
12 matchP ← MatchPath(buffP , q, s, n)
13 if matchV = MATCH ∧ matchP = MATCH then

14 W ←W ∪ {t.R}

First, we update buffV and buffP by adding the in-

formation in sV and sP of the current node n (line 1).

For inner nodes, we match the query predicates against

the current node. MatchValue computes the longest com-

mon prefix between buffV and vl and between buffV

and vh. The position of the first byte for which buffV

and vl differ is lo and the position of the first byte for

which buffV and vh differ is hi. If buffV [lo] < vl[lo],
we know that the node’s value lies outside of the range,

hence we return MISMATCH. If buffV [hi] > vh[hi], the

node’s value lies outside of the upper bound and we return

MISMATCH as well. If buffV contains a complete value

(e.g., all eight bytes of a 64 bit integer) and vl ≤ buffV ≤
vh, we return MATCH. If buffV is incomplete, but vl[lo] <
buffV [lo] and buffV [hi] < vh[hi], we know that all

values in the subtree rooted at n match and we also return

MATCH. In all other cases we cannot make a decision yet and

return INCOMPLETE. The values of lo and hi are kept in

the state to avoid recomputing the longest common prefix

from scratch for each node. Instead we resume the search

from the previous values of lo and hi.

Function MatchPath matches the query path q against

the current path prefix buffP . It supports symbols * and

** to match any number of characters in a node label, re-

spectively any number of node labels in a path. As long

as we do not encounter any wildcards in the query path q,

we directly compare (a prefix of) q with the current con-

tent of buffP byte by byte. As soon as a byte does not

match, we return MISMATCH. If we successfully match the

complete query path q against a complete path in buffP

(both terminated by $), we return MATCH. Otherwise, we

return INCOMPLETE. When we encounter wildcard * in

q, we match it successfully to the corresponding label in

buffP and continue with the next label. A wildcard * it-

self will not cause a mismatch (unless we try to match it

against the terminator $), so we either return MATCH if it is

the final label in q and buffP or INCOMPLETE. Match-

ing the descendant-axis ** is more complicated. We store

in state s the current position where we are in buffP and

continue matching the label after ** in q. If at any point

we find a mismatch, we backtrack to the next path separa-

tor after the noted position, thus skipping a label in buffP
and restarting the search from there. Once buffP contains

a complete path, we can make a decision between MATCH or

MISMATCH.

The algorithm continues by checking the outcomes of

the value and path matching (line 5). If one of the outcomes

is MISMATCH, we stop the search since no descendant can

match the query. Otherwise, we continue with the matching

children of n (lines 6–8). Finding the matching children fol-

lows the same logic as described above for MatchValue

and MatchPath. If node n.D = P and we have seen a de-

scendant axis in the query path, all children of the current

node match.

As soon as we reach a leaf node, we iterate over each

suffix t in the leaf to check if it matches the query using

the same functions as explained above (lines 10–14). If the

current buffers indeed match the query, we add the reference

t.R to the result set.

Example 16 Consider a CAS query that looks for revisions

in 2020 that modified a C file in the ext3 or ext4 filesys-

tem. Thus, the query path is q = /fs/ext*/*.c$ and the

value range is vl = 2020-01-01 (000000005E0BE100)

and vh = 2020-12-31 (000000005FEE65FF). We exe-

cute the query on the trie in Figure 4.

– Starting at n1, we update buffV to 00000000 and

buffP to /. MatchValue matches four value bytes

and returns INCOMPLETE. MatchPath matches one

path byte and also returns INCOMPLETE. Both func-

tions return INCOMPLETE, so we have to traverse all

matching children. Since n1 is a value node, we look for

all matching children whose value for the discriminative

value byte is between 5E and 5F. Nodes n7 and n8 sat-

isfy this condition.

– Node n7 is a leaf. We iterate over each suffix (there are

two) and update the buffers accordingly. For the first

suffix with path substring 3/inode.c$ we find that

MatchPath and MatchValue both return MATCH.

Hence, revision r4 is added toW . The next suffix matches

the value predicate but not the path predicate and is there-

fore discarded.

– Next we look at node n8. We find that vl[5] = 5E <
5F = buffV [5] = vh[5] and buffV [6] = BD < EE =
vh[6], thus all values of n9’s descendants are within the

14

bounds vl and vh, and MatchValue returns MATCH.

Since n8.sP is the empty string, MatchPath still re-

turns INCOMPLETE and we descend further. According

to the second byte in the query path, q[2] = f, we must

match letter f, hence we descend to node n10, where

both predicates match. Therefore, revision r6 is added to

W .

7.2 Updating Memory-Based RSCAS Trie

All insertions are performed in the in-memory RSCAS trie

RM0 where they can be executed efficiently. Inserting a new

key into RM0 usually changes the position of the discrimina-

tive bytes, which means that the dynamic interleaving of all

keys that are located in the node’s subtree is invalidated.

Example 17 We insert the key k10 = (/crypto/rsa.c$,
000000005F83B9AC, r8) into the RSCAS trie in Fig-

ure 4. First we traverse the trie starting from root n1. Since

n1’s substrings completely match k10’s path and value we

traverse to child n8. In n8 there is a mismatch in the value

dimension: k10’s sixth byte is 83 while for node n8 the cor-

responding byte is BD. This invalidates the dynamic inter-

leaving of keys K2,3,7 in n8’s subtree. ◻

7.2.1 Lazy Restructuring

If we want to preserve the dynamic interleaving, we need

to re-compute the dynamic interleaving of all affected keys,

which is expensive. Instead, we relax the dynamic inter-

leaving using lazy restructuring [44]. Lazy restructuring re-

solves the mismatch by adding exactly two new nodes, npar

and nsib, to RSCAS instead of restructuring large parts of

the trie. The basic idea is to add a new intermediate node

npar between node n where the mismatch happened and n’s

new sibling node nsib that represents the newly inserted key.

We put all bytes leading up to the position of the mismatch

into npar, and all bytes starting from this position move to

nodes n and nsib. After that, we insert node npar between

node n and its previous parent node np.

Example 18 Figure 8 shows the rightmost subtree of Figure

4 after it is lazily restructured when k10 is inserted. Two new

nodes are created, parent npar = n
′
8 and sibling nsib = n

′′
8 .

Additionally, n8.sV is updated. ◻

Lazy restructuring is efficient: it adds exactly two new

nodes to RM0 , thus the main cost is traversing the trie. How-

ever, while efficient, lazy restructuring introduces small ir-

regularities that are limited to the dynamic interleaving of

the keys in the subtree where the mismatch occurred. These

irregularities do not affect the correctness of CAS queries,

but they slowly separate (rather than interleave) paths and

values if insertions repeatedly force the algorithm to split the

npar = n′8
(5F,ǫ,V)

nsib = n′′8
(83B9AC,crypto/rsa.c$,�)

{(ǫ, ǫ, r8)}

n = n8
(BD,ǫ,P)

np = n1
(00000000,/, V)

Fig. 8: The rightmost subtree of Figure 4 after inserting key

k10 with lazy restructuring.

same subtree in the same dimension. Since RM0 is memory-

based and small in comparison to the disk-based tries, the

overall effect on query performance is negligible.

Example 19 After inserting k10, root node n1 and its new

child n
′
8 both ψ-partition the data in the value dimension,

violating the strictly alternating property of the dynamic in-

terleaving, see Figure 8. ◻

7.2.2 Inserting Keys with Lazy Restructuring

Algorithm 2 inserts a key k in RM0 rooted at node n. If RM0
is empty (i.e., n is NIL) we create a new root node in lines

1-3. Otherwise, we traverse the trie to k’s insertion position.

We compare the key’s path and value with the current node’s

path and value by keeping track of positions gP , gV , iP , iV
in strings k.P, k.V,n.sP , n.sV , respectively (lines 8–11). As

long as the substrings at their corresponding positions coin-

cide we descend. If we completely matched key k, it means

that we reached a leaf node and we add k.R to the current

node’s suffixes (lines 12–14). If during the traversal we can-

not find the next node to descend to, the key has a new value

at a discriminative byte that did not exist before in the data.

We create a new leaf node and set its substrings sP and sV to

the still unmatched bytes in k.P and k.V , respectively (lines

20–22). If we find a mismatch between the key and the cur-

rent node in at least one dimension, we lazily restructure the

trie (lines 15–17).

Algorithm 3 implements lazy restructuring. Lines 1–4

determine the dimension in which npar partitions the data. If

only a path mismatch occurred between n and k, we have to

use dimension P . In case of only a value mismatch, we have

to use V . If we have mismatches in both dimensions, then

we take the opposite dimension of parent node np to keep up

an alternating interleaving as long as possible. In lines 5–6

we create nodes npar and nsib. Node npar is an inner node of

type node4, which is the node type with the smallest fanout

in ART [21]. In lines 9–12 we install n and nsib as children

of npar. Finally, in lines 13–15, we place the new parent node

npar between n and its former parent node np.

15

Partition L = (gP , gV ,mptr, fptr) Partition Table T n ∶ Node n in RSCAS

L
1..9 = (2, 5, 9, ●)
/Sources/Map.go$ 000000005DA8942A r1

/crypto/ecc.h$ 000000005FBD8DC4 r2
/crypto/ecc.c$ 000000005FBD8DC4 r2

/Sources/Schema.go$ 000000005DA8948C r3

/fs/ext3/inode.c$ 000000005EF29C59 r4

/fs/ext4/inode.h$ 000000005EBD23C2 r5

/fs/ext4/inode.c$ 000000005FBD3D5A r6

/Sources/Schedule.go$ 000000005DA8978B r7
/Sources/Scheduler.go$ 000000005DA8978B r7

(a) Root partition L
1..9

n1:
(00000000,/, V)
⋯ 5D 5E 5F ⋯

L
1,4,8,9 = (9, 2, 4, ●)
Sources/Map.go$ 5DA8942A r1

Sources/Schema.go$ 5DA8948C r3

Sources/Schedule.go$ 5DA8978B r7

Sources/Scheduler.go$ 5DA8978B r7

L
5,6 = (7, 2, 2, ●)
fs/ext3/inode.c$ 5EF29C59 r4

fs/ext4/inode.c$ 5EBD23C2 r5

L
2,3,7 = (1, 3, 3, ●)

crypto/ecc.h$ 5FBD8DC4 r2

crypto/ecc.c$ 5FBD8DC4 r2

fs/ext4/inode.c$ 5FBD3D5A r6

(b) L1..9 from (a) is ψ-partitioned in dimension V

n1:
(00000000,/, V)
⋯ 5D 5E 5F ⋯

n2:
(5DA8,Sources/, P)
⋯ M ⋯ ⋯ ⋯ S ⋯

L
5,6 = (7, 2, 2, ●)
fs/ext3/inode.c$ 5EF29C59 r4

fs/ext4/inode.c$ 5EBD23C2 r5

L
2,3,7 = (1, 3, 3, ●)
crypto/ecc.h$ 5FBD8DC4 r2

crypto/ecc.c$ 5FBD8DC4 r2

fs/ext4/inode.c$ 5FBD3D5A r6

L
1 = (8, 3, 1, ●)
Map.go$ 942A r7

L
4,8,9 = (5, 1, 3, ●)
Schema.go$ 948C r3

Schedule.go$ 978B r7

Scheduler.swift$ 978B r7

(c) L1,4,8,9 from (b) is ψ-partitioned in dimension P

Fig. 9: The keys are recursively ψ-partitioned depth-first, creating new RSCAS nodes in pre-order. A node represents the

longest common path and value prefixes of its corresponding partition.

Algorithm 2: Insert(k,n)
1 if n = NIL then // RSCAS is empty; create new root

2 Install new root node: leaf(k.P, k.V, k.R)
3 return

4 np ← NIL

5 gP , gV ← 1

6 while true do

7 iP , iV ← 1

8 while iP ≤ ∣n.sP ∣ ∧ gP ≤ ∣k.P ∣ ∧ n.sP [iP] = k.P [gP] do

9 gP ++; iP ++

10 while iV ≤ ∣n.sV ∣ ∧ gV ≤ ∣k.V ∣ ∧ n.sV [iV] = k.V [gV] do

11 gV ++; iV ++

12 if gP > ∣k.P ∣ ∧ gV > ∣k.V ∣ then

13 n.suffixes← n.suffixes ∪ {(ǫ, ǫ, k.R)}
14 return

15 else if iP ≤ ∣n.sP ∣ ∨ iV ≤ ∣n.sV ∣ then

16 LazyRestructuring(k, n, np, gP , gV , iP , iV)
17 return

18 if n.D = P then b← k.P [gP] else b← k.V [gV]
19 (np, n)← (n,n.children[b])
20 if n = NIL then

21 np.children[b]← leaf(k.P [gP , ∣k.P ∣], k.V [gV , ∣k.V ∣], k.R)
22 return

7.3 Bulk-Loading a Disk-Based RSCAS Trie

We create and bulk-load a new disk-based RSCAS trie when-

ever the in-memory trie RM0 overflows. The bulk-loading

algorithm constructs RSCAS while, at the same time, dy-

namically interleaving a set of keys. Bulk-loading RSCAS is

difficult because all keys must be considered together to dy-

namically interleave them. The bulk-loading algorithm starts

with all non-interleaved keys in the root partition. We use

partitions during bulk-loading to temporarily store keys along

Algorithm 3: LazyRestructuring(k,n,np, gP , gV , iP , iV)
1 if iP ≤ ∣n.sP ∣ ∧ iV > ∣n.sV ∣ then D ← P // mismatch in P

2 else if iP > ∣n.sP ∣∧ iV ≤ ∣n.sV ∣ thenD ← V // mismatch in V

3 else if np ≠ NIL then D ← np.D // mismatch in P and V

4 elseD ← V

5 npar ← node4(D,n.sP [1, iP − 1], n.sV [1, iV − 1])
6 nsib ← leaf(k.P [gP , ∣k.P ∣], k.V [gV , ∣k.V ∣], k.R)

7 n.sP ← n.sP [iP , ∣n.sP ∣]
8 n.sV ← n.sV [iV , ∣n.sV ∣]

9 if D = P then b1 ← nsib.sP [1] else b1 ← nsib.sV [1]
10 if D = P then b2 ← n.sP [1] else b2 ← n.sV [1]
11 npar.children[b1]← nsib

12 npar.children[b2]← n

13 if np = NIL then install npar as new root node
14 else if np.D = P then np.children[npar.sP [1]]← npar

15 else if np.D = V then np.children[npar.sV [1]]← npar

with their discriminative bytes. Once a partition has been

processed, it is deleted.

Definition 12 (Partition) A partitionL = (gP , gV , size, ptr)
stores a set K of composite keys. gP = dsc(K,P) and gV =
dsc(K,V) denote the discriminative path and value byte,

respectively. size = ∣K ∣ denotes the number of keys in the

partition. L is either memory-resident or disk-resident, and

ptr points to the keys in memory or on disk. ◻

Example 20 Root partition L
1..9 = (2,5,9, ●) in Figure 9a

stores keys K1..9 from Table 1. The longest common prefixes

of L1..9 are type-set in bold-face. The first bytes after these

prefixes are L
1..9’s discriminative bytes gP = 2 and gV = 5.

We use placeholder ● for pointer ptr; we describe later how

to decide if partitions are stored on disk or in memory. ◻

16

Bulk-loading starts with root partition L and breaks it

into smaller partitions using the ψ-partitioning until a par-

tition contains at most τ keys. The ψ-partitioning ψ(L,D)
groups keys together that have the same prefix in dimension

D, and returns a partition table where each entry in this ta-

ble points to a new partition Li. We apply ψ alternatingly in

dimensions V and P to interleave the keys at their discrimi-

native bytes. In each call, the algorithm adds a new node to

RSCAS with L’s longest common path and value prefixes.

Example 21 Figure 9 shows how the RSCAS from Figure 4

is built. In Figure 9b we extract L1..9’s longest common path

and value prefixes and store them in the new root node n1.

Then, we ψ-partition L
1..9 in dimension V and obtain a par-

tition table (light green) that points to three new partitions:

L
1,4,8,9, L5,6, and L

2,3,7. We drop L
1..9’s longest common

prefixes from these new partitions. We proceed recursively

with L
1,4,8,9. In Figure 9c we create node n2 as before and

this time we ψ-partition in dimension P and obtain two new

partitions. Given τ = 2, L1 is not partitioned further, but in

the next recursive step, L4,8,9 would be partitioned one last

time in dimension V . ◻

To avoid scanning L twice (first to compute the discrim-

inative byte; second to compute ψ(L,D)) we make the ψ-

partitioning proactive by exploiting that ψ(L,D) is applied

hierarchically. This means we pre-compute the discrimina-

tive bytes of every new partition Li ∈ ψ(L,D) as we ψ-

partitionL. As a result, by the time Li itself is ψ-partitioned,

we already know its discriminative bytes and can directly

compute the partitioning. Algorithm 6 in Section 7.4 shows

how to compute the root partition’s discriminative bytes; the

discriminative bytes of all subsequent partitions are com-

puted proactively during the partitioning itself. This halves

the scans over the data during bulk-loading.

7.3.1 Bulk-Loading Algorithm

The bulk-loading algorithm (Algorithm 4) takes three pa-

rameters: a partition L (initially the root partition), the par-

titioning dimension D (initially dimension V), and the po-

sition in the trie file where the next node is written to (ini-

tially 0). Each invocation adds a node n to the RSCAS trie

and returns the position in the trie file of the first byte af-

ter the subtree rooted in n. Lines 1–3 create node n and set

its longest common prefixes n.sP and n.sV , which are ex-

tracted from a key k ∈ L from the first byte up to, but ex-

cluding, the positions of L’s discriminative bytes L.gP and

L.gV . If the number of keys in the current partition exceeds

the partitioning threshold τ and L can be ψ-partitioned, we

break L further up. In lines 5–6 we check if we can indeed

ψ-partition L in D and switch to the alternate dimension D

otherwise. In line 8 we apply ψ(L,D) and obtain a partition

table T , which is a 28-long array that maps the 28 possi-

ble values b of a discriminative byte (0x00 ≤ b ≤ 0xFF)

to partitions. We write T [b] to access the partition for value

b (T [b] = NIL if no partition exists for value b). ψ(L,D)
drops L’s longest common prefixes from each key k ∈ L
since we store these prefixes already in node n. We apply

Algorithm 4 recursively on each partition in T with the al-

ternate dimension D, which returns the position where the

next child is written to on disk. We terminate if partition L

contains no more than τ keys or cannot be partitioned fur-

ther. We iterate over all remaining keys in L and store their

non-interleaved suffixes in the set n.suffixes of leaf node n

(lines 16–19). Finally, in line 22 we write node n to disk at

the given offset in the trie file.

Algorithm 4: BulkLoad(L,D, preorderPos)
1 Let n be a new node, k a key in L;
2 n.sP ← k.P [1, L.gP − 1];
3 n.sV ← k.V [1, L.gV − 1];
4 if L.size > τ ∧ (L.gP > ∣k.P ∣ ∨L.gV > ∣k.V ∣) then

5 if D = P ∧L.gP > ∣k.P ∣ then D ← V ;
6 else if D = V ∧L.gV > ∣k.V ∣ then D ← P ;
7 n.D ←D;
8 T ← ψ(L,D);
9 pos ← preorderPos+ size(n);

10 for b← 0x00 to 0xFF do

11 if T [b] ≠ NIL then

12 n.children[b] ← pos;

13 pos← BulkLoad(T [b],D, pos);

14 else

15 n.D ← �;
16 foreach key k ∈ L do

17 sP ← k.P [L.gP , ∣k.P ∣];
18 sV ← k.V [L.gV , ∣k.V ∣];
19 n.suffixes← n.suffixes∪ {(sP , sV , k.R)};

20 Delete L;
21 pos ← preorderPos+ size(n);

22 Write node n to disk from position preorderPos to preorderPos+ size(n);
23 return pos;

Algorithm 5 implementsψ(L,D). We organize the keys

in a partition L at the granularity of pages so that we can

seamlessly transition between memory- and disk-resident

partitions. A page is a fixed-length buffer that contains a

variable number of keys. If L is disk-resident,L.ptr points to

a page-structured file on disk and if L is memory-resident,

L.mptr points to the head of a singly-linked list of pages.

Algorithm 5 iterates over all pages in L and for each key

in a page, line 6 determines the partition T [b] to which k

belongs by looking at its value b at the discriminative byte.

Next we drop the longest common path and value prefixes

from k (lines 7–8). We proactively compute T [b]’s discrimi-

native bytes whenever we add a key k to T [b] (lines 10–17).

Two cases can arise. If k is T [b]’s first key, we initialize par-

tition T [b]. If L fits into memory, we make T [b] memory-

resident, else disk-resident. We initialize gP and gV with one

past the length of k in the respective dimension (lines 9–12).

These values are valid upper-bounds for the discriminative

bytes since keys are prefix-free. We store k as a reference

key for partition T [b] in refkeys[b]. If k is not the first key

in T [b], we update the upper bounds (lines 13–17) as fol-

17

lows. Starting from the first byte, we compare k with ref-

erence key refkeys[b] byte-by-byte in both dimension until

we reach the upper-boundsT [b].gP and T [b].gV , or we find

new discriminative bytes and update T [b].gP and T [b].gV .

Algorithm 5: ψ(L,D)
1

proactively compute
discriminative bytes

Let T be a new partition table;

2 Let outpages be an array of 28 pages for output buffering;

3 Let refkeys be an array to store 2
8 composite keys;

4 foreach page ∈ L.ptr do

5 foreach key k ∈ page do

6 if D = P then b ← k.P [L.gP] else b ← k.V [L.gV];
7 k.P ← k.P [L.gP , ∣k.P ∣];
8 k.V ← k.V [L.gV , ∣k.V ∣];
9 if T [b] = NIL then

10 if L fits into memory then ptr← new linked list else ptr← new
file;

11 T [b]← (∣k.P ∣+1, ∣k.V ∣+1, 0, ptr);
12 refkeys[b]← k;

13 else

14 k
′
, gP , gV ← (refkeys[b], 1, 1);

15 while gP < T [b].gP ∧ k.P [gP] = k
′.P [gP] do gP ++;

16 while gV < T [b].gV ∧ k.V [gV] = k
′.V [gV] do gV ++;

17 T [b].gP , T [b].gV ← (gP , gV);

18 if outpages[b] is full then

19 Push(T [b].ptr, outpages[b]);
20 Clear contents of page outpages[b];

21 Add k to outpages[b];
22 T [b].size++;

23 Delete page;

24 for b← 0x00 to 0xFF do

25 if T [b] ≠ NIL then Push(T [b].ptr, outpages[b]);

26 Delete L;
27 return T ;

7.4 Merging RSCAS Tries Upon Overflow

When the memory-resident trie RM0 reaches its maximum

size of M keys, we move its keys to the first disk-based trie

Ri that is empty using Algorithm 6. We keep pointers to the

root nodes of all tries in an array. Algorithm 6 first collects

all keys from tries RM0 , R0, . . . ,Ri−1 and stores them in a

new partition L (lines 2–4). Next, in lines 5–11, we compute

L’s discriminative bytes L.gP and L.gV from the substrings

sP and sV of the root nodes of the i tries. Finally, in lines

12–14, we bulk-load trie Ri and delete all previous tries.

Algorithm 6: HandleOverflow

1 Let i be the smallest number such that index Ri is empty;
2 Let L be a new disk-resident partition;

3 foreach trie R ∈ {RM
0
,R0, . . . ,Ri−1} do

4 Collect all composite keys in R and store them in L.ptr;

5 {nM
0
, n0, . . . , ni−1}← root nodes of all triesRM

0
,R0, . . . ,Ri−1;

6 L.gP , L.gV ← (∣n
M
0
.sP ∣ + 1, ∣nM

0
.sV ∣ + 1);

7 foreach root node n ∈ {n0, . . . , ni−1} do

8 gP , gV ← (1, 1);

9 while gP < L.gP ∧ n
M
0
.sP [gP] = n.sP [gP] do gP ++;

10 while gV < L.gV ∧ n
M
0
.sP [gV] = n.sV [gV] do gV ++;

11 L.gP , L.gV ← (gP , gV);

12 Create new trie fileRi ;
13 BulkLoad(L,V, position 0 inRi’s trie file);

14 Delete triesRM
0
,R0, . . . ,Ri−1;

7.5 Analytical Evaluation

7.5.1 Total I/O Overhead During Bulk-Loading

The I/O overhead is the number of page I/Os without read-

ing the input and writing the output. We use N , M , and B

for the number of input keys, the number of keys that fit into

memory, and the number of keys that fit into a page, respec-

tively [4]. We analyze the I/O overhead of Algorithm 4 for a

uniform data distribution with a balanced RSCAS and for a

maximally skewed distribution with an unbalanced RSCAS.

The ψ-partitioning splits a partition into equally sized parti-

tions. Thus, with a fixed fanout f the ψ-partitioning splits a

partition into f , 2 ≤ f ≤ 28, partitions.

Lemma 5 The I/O overhead to build RSCAS with Algorithm

4 from uniformly distributed data is

2 × ⌈logf ⌈
N

M
⌉⌉ × ⌈N

B
⌉

Example 22 We compute the I/O overhead forN = 16,M =
4, B = 2, and f = 2. There are ⌈log2⌈164 ⌉⌉ = 2 intermediate

levels with the data on disk. On each level we read and write
16

2
= 8 pages. In total, the disk I/O is 2 × 2 × 8 = 32. ◻

For maximally skewed data RSCAS deteriorates to a trie

whose height is linear in the number of keys in the dataset.

Lemma 6 The I/O overhead to build RSCAS with Algorithm

4 from maximally skewed data is

2 ×
N−⌈M

B
⌉B

∑
i=1

(⌈N − i
B
⌉ + 1)

Example 23 We use the same parameters as in the previous

example but assume maximally skewed data. There are 16−
⌈4
2
⌉2 = 12 levels before the partitions fit into memory. For

example, at level i = 1 we write and read ⌈16−1
2
⌉ = 8 pages

for L1,2. In total, the I/O overhead is 144 pages. ◻

Theorem 4 The I/O overhead to build RSCAS with Algo-

rithm 4 depends on the data distribution. It is lower bounded

by O(log(N
M
)N
B
) and upper bounded by O((N −M)N

B
).

Note that, since RSCAS is trie-based and keys are en-

coded by the path from the root to the leaves, the height of

the trie is bounded by the length of the keys. The worst-

case is very unlikely in practice because it requires that the

lengths of the keys is linear in the number of keys. Typically,

the key length is at most tens or hundreds of bytes. We show

in Section 8 that building RSCAS performs close to the best

case on real world data.

18

7.5.2 Amortized I/O Overhead During Insertions

Next, we consider the amortized I/O overhead of a single

insertion during a series of N insertions into an empty trie.

Note that M − 1 out of M consecutive insertions incur no

disk I/O since they are handled by the in-memory trie RM0 .

Only the M th insertion bulk-loads a new disk-based trie.

Lemma 7 Let cost(N,M,B) be the I/O overhead of bulk-

loading RSCAS. The amortized I/O overhead of one inser-

tion out ofN insertions into an initially empty trie isO(1

N
×

log2(NM) × cost(N,M,B)).

8 Experimental Evaluation

8.1 Setup

Environment. We use a Debian 10 server with 80 cores and

400 GB main memory. The machine has six hard disks, each

2 TB big, that are configured in a RAID 10 setup. The code

is written in C++ and compiled with g++ 8.3.0.

Datasets. We use three real-world datasets and one synthetic

dataset. Table 6 provides an overview.

– GitLab. The GitLab data from SWH contains archived

copies of all publicly available GitLab repositories up

to 2020-12-15. The dataset contains 914 593 archived

repositories, which correspond to a total of 120 071 946

unique revisions and 457 839 953 unique files. For all re-

visions in the GitLab dataset we index the commit time

and the modified files (equivalent to “commit diffstats”

in version control system terminology). In total, we in-

dex 6.9 billion composite keys similar to Table 1.

– ServerFarm. The ServerFarm dataset [43] mirrors the

file systems of 100 Linux servers. For each server we

installed a default set of packages and randomly picked

a subset of optional packages. In total there are 21 mil-

lion files. For each file we record the file’s full path and

size.

– Amazon. The Amazon dataset [18] contains hierarchi-

cally categorized products. For each product its location

in the hierarchical categorization (the path) and its price

in cents (the value) are recorded. For example, the shoe

‘evo’ has path /sports/outdoor/running/evo

and its price is 10 000 cents.

– XMark. The XMark dataset [40] is a synthetic dataset

that models a database for an internet auction site. It con-

tains information about people, regions (subdivided by

continent), etc. We generated the dataset with scale fac-

tor 500 and we index the numeric attribute ‘category’.

Previous Results. In our previous work [44] we com-

pared RSCAS to state-of-the-art research solutions. We com-

pared RSCAS to the CAS index by Mathis et al. [26], which

indexes paths and values in separate index structures. We

Table 6: Dataset Statistics

GitLab ServerFarm Amazon XMark

Origin SWH [43] [18] [40]
Attribute Commit time Size Price Category
Type real-world real-world real-world synthetic
Size 1.6 TB 3.0 GB 10.5 GB 58.9 GB
Nr. Keys 6 891 972 832 21 291 019 6 707 397 60 272 422

Nr. Unique Keys 5 849 487 576 9 345 668 6 461 587 1 506 408

Nr. Unique Paths 340 614 623 9 331 389 6 311 076 7

Nr. Unique Values 81 829 152 234 961 47 852 389 847

Avg. Key Size 79.8 B 79.8 B 119.3 B 54.8 B
Total Size of Keys 550.2 GB 1.7 GB 0.8 GB 3.3 GB

also compared RSCAS to a trie-based index where com-

posite keys are integrated with four different methods: (i)

the z-order curve with surrogate functions to map variable-

length keys to fixed-length keys, (ii) a label-wise interleav-

ing where we interleave one path label with one value byte,

(iii) the path-value concatenation, and (iv) value-path con-

catenation. Our experiments showed that the approaches do

not provide robust CAS query performance because they

may create large intermediate results.

Compared Approaches. This paper compares RSCAS

to scalable state-of-the-art industrial-strengths systems. First,

we compare RSCAS to Apache Lucene [1], which builds

separate indexes for the paths and values. Lucene creates an

FST on the paths and a Bkd-tree [36] on the values. Lucene

evaluates CAS queries by decomposing queries into their

two predicates, evaluating the predicates on the respective

indexes, and intersecting the sorted posting lists to produce

the final result. Second, we compare RSCAS to compos-

ite B-trees in Postgres. This simulates the two possible c-

order curves that concatenate the paths and values (or vice

versa). We create a table data(P,V,R), similar to Table 1,

and create two composite B+ trees on attributes (P,V) and

(V,P), respectively.

Parameters. Unless otherwise noted, we set the parti-

tioning threshold τ = 100 based on experiments in Section

8.4.1. The number of keysM that the main-memory RSCAS

trie RM0 can hold is M = 108.

Artifacts. The code and the datasets used for our exper-

iments are available online.2

8.2 Impact of Datasets on RSCAS’s Structure

In Figure 10 we show how the shape (depth and width) of

the RSCAS trie adapts to the datasets. Figure 10a shows the

distribution of the node depths in the RSCAS trie for the

GitLab dataset. Because of its trie-based structure not ev-

ery root-to-leaf path in RSCAS has the same length (see

also Figure 4). The average node depth is about 10, with

90% of all nodes occurring no deeper than level 14. The ex-

pected depth is logf̄ ⌈Nτ ⌉ = log8⌈ 6.9B
100
⌉ = 8.7, where N is the

number of keys, τ is the partitioning threshold that denotes

the maximum size of a leaf partition, and f̄ is the average

2 https://github.com/k13n/scalable_rcas

19

https://github.com/k13n/scalable_rcas

fanout. The actual average depth is higher than the expected

depth since the GitLab dataset is skewed and the expected

depth assumes a uniformly distributed dataset. In the Git-

Lab dataset the average key length is 80 bytes, but the aver-

age node depth is 10, meaning that RSCAS successfully ex-

tracts common prefixes. Figure 10b shows how the fanout of

the nodes is distributed. Since RSCAS ψ-partitions the data

at the granularity of bytes, the fanout of a node is upper-

bounded by 28, but in practice most nodes have a smaller

fanout (we cap the x-axis in Figure 10b at fanout 40, because

there is a long tail of high fanouts with low frequencies).

Nodes that ψ-partition the data in the path dimension typi-

cally have a lower fanout because most paths contain only

printable ASCII characters (of which there are about 100),

while value bytes span the entire available byte spectrum.

Node Depth Node Fanout

0 10 20 30

0

10

20

30

40

Avg: 9.6
Exp: 8.7

(a)

G
it

L
a
b

F
re

q
u
en

cy
[%

]

0 10 20 30 40

0

10

20

30

40

Avg: 8.0
(b)

0 10 20 30

0

10

20

30

40

Avg: 10.6
Exp: 6.1

(c)

S
er

v
er

F
a
rm

F
re

q
u
en

cy
[%

]

0 10 20 30 40

0

10

20

30

40

Avg: 7.6
(d)

0 10 20 30

0

10

20

30

40

Avg: 6.9
Exp: 4

(e)

A
m

a
zo

n

F
re

q
u
en

cy
[%

]

0 10 20 30 40

0

10

20

30

40

Avg: 16.9
(f)

0 1 2 3 4 5 6

0

20

40

60
Avg: 4.8
Exp: 5.1

(g)

X
M

a
rk

F
re

q
u
en

cy
[%

]

0 10 20 30 40

0

20

40

60
Avg: 32.6

(h)

Fig. 10: Structure of the RSCAS trie

The shape of the RSCAS tries on the ServerFarm and

Amazon datasets closely resemble that of the trie on the Git-

Lab dataset, see the second and third row in Figure 10. This

is to be expected since all three datasets contain a large num-

ber of unique paths and values, see Table 6. As a result, the

data contains a large number of discriminative bytes that are

needed to distinguish keys from one another. The paths in

these datasets are typically longer than the values and con-

tain more discriminative bytes. In addition, as seen above,

the discriminative path bytes typically ψ-partition the data

into fewer partitions than the discriminative value bytes. As

a consequence, the RSCAS trie on these three datasets is

narrower and deeper than the RSCAS trie on the XMark

dataset, which has only seven unique paths and about 390k

unique values in a dataset of 60M keys. Since the majority

of the discriminative bytes in the XMark dataset are value

bytes, the trie is flatter and wider on average, see the last

row in Figure 10.

8.3 Query Performance

Table 7 shows twelve typical CAS queries with their query

path q and the value range [vl, vh]. We show for each query

the final result size and the number of keys that match the in-

dividual predicates. In addition, we provide the selectivities

of the queries. The selectivity σ (σP) [σV] is computed as

the fraction of all keys that match the CAS query (path predi-

cate) [value predicate]. A salient characteristic of the queries

is that the final result is orders of magnitude smaller than the

results of the individual predicates. Queries Q1 through Q6

on the GitLab dataset increase in complexity. Q1 looks up

all revisions that modify one specific file in a short two-hour

time frame. Thus, Q1 is similar to a point query with very

low selectivity in both dimensions. The remaining queries

have a higher selectivity in at least one dimension.Q2 looks

up all revisions that modify one specific file in a one-month

period. Thus, its path selectivity is low but its value selec-

tivity is high. QueryQ3 does the opposite: its path predicate

matches all changes to GPU drivers using the ** wildcard,

but we only look for revisions in a very narrow one-day time

frame.Q4 mixes the * and ** wildcards multiple times and

puts them in different locations of the query path (in the mid-

dle and towards the end). Q5 looks for changes to all Make-

files, using the ** wildcard at the front of the query path.

Similarly, Q6 looks for all changes to files named inode

(all file extensions are accepted with the * wildcard). The

remaining six queries on the other three datasets are similar.

100

103

106

(a) Query Q1

R
u
n
ti

m
e

[m
s]

RSCAS Lucene Postgres (VP) Postgres (PV)

(b) Query Q2 (c) Query Q3

100

103

106

(d) Query Q4

R
u
n
ti

m
e

[m
s]

(e) Query Q5 (f) Query Q6

Fig. 11: Runtime of queries Q1, . . . ,Q6 on cold caches

Figure 11 shows the runtime of the six queries on the

GitLab dataset (note the logarithmic y-axis). We clear the

operating system’s page cache before each query (later we

20

Table 7: CAS queries with their result size and the number of keys that match the path, respectively value predicate.

Query path q vl vh Result size (σ) Path matches (σP) Value matches (σV)
Dataset: GitLab (the values are commit times that are stored as 64 bit Unix timestamps)

Q1 /drivers/android/binder.c 09/10/17 09/10/17 29 (4.2 ⋅ 10−9) 125 849 (1.8 ⋅ 10−5) 328 603 (4.8 ⋅ 10−5)
Q2 /drivers/android/binder.c 01/10/17 01/11/17 3236 (4.7 ⋅ 10−7) 125 849 (1.8 ⋅ 10−5) 72 883 667 (1.1 ⋅ 10−2)
Q3 /drivers/gpu/** 07/08/14 08/08/14 60 344 (8.8 ⋅ 10−6) 151 871 503 (2.2 ⋅ 10−2) 3 503 076 (5.1 ⋅ 10−4)
Q4 /Documentation/**/arm/**/*.txt 06/05/13 22/05/13 11 720 (1.7 ⋅ 10−6) 5 927 129 (8.6 ⋅ 10−4) 22 221 892 (3.2 ⋅ 10−3)
Q5 /**/Makefile 22/05/12 04/06/12 263 754 (3.8 ⋅ 10−5) 112 037 140 (1.6 ⋅ 10−2) 10 932 756 (1.6 ⋅ 10−3)
Q6 /**/ext*/inode.* 07/08/18 29/08/18 5080 (7.4 ⋅ 10−7) 529 875 (7.7 ⋅ 10−5) 70 971 382 (1.0 ⋅ 10−2)
Dataset: ServerFarm (the values are the file sizes in bytes)

Q7 /usr/lib/** 0 kB 1 kB 512 497 (2.4 ⋅ 10−2) 2 277 518 (1.1 ⋅ 10−1) 8 403 809 (3.9 ⋅ 10−1)
Q8 /usr/share/doc/**/README 4 kB 5 kB 521 (2.4 ⋅ 10−5) 24 698 (1.2 ⋅ 10−3) 761 513 (3.6 ⋅ 10−2)
Dataset: Amazon (the values are product prices in cents)

Q9 /CellPhones&Accessories/** 100 $ 200 $ 2758 (4.1 ⋅ 10−4) 291 625 (4.3 ⋅ 10−2) 324 272 (4.8 ⋅ 10−2)
Q10 /Clothing/Women/*/Sweaters/** 70 $ 100 $ 239 (3.6 ⋅ 10−5) 4654 (6.9 ⋅ 10−4) 269 936 (4.0 ⋅ 10−2)
Dataset: XMark (the values denote the numeric attribute category)

Q11 /site/people/**/interest 0 50000 1 910 524 (3.2 ⋅ 10−2) 19 009 723 (3.2 ⋅ 10−1) 6 066 546 (1.0 ⋅ 10−1)
Q12 /site/regions/africa/** 0 50000 104 500 (1.7 ⋅ 10−3) 1 043 247 (1.7 ⋅ 10−2) 6 066 546 (1.0 ⋅ 10−1)

repeat the same experiment on warm caches). We start with

the runtime of query Q1 in Figure 11a. This point query is

well suited for existing solutions because both predicates

have low selectivities and produce small intermediate re-

sults. Therefore, the composite VP and PV indexes perform

best. No matter what attribute is ordered first in the com-

posite index (the paths or the values), the index can quickly

narrow down the set of possible candidates. Lucene on the

other hand evaluates both predicates and intersects the re-

sults, which is more expensive. RSCAS is in between Lucene

and the two composite indexes. Q2 has a low path but high

value selectivity. Because of this, the composite PV index

outperforms the composite VP index, see Figure 11b. Eval-

uating this query in Lucene is costly since Lucene must fully

iterate over the large intermediate result produced by the

value predicate. RSCAS, on the other hand, uses the se-

lective path predicate to prune subtrees early during query

evaluation. For query Q3 in Figure 11c, RSCAS performs

best but it is closely followed by the composite VP index,

for which Q3 is the best case since Q3 has a very low value

selectivity. While Q3 is the best case for VP, it is the worst

case for PV and indeed its query performance is an order

of magnitude higher. For Lucene the situation is similar to

queryQ2, except that the path predicate produces a large in-

termediate result (rather than the value predicate). QueryQ4

uses the * and ** wildcards at the end of its query path. The

placement of the wildcards is important for all approaches.

Query paths that have wildcards in the middle or at the end

can be evaluated efficiently with prefix searches. As a result,

RSCAS’s query performance remains stable and is similar

to that for queriesQ1, . . . ,Q3. Queries Q5 and Q6 are more

difficult for all approaches because they contain the descen-

dant axis at the beginning of the query path. Normally, when

the query path does not match a path in the trie, the node that

is not matched and its subtrees do not need to be considered

anymore because no path suffix can match the query path.

The ** wildcard, however, may skip over mismatches and

the query path’s suffix may match. For this reason, Lucene

must traverse its entire FST that is used to evaluate path

predicates. Likewise, the composite PV index must traverse

large parts of the index because the keys are ordered first by

the paths and in the index. The VP index can use the value

predicate to prune subtrees that do not match the value pred-

icate before looking at the path predicate. RSCAS uses the

value predicate to prune subtrees when the path predicate

does not prune anymore because of wildcards and therefore

delivers the best query runtime.

100

103

106

(a) Query Q7

R
u
n
ti

m
e

[m
s]

RSCAS Lucene Postgres (VP) Postgres (PV)

(b) Query Q8 (c) Query Q9

100

103

106

(d) Query Q10

R
u
n
ti

m
e

[m
s]

(e) Query Q11 (f) Query Q12

Fig. 12: Runtime of queries Q7, . . . ,Q12 on cold caches

In Figure 12 we show the runtime of queriesQ7, . . . Q12

on the remaining three datasets (again on cold caches). The

absolute runtimes are lower because the datasets are consid-

erably smaller than the GitLab dataset, see Table 6, but the

relative differences between the approaches are comparable

to the previous set of queries, see Figure 11.

We repeat the same experiments on warm caches, see

Figure 13 (the y-axis shows the query runtime in millisec-

onds). Note that we did not implement a dedicated caching

mechanism and solely rely on the operating system’s page

21

cache. When the caches are hot the CPU usage and mem-

ory access become the main bottlenecks. Since RSCAS pro-

duces the smallest intermediate results, RSCAS requires the

least CPU time and memory accesses. As a result, RSCAS

consistently outperforms its competitors, see Figure 13.

100

103

106

(a) Query Q1

R
u
n
ti

m
e

[m
s]

RSCAS Lucene Postgres (VP) Postgres (PV)

(b) Query Q2 (c) Query Q3

100

103

106

(d) Query Q4

R
u
n
ti

m
e

[m
s]

(e) Query Q5 (f) Query Q6

100

103

106

(g) Query Q7

R
u
n
ti

m
e

[m
s]

(h) Query Q8 (i) Query Q9

100

103

106

(j) Query Q10

R
u
n
ti

m
e

[m
s]

(k) Query Q11 (l) Query Q12

Fig. 13: Runtime of queries Q1, . . . ,Q12 on warm caches.

To evaluate the impact of the number of levels on the

query performance we ran an experiment for an RSCAS in-

dex with 109 keys from the GitLab dataset. By varying the

memory size to accommodate, respectively, 220, 226 and 230

keys, we got an RSCAS index with 1, 4 and 7 levels (tries),

respectively. The total running time for running queries Q1

to Q6 is detailed in Figure 14.

1 4 7
0

50

100

Number of levels (tries) in the RSCAS index

Q
u
er

y
ti

m
e

(s
ec

)

Fig. 14: Query performance for RSCAS index with different

number of levels.

8.4 Scalability

RSCAS uses its LSM-based structure to gracefully and effi-

ciently handle large datasets that do not fit into main mem-

ory. We discuss how to choose threshold τ , the performance

of bulk-loading and individual insertions, the accuracy of the

cost model, and the index size.

8.4.1 Calibration

We start out by calibrating the partitioning threshold τ , i.e.,

the maximum number of suffixes in a leaf node. We calibrate

τ in Figure 15 on a 100 GB subset of the GitLab dataset.

Even on the 100 GB subset, bulk-loading RSCAS with τ = 1
takes more than 12 hours, see Figure 15a. When we increase

τ , the recursive bulk-loading algorithm terminates earlier

(see lines 15–21 in Algorithm 4), hence fewer partitions are

created and the runtime improves. Since the bulk-loading

algorithm extracts from every partition its longest common

prefixes and stores them in a new node, the number of nodes

in the index also decreases as we increase τ , see Figure

15b. As a result, leaf nodes get bigger and store more un-

interleaved suffixes. This negatively affects the query per-

formance and the index size, see Figures 15c and 15d, re-

spectively. Figures 15c shows the average runtime of the six

queries Q1, . . . ,Q6. A query that reaches a leaf node must

scan all suffixes to find matches. Making τ too small de-

creases query performance because more nodes need to be

traversed and making τ too big decreases query performance

because a node must scan many suffixes that do not match a

query. According to Figures 15c, values τ ∈ [10,100] give

the best query performance. Threshold τ also affects the in-

dex size, see Figure 15d. If τ is too small, many small nodes

are created and for each such node there is storage overhead

in terms of node headers, pointers, etc., see Figure 7. If τ is

too big, leaf nodes contain long lists of suffixes for which

we could still extract common prefixes if we ψ-partitioned

them further. As a consequence, we choose medium values

for τ to get a good balance between bulk-loading runtime,

query performance, and index size. Based on Figure 15 we

choose τ = 100 as default value. More details on a quan-

titative analysis on how τ affects certain parameters can be

found in Appendix B.

8.4.2 Bulk-Loading Performance

Bulk-loading is a core operation that we use in two situ-

ations. First, when we create RSCAS for an existing sys-

tem with large amounts of data we use bulk-loading to cre-

ate RSCAS. Second, our RSCAS index uses bulk-loading

to create a disk-based RSCAS trie whenever the in-memory

RSCAS trie RM0 overflows. We compare our bulk-loading

algorithm with bulk-loading of composite B+ trees in Post-

gres (Lucene does not support bulk-loading; as a reference

22

100 102 104
0

5

10
τ = 100

(a) Threshold τ

B
u
lk

-l
o
ad

in
g

[h
]

100 102 104
0

0.5

1

1.5
τ = 100

(b) Threshold τ
N

r
N

o
d
es

[B
]

100 102 104
0

2

4

6

8

10

τ = 100

(c) Threshold τ

Q
u
er

y
R

u
n
ti

m
e

[s
]

100 102 104
0

20

40

60

80

τ = 100

(d) Threshold τ

In
d
ex

S
iz

e
[G

B
]

Fig. 15: Calibrating partitioning threshold τ

point we include Lucene’s performance for the correspond-

ing point insertions).

0 2 4 6

0

2

4

6

(a) Nr Keys [×109]

T
im

e
[h

]

RSCAS Postgres (VP) Postgres (PV) Lucene*

0 2 4 6

0

1

2

3

(b) Nr Keys [×109]

D
is

k
I/

O
[T

B
]

Fig. 16: Bulk-Loading performance

Figure 16 evaluates the performance of the bulk-loading

algorithms for RSCAS and Postgres. We give the systems

8 GB of main memory. For a fair comparison, we set the

fill factor of the composite B+ trees in Postgres to 100%

to make them read-optimized and as compact as possible

since disk-based RSCAS tries are read-only. We compare

the systems for our biggest dataset, the GitLab dataset, in

Figure 16. The GitLab dataset contains 6.9 billion keys and

has a size of 550 GB. Figure 16a confirms that bulk-loading

RSCAS takes roughly the same time as bulk-loading the PV

and VP composite indexes in Postgres (notice that RSCAS

and the PV composite index have virtually the same run-

time, thus PV’s curve is barely visible). The runtime and

disk I/O of all algorithms increase linearly in Figure 16a,

which means it is feasible to bulk-load these indexes effi-

ciently for very large datasets. Postgres creates a B+ tree by

sorting the data and then building the index bottom up, level

by level. RSCAS partitions the data and builds the index top

down. In practice, both paradigms perform similarly, both in

terms of runtime (Figure 16a) and disk I/O (Figure 16b).

8.4.3 Insertion Performance

New keys are first inserted into the in-memory trie RM0 be-

fore they are written to disk when RM0 overflows. We eval-

uate insertions into RM0 in Figure 17a and look at the inser-

tion speed when RM0 overflows in Figure 17b. For the latter

case we compare RSCAS’s on-disk insertion performance

to Lucene’s and Postgres’.

SinceRM0 is memory-based, insertions can be performed

quickly, see Figure 17a. For example, inserting 100 million

keys takes less than three minutes with one insertion tak-

ing 1.7µs, on average. In practice, the SWH archive crawls

about one million revisions per day and since a revision

modifies on average about 60 files in the GitLab dataset,

there are 60 million insertions into the RSCAS index per

day, on average. Therefore, our RSCAS index can easily

keep up with the ingestion rate of the SWH archive. Every

two days, on average, RM0 overflows and a new disk-based

RSCAS trie Ri is bulk-loaded.

50 100
0

50

100

150

(a) Nr Keys [×106]

T
im

e
[s

]
RSCAS Lucene Postgres* (VP) Postgres* (PV)

0 200 400 600
0

20

40

60

80

(b) Nr Keys [×106]

T
im

e
[m

]

Fig. 17: Insertion (a) in memory and (b) on disk

In Figure 17b we show how the RSCAS index performs

when RM0 overflows. In this experiment, we set the max-

imum capacity of RM0 to M = 100 million keys and in-

sert 600 million keys, thus RM0 overflows six times. Typ-

ically when RM0 overflows we bulk-load a disk-based trie

in a background process, but in this experiment we execute

all insertions in the foreground in one process to show all

times. As a result, we observe a staircase runtime pattern,

see Figure 17b. A flat part where insertions are performed

efficiently in memory is followed by a jump where a disk-

based trie Ri is bulk-loaded. Not all jumps are equally high

since their height depends on the size of the trie Ri that is

bulk-loaded. When RM0 overflows, the RSCAS index looks

for the smallest i such that Ri does not exist yet and bulk-

loads it from the keys in RM0 and all Rj , j < i. Therefore,

a trie Ri, containing 2iM keys, is created for the first time

after 2iM insertions. For example, after M insertions we

bulk-load R0 (M keys); after 2M insertions we bulk-load

R1 (2M keys) and delete R0; after 3M insertions we again

bulk-load R0 (M keys); after 4M insertions we bulk-load

R2 (4M keys) and deleteR0 andR1, etc. Lucene’s insertion

performance is comparable to that of RSCAS, but insertion

into Postgres’ B+ tree are expensive in comparison.3 This

is because insertions into Postgres’ B+ trees are executed

3 We measure insertion performance in Postgres by importing a
dataset twice: once with index and once without index, and then we
measure the difference in runtime

23

in-place, causing many random updates, while insertions in

RSCAS and Lucene are done out-of-place.

8.4.4 Evaluating the Cost Model

We evaluate the cost model from Lemma 5 that measures

the I/O overhead of our bulk-loading algorithm for a uni-

form data distribution and compare it to the I/O overhead

of bulk-loading the real-world GitLab dataset. The I/O over-

head is the number of page transfers to read/write interme-

diate results during bulk-loading. We multiply the I/O over-

head with the page size to get the number of bytes that are

transferred to and from disk. The cost model in Lemma 5

has four parameters: N , M , B, and f (see Section 5.4).

We set fanout f = 10 since this is the average fanout of

a node in RSCAS for the GitLab dataset, see Figure 10a.

The cost model assumes thatM (B) keys fit into memory (a

page). Therefore, we set B = ⌈16KB
80B
⌉ = 205, where 16 KB

is the page size and 80 is the average key length (see Sec-

tion 8.2). Similarly, if the memory size is 8 GB we can store

M = ⌈8GB
80B
⌉ = 100 million keys in memory.

In Figure 18a we compare the actual and the estimated

I/O overhead to bulk-load RSCAS as we increase the num-

ber of keys N in the dataset, keeping the memory size fixed

at M = 100 million keys. The estimated and actual cost are

close and within 15% of each other. In Figure 18b we vary

the memory size and fix the full GitLab dataset as input.

The estimated cost is constant from M = 100 to M = 400

million keys because of the ceiling operator in logf ⌈NM ⌉ to

compute the number of levels of the trie in Lemma 5. If we

increase M to 800 million keys, the trie in the cost model

has one level less before partitions fit entirely into memory

and therefore the I/O overhead decreases and remains con-

stant thereafter since only the root partition does not fit into

main memory.

0 2 4 6
0

1

2

(a) Nr Keys N [×109]

I/
O

O
v
er

h
ea

d
[T

B
] Actual I/O overhead Estimated I/O overhead

100 400 1600
0

1

2

(b) Memory Keys M [×106]

Fig. 18: Bulk-Loading cost model

In Figure 19a we compare the actual and the estimated

I/O overhead to insert N keys one-by-one into RSCAS, set-

tingM = 100×106. We compute the estimated I/O overhead

by multiplying the amortized cost of one insertion accord-

ing to Lemma 7 with the number of keys N . We observe a

staircase pattern for the actual I/O overhead because of the

repeated bulk-loading when the in-memory trie overflows

after every M insertions. Next we fix N = 600 million keys

and increase M in Figure 19b. In general, increasing M de-

creases the actual and estimated overhead because less data

must be bulk-loaded. But this is not always the case. For

example, the actual I/O overhead increases from M = 200

to M = 300 million keys. To see why, we have to look at

the tries that need to be bulk-loaded. For M = 200 we cre-

ate three tries: after M insertions R0 (200 mil.), after 2M

insertions R1 (400 mil.), and after 3M insertions again R0

(200 mil.) for a total of 800 million bulk-loaded keys. For

M = 300 we create only two tries: after M insertions R0

(300 mil.) and afterM insertionsR1 (600 mil.) for a total of

900 million bulk-loaded keys.

200 400 600
0

0.1

0.2

0.3

(a) Nr Keys N [×106]

I/
O

O
v
er

h
ea

d
[T

B
] Actual I/O overhead Estimated I/O overhead

200 400 600
0

0.1

0.2

0.3

(b) Memory Keys M [×106]

Fig. 19: Insertion cost model

8.4.5 Index Size

Figure 20 shows the size of the RSCAS, Lucene, and Post-

gres indexes for our four datasets. The RSCAS index is be-

tween 30% to 80% smaller than the input size (i.e., the size

of the indexed keys). The savings are highest for the XMark

dataset because it has only seven unique paths and therefore

the RSCAS trie has fewer nodes since there are fewer dis-

criminative bytes. But even for a dataset with a large num-

ber of unique paths, e.g., the GitLab dataset, RSCAS is 43%

smaller than the input. RSCAS’s size is comparable to that

of the other indexes since all the indexes require space linear

in the number of keys in the input.

0

200

400

600

(a) GitLab

S
p
ac

e
[G

B
]

RSCAS Lucene Postgres (VP) Postgres (PV)

0

0.5

1

(b) ServerFarm

0

0.5

1

(c) Amazon

0

0.5

1

(d) XMark

Fig. 20: Space consumption

9 Conclusion and Outlook

We propose the RSCAS index, a robust and scalable index

for semi-structured hierarchical data. Its robustness is rooted

in a well-balanced integration of paths and values in a single

24

index using a new dynamic interleaving. The dynamic inter-

leaving does not prioritize a particular dimension (paths or

values), making the index robust against queries with high

individual selectivities that produce large intermediate re-

sults and a small final result. We use an LSM-design to scale

the RSCAS index to applications with a high insertion rate.

We buffer insertions in a memory-optimized RSCAS trie

that we continuously flush to disk as a series of read-only

disk-optimized RSCAS tries. We evaluate our index analyti-

cally and experimentally. We prove RSCAS’s robustness by

showing that it has the smallest average query runtime over

all queries among interleaving-based approaches. We evalu-

ate RSCAS experimentally on three real-world datasets and

one synthetic data. Our experiments show that the RSCAS

index outperforms state-of-the-art approaches by several or-

ders of magnitude on real-world and synthetic datasets. We

show-case RSCAS’s scalability by indexing the revisions

(i.e., commits) of all public GitLab repositories archived by

Software Heritage, for a total of 6.9 billion modified files in

120 revisions.

In our future work we plan to support deletions. In the

in-memory RSCAS trie we plan to delete the appropriate

leaf node and efficiently restructure the trie if necessary. To

delete keys from the disk-resident RSCAS trie we plan to

flag the appropriate leaf nodes as deleted to avoid expen-

sive restructuring on disk. As a result, queries need to filter

flagged leaf nodes. Whenever a new disk-based trie is bulk-

loaded, we remove the elements previously flagged for dele-

tion. It would also be interesting to implement RSCAS on

top of a high-performance platform, such as an LSM-tree-

based KV-store, the main challenge would be to adapt range

filters to our complex interleaved queries.

References

1. Apache Lucene. https://lucene.apache.org/ (2021).
[accessed September 2021]

2. Abramatic, J., Cosmo, R.D., Zacchiroli, S.: Building the universal
archive of source code. Commun. ACM 61(10), 29–31 (2018)

3. Achakeev, D., Seeger, B.: Efficient bulk updates on multiversion
B-trees. PVLDB 6(14), 1834–1845 (2013)

4. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting
and related problems. Commun. ACM 31(9), 1116–1127 (1988)

5. Alsubaiee, S., et al.: AsterixDB: A scalable, open source BDMS.
PVLDB 7(14), 1905–1916 (2014)

6. Apache: Apache Jackrabbit Oak.
https://jackrabbit.apache.org/oak/ (2021).
[accessed September 2021]

7. Arge, L.: The buffer tree: A technique for designing batched ex-
ternal data structures. Algorithmica 37(1), 1–24 (2003)

8. den Bercken, J.V., Seeger, B., Widmayer, P.: A generic approach
to bulk loading multidimensional index structures. In: VLDB, pp.
406–415 (1997)

9. Brunel, R., Finis, J., Franz, G., May, N., Kemper, A., Neumann, T.,
Färber, F.: Supporting hierarchical data in SAP HANA. In: ICDE,
pp. 1280–1291 (2015)

10. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A

distributed storage system for structured data. ACM Trans. Com-
put. Syst. 26(2), 4:1–4:26 (2008)

11. Cooper, B.F., Sample, N., Franklin, M.J., Hjaltason, G.R., Shad-
mon, M.: A fast index for semistructured data. In: VLDB, pp.
341–350 (2001)

12. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-
value store. In: ACM SOSP, pp. 205–220. ACM (2007)

13. Di Cosmo, R., Zacchiroli, S.: Software heritage: Why and how to
preserve software source code. In: iPRES (2017)

14. Finis, J., Brunel, R., Kemper, A., Neumann, T., Färber, F., May, N.:
DeltaNI: an efficient labeling scheme for versioned hierarchical
data. In: SIGMOD, pp. 905–916 (2013)

15. Finis, J., Brunel, R., Kemper, A., Neumann, T., May, N., Färber, F.:
Indexing highly dynamic hierarchical data. PVLDB 8(10), 986–
997 (2015)

16. Gilad, E., Bortnikov, E., Braginsky, A., Gottesman, Y., Hillel, E.,
Keidar, I., Moscovici, N., Shahout, R.: Evendb: Optimizing key-

value storage for spatial locality. In: Proc. of the 15th Europ. Conf.
on Computer Systems (EuroSys’20) (2020)

17. Goldman, R., Widom, J.: DataGuides: Enabling query formulation
and optimization in semistructured databases. In: VLDB, pp. 436–
445 (1997)

18. He, R., McAuley, J.J.: Ups and downs: Modeling the visual evo-
lution of fashion trends with one-class collaborative filtering. In:
WWW, pp. 507–517 (2016)

19. Kanne, C., Moerkotte, G.: The importance of sibling clustering
for efficient bulkload of XML document trees. IBM Syst. J. 45(2),
321–334 (2006)

20. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan,
R.: On the integration of structure indexes and inverted lists. In:
SIGMOD, pp. 779–790 (2004)

21. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ART-
ful indexing for main-memory databases. In: ICDE, pp. 38–49
(2013)

22. Luo, C., Carey, M.J.: On performance stability in LSM-based stor-
age systems. Proc. VLDB Endow. 13(4), 449–462 (2019)

23. Luo, C., Carey, M.J.: LSM-based storage techniques: a survey.
VLDB J. 29(1), 393–418 (2020)

24. Luo, S., Chatterjee, S., Ketsetsidis, R., Dayan, N., Qin, W., Idreos,
S.: Rosetta: A robust space-time optimized range filter for key-
value stores. In: SIGMOD ’20, pp. 2071–2086 (2020)

25. Markl, V.: MISTRAL: processing relational queries using a multi-
dimensional access technique. Ph.D. thesis, Technical University
of Munich (1999)

26. Mathis, C., Härder, T., Schmidt, K., Bächle, S.: XML indexing
and storage: fulfilling the wish list. Computer Science - R&D
30(1) (2015)

27. Matsunobu, Y., Dong, S., Lee, H.: MyRocks: LSM-tree database
storage engine serving Facebook’s social graph. Proc. VLDB En-
dow. 13(12), 3217–3230 (2020)

28. Merkle, R.C.: A digital signature based on a conventional encryp-
tion function. In: CRYPTO, vol. 293, pp. 369–378 (1987)

29. Milo, T., Suciu, D.: Index structures for path expressions. In:
ICDT, pp. 277–295 (1999)

30. Morrison, D.R.: PATRICIA - practical algorithm to retrieve infor-
mation coded in alphanumeric. J. ACM 15(4), 514–534 (1968)

31. Morton, G.: A computer oriented geodetic data base; and a new
technique in file sequencing. Tech. rep., IBM Ltd. (1966)

32. Nickerson, B.G., Shi, Q.: On k-d range search with patricia tries.
SIAM J. Comput. 37(5), 1373–1386 (2008)

33. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-
structured merge-tree (LSM-Tree). Acta Informatica 33(4), 351–
385 (1996)

34. Orenstein, J.A., Merrett, T.H.: A class of data structures for asso-
ciative searching. In: PODS, pp. 181–190 (1984)

35. Pietri, A., Spinellis, D., Zacchiroli, S.: The software heritage graph
dataset: Large-scale analysis of public software development his-
tory. In: MSR, pp. 138–142 (2020)

25

https://lucene.apache.org/
https://jackrabbit.apache.org/oak/

36. Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S.: Bkd-tree: A
dynamic scalable kd-tree. In: SSTD, pp. 46–65 (2003)

37. Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K., Bayer, R.:
Integrating the UB-Tree into a database system kernel. In: VLDB,
pp. 263–272 (2000)

38. Rousseau, G., Cosmo, R.D., Zacchiroli, S.: Software provenance
tracking at the scale of public source code. Empir. Softw. Eng.
25(4), 2930–2959 (2020)

39. Samet, H.: Foundations of multidimensional and metric data struc-
tures. Morgan Kaufmann series in data management systems.
Academic Press (2006)

40. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I.,
Busse, R.: XMark: A benchmark for XML data management. In:
VLDB, pp. 974–985 (2002)

41. Shanbhag, A., Jindal, A., Madden, S., Quiané-Ruiz, J., Elmore,
A.J.: A robust partitioning scheme for ad-hoc query workloads.
In: SoCC, pp. 229–241 (2017)

42. Shukla, D., et al.: Schema-agnostic indexing with Azure Docu-
mentDB. PVLDB 8(12), 1668–1679 (2015)

43. Wellenzohn, K., Böhlen, M.H., Helmer, S.: Dynamic interleaving
of content and structure for robust indexing of semi-structured hi-
erarchical data. PVLDB 13(10), 1641–1653 (2020)

44. Wellenzohn, K., Popovic, L., Böhlen, M., Helmer, S.: Inserting
keys into the robust content-and-structure (RCAS) index. In: AD-
BIS, pp. 121–135 (2021)

45. Zhang, H., Lim, H., Leis, V., Andersen, D.G., Kaminsky, M., Kee-
ton, K., Pavlo, A.: Surf: Practical range query filtering with fast
succinct tries. In: SIGMOD ’18, pp. 323–336 (2018)

46. Zhong, W., Chen, C., Wu, X., Jiang, S.: REMIX: efficient range
query for lsm-trees. In: 19th USENIX Conf. on File and Storage
Technologies, (FAST’21), pp. 51–64 (2021)

A Proofs

Proof (Lemma 1) Consider the ψ-partitioning ψ(K,D) = {K1, . . . ,

Km}. Let Ki ≠ Kj be two different partitions of K and let k′ ∈
Ki and k′′ ∈ Kj be two keys belonging to these partitions. Since
the paths and values of our keys are binary-comparable [21], the most
significant byte is the first byte and the least significant byte is the
last byte. Therefore, k′.D is smaller (greater) than k′′.D iff k′.D is
smaller (greater) than k′′.D at the first byte for which the two keys
differ in dimension D. All keys in K have the same longest common
prefix s = lcp(K,D) in dimension D and their discriminative byte is
g = ∣s∣ + 1 = dsc(K,D). By Definition 6, keys k′ and k′′ share the
same longest common prefix s inD, i.e., k′.D[1, g−1] = k′′.D[1, g−
1] = s and they differ at the discriminative byte k′.D[g] ≠ k′′.D[g].
Therefore, if k′.D[g] < k′′.D[g], we know that k′.D < k′′.D (and
similarly for >). By the correctness constraint in Definition 6, all keys
in Ki have the same value at k′.D[g] and are therefore all smaller or
all greater than the keys in Kj , who all have the same value k′′.D[g].

◻

Proof (Lemma 2) By Definition 6, all keys k in a partition Ki have
the same value k.D[dsc(K,D)] for the discriminative byte of K in
dimension D. Therefore, dsc(K,D) is no longer a discriminative byte
in Ki, instead dsc(Ki,D) > dsc(K,D). Let Ki ≠Kj be two differ-
ent partitions. Again by Definition 6, we know that dsc(Ki∪Kj ,D) =
dsc(K,D) since any two keys from these two partitions differ at byte
dsc(K,D). Substituting ∣lcp(K,D)∣ = dsc(K,D) − 1 concludes the
proof that ψ(K,D) is prefix-preserving in D. ◻

Proof (Lemma 3) Since not all keys in K are equal in dimension D,
we know there must be at least two keys k1 and k2 that differ in di-
mension D at the discriminative byte g = dsc(K,D), i.e., k1.D[g] ≠
k2.D[g]. According to the disjointness constraint of Definition 6, k1
and k2 must be in two different partitions ofψ(K,D). Hence, ∣ψ(K,D)∣
≥ 2. ◻

Proof (Lemma 4) The first line states that Ki ⊂ K is one of the parti-
tions ofK. From Definition 6 it follows that the value k.D[dsc(K,D)]
is the same for every key k ∈ Ki. From Definition 5 it follows that

dsc(Ki,D) ≠ dsc(K,D). By removing one or more keys from K to
getKi, the keys inKi will become more similar compared to those in
K. That means, it is not possible for the keys in Ki to differ in a posi-
tion g < dsc(K,D). Consequently, dsc(Ki,D) ≮ dsc(K,D) for any

dimension D (so this also holds for D: dsc(Ki,D) ≮ dsc(K,D)).
Thus dsc(Ki,D) > dsc(K,D) and dsc(Ki,D) ≥ dsc(K,D). ◻

Proof (Theorem 1) We begin with a brief outline of the proof. We show
for a level l that the costs of query Q and complementary query Q′ on
level l is smallest with the dynamic interleaving. That is, for a level
l we show that ∏l

i=1(o ⋅ ςφi
) + ∏l

i=1(o ⋅ ς′φi
) is smallest with the

vector φDY = (V,P, V,P, . . .) of our dynamic interleaving. Since this
holds for any level l, it also holds for the sum of costs over all levels l,
1 ≤ l ≤ h, and this proves the theorem.

We only look at search trees with a height h ≥ 2, as for h = 1 we
do not actually have an interleaving (and the costs are all the same).
W.l.o.g., we assume that the first level of the search tree always starts

with a discriminative value byte, i.e., φ1 = V . Let us look at the cost
for one specific level l for query Q and its complementary query Q′.
We distinguish two cases: l is even or l is odd.

l is even: The cost for a perfectly alternating interleaving forQ for
level l is equal to ol(ςV ⋅ ςP . . . ςV ⋅ ςP), while the cost forQ′ is equal
to ol(ς′V ⋅ς′P . . . ς′V ⋅ς′P), which is equal to ol(ςP ⋅ςV . . . ςP ⋅ςV). This

is the same cost as for Q, so adding the two costs gives us 2olς
l/2
V
ς
l/2
P

.
For a non-perfectly alternating interleaving with the same number

of ςV and ςP multiplicands up to level l we have the same cost as for

our dynamic interleaving, i.e., 2olς
l/2
V
ς
l/2
P

. Now let us assume that the
number of ςV and ςP multiplicands is different for level l (there must
be at least one such level l). Assume that forQwe have rmultiplicands
of type ςV and s multiplicands of type ςP , with r + s = l and, w.l.o.g.,
r > s. This gives us olςsV ς

s
P ς

r−s
V
+ olςsV ς

s
P ς

r−s
P
= olςsV ς

s
P (ςr−sV

+
ςr−s
P
) for the cost.

We have to show that 2olς
l/2
V
ς
l/2
P
≤ olςsV ς

s
P (ςr−sV

+ ςr−s
P
). As

all values are greater than zero, this is equivalent to 2ς
l/2−s
V

ς
l/2−s
P

≤
ςr−s
V
+ ςr−s

P
. The right-hand side can be reformulated: ςr−s

V
+ ςr−s

P
=

ςl−2s
V

+ ςl−2s
P

= ς
l/2−s
V

ς
l/2−s
V

+ ς
l/2−s
P

ς
l/2−s
P

. Setting a = ς
l/2−s
V

and

b = ς
l/2−s
P

, this boils down to showing 2ab ≤ a2 + b2⇔ 0 ≤ (a− b)2,
which is always true.

l is odd: W.l.o.g. we assume that for computing the cost for a
perfectly alternating interleaving forQ, there are ⌈l/2⌉multiplicands of

type ςV and ⌊l/2⌋multiplicands of type ςP . This results in olς
⌊l/2⌋
V

ς
⌊l/2⌋
P(ςV + ςP) for the sum of costs for Q and Q′.

For a non-perfectly alternating interleaving, we again have olςsV ς
s
P(ςr−s

V
+ ςr−s

P
) with r + s = l and r > s, which can be reformulated to

olςsV ς
s
P (ς⌊

l/2⌋−s
V

ς
⌊l/2⌋−s
V

ςV + ς
⌊l/2⌋−s
P

ς
⌊l/2⌋−s
P

ςP).
What is left to prove is olς

⌊l/2⌋
V

ς
⌊l/2⌋
P
(ςV + ςP) ≤ olςsV ςsP (ς⌊

l/2⌋−s
V

ς
⌊l/2⌋−s
V

ςV + ς
⌊l/2⌋−s
P

ς
⌊l/2⌋−s
P

ςP), which is equivalent to ς
⌊l/2⌋−s
V

ς
⌊l/2⌋−s
P

(ςV + ςP) ≤ ς⌊l/2⌋−sV
ς
⌊l/2⌋−s
V

ςV + ς
⌊l/2⌋−s
P

ς
⌊l/2⌋−s
P

ςP . Substituting a =
ςV , b = ςP , and x = ⌊l/2⌋ − s, this means showing that axbx(a+ b) ≤
a2x+1+b2x+1⇔ 0 ≤ a2x+1+b2x+1−axbx(a+b). Factorizing this

polynomial gives us (ax − bx)(ax+1 − bx+1) or (bx − ax)(bx+1 −
ax+1). We look at (ax − bx)(ax+1 − bx+1), the argument for the
other factorization follows along the same lines. This term can only
become negative if one factor is negative and the other is positive. Let
us first look at the case a < b: since 0 ≤ a, b ≤ 1, we can immediately
follow that ax < bx and ax+1 < bx+1, i.e., both factors are negative.
Analogously, from a > b (and 0 ≤ a, b ≤ 1) immediately follows
ax > bx and ax+1 > bx+1 , i.e., both factors are positive. ◻

Proof (Theorem 2) We assume a tree with fanout o and height h. With
the dynamic interleaving, the dimension on each level alternates, i.e.,

26

φDY = (V,P, V,P, . . .). We need to show that the cost for every query
in a set of complementary queries Q is minimal with φDY. Thus, we
show that this inequality holds:

∀φ ∶ ∑
(ςP ,ςV)∈Q

Ĉ(o, h, φDY, ςP , ςV) ≤

∑
(ςP ,ςV)∈Q

Ĉ(o, h, φ, ςP , ςV)

First, we double the cost on each side:

∀φ ∶ 2 × ∑
(ςP ,ςV)∈Q

Ĉ(o, h, φDY, ςP , ςV) ≤

2 × ∑
(ςP ,ςV)∈Q

Ĉ(o, h, φ, ςP , ςV)

This is the same as counting the cost of each query and its complemen-
tary query twice:

∀φ ∶ ∑
(ςP ,ςV)∈Q

(Ĉ(o, h, φDY, ςP , ςV) + Ĉ(o, h, φDY, ςV , ςP)) ≤

∑
(ςP ,ςV)∈Q

(Ĉ(o, h, φ, ςP , ςV) + Ĉ(o, h, φ, ςV , ςP))

Since by Theorem 1 each summand on the left side is smaller than or
equal to its corresponding summand on the right side, the sum on the
left side is is smaller than or equal to the sum on the right side. ◻

Proof (Theorem 3) Similar to the proof of Theorem 1, we show that
for every level l, ∣∏l

i=1(o ⋅ ςφi
) −∏l

i=1(o ⋅ ς′φi
)∣ is smallest for the

dynamic interleaving vector φDY = (V,P, V,P, . . .).
Again, we only look at search trees with a height h ≥ 2 and,

w.l.o.g., we assume that the first level of the search tree always starts
with a discriminative value byte, i.e., φ1 = V . Let us look at the differ-
ence in costs for one specific level l for queryQ and its complementary
query Q′. We distinguish two cases: l is even or l is odd.

l is even: The cost for a perfectly alternating interleaving forQ for
level l is equal to ol(ςV ⋅ ςP . . . ςV ⋅ ςP), while the cost forQ′ is equal
to ol(ς′V ⋅ ς′P . . . ς′V ⋅ ς′P), which is equal to ol(ςP ⋅ ςV . . . ςP ⋅ ςV).
This is the same cost as for Q, so subtracting one cost from the other
gives us 0.

For a non-perfectly alternating interleaving with the same number
of ςV and ςP multiplicands up to level l we have the same difference in
costs as for our dynamic interleaving, i.e., 0. Now let us assume that the
number of ςV and ςP multiplicands is different for level l (there must
be at least one such level l). Assume that forQwe have r multiplicands
of type ςV and s multiplicands of type ςP , with r + s = l and, w.l.o.g.,
r > s. This gives us ∣olςsV ςsP ςr−sV

− olςsV ς
s
P ς

r−s
P
∣ for the absolute

value of the difference in costs, which is always greater than or equal
to 0.

l is odd: W.l.o.g. we assume that for computing the cost for a per-
fectly alternating interleaving for Q, there are ⌈l/2⌉ multiplicands of

type ςV and ⌊l/2⌋multiplicands of type ςP . This results in ∣olς⌊l/2⌋
V

ς
⌊l/2⌋
P(ςV − ςP)∣ for the difference in costs between Q and Q′.

For a non-perfectly alternating interleaving, we again have ∣olςsV ςsP
ςr−s
V
− olςsV ς

s
P ς

r−s
P
∣ = ∣olςsV ςsP (ςr−sV

− ςr−s
P
)∣ with r + s = l and

r > s, which can be reformulated to ∣olςsV ςsP (ς⌊
l/2⌋−s

V
ς
⌊l/2⌋−s
V

ςV −

ς
⌊l/2⌋−s
P

ς
⌊l/2⌋−s
P

ςP)∣.
What is left to prove is ∣olς⌊l/2⌋

V
ς
⌊l/2⌋
P
(ςV −ςP)∣ ≤ ∣olςsV ςsP (ς⌊

l/2⌋−s
V

ς
⌊l/2⌋−s
V

ςV − ς
⌊l/2⌋−s
P

ς
⌊l/2⌋−s
P

ςP)∣. W.l.o.g., assume that ςV > ςP (if
ςV < ςP , we just have to switch the minuend with the subtrahend in
the subtractions and the roles of ςV and ςP in the following), then,
as all numbers in the inequality are greater than or equal to 0, we

have to prove olς
⌊l/2⌋
V

ς
⌊l/2⌋
P
(ςV − ςP) ≤ olςsV ςsP (ς⌊

l/2⌋−s
V

ς
⌊l/2⌋−s
V

ςV −

ς
⌊l/2⌋−s
P

ς
⌊l/2⌋−s
P

ςP), which is equivalent to ς
⌊l/2⌋−s
V

ς
⌊l/2⌋−s
P

(ςV −ςP) ≤

ς
⌊l/2⌋−s
V

ς
⌊l/2⌋−s
V

ςV − ς
⌊l/2⌋−s
P

ς
⌊l/2⌋−s
P

ςP . Substituting a = ςV , b = ςP ,
and x = ⌊l/2⌋ − s, this means showing that axbx(a − b) ≤ a2x+1 −
b2x+1⇔ ax+1bx −axbx+1 ≤ a2x+1 − b2x+1⇔ b2x+1 −axbx+1 ≤
a2x+1 − ax+1bx ⇔ bx+1(bx − ax) ≤ ax+1(ax − bx). Since a > b,
the left-hand side of the inequality is always less than 0, while the
right-hand side is greater than 0. ◻

Proof (Lemma 5) There are ⌈logf ⌈NM ⌉⌉ levels before partitions fit
completely into memory, at which point there is no further disk I/O
except writing the final output (the index) to disk. At each level we
read and write ⌈N

B
⌉ pages. ◻

Proof (Lemma 6) We assume thatψ(L,D) returns two partitions where
the first contains one key and the second contains all other keys. Thus,
on each level of the partitioning we have two partitions Li,1 and Li,2

such that ∣Li,1∣ = 1 and ∣Li,2∣ = N − i. Partition Li,1 occupies one
page on disk. Li,2 occupies ⌈N−i

B
⌉ pages on disk. Setting the latter to

⌈M
B
⌉ (i.e., the number of pages that fit into memory) and solving for i

shows that i = N − ⌈M
B
⌉B is the smallest number of levels i such that

Li,2 fits completely into memory. ◻

Proof (Theorem 4) The lower-bound follows from Lemma 5. In each
level O(N

B
) pages are transferred and there are O(log(N

M
)) levels in

the partitioning. The base of the logarithm is upper-bounded by f =
28 since we ψ-partition at the granularity of bytes. The upper-bound
follows from Lemma 6. In each level O(N

B
) pages are transferred and

there are O(N −M) levels in the worst case. ◻

Proof (Lemma 7) A key moves through a series of indexes in our
indexing pipeline. First, it is stored in RM

0
at no I/O cost and after

that, it moves through a number of disk-based indexes R0, . . . ,Rk .
Importantly, when a key in an index Ri is moved, it always moves
to a larger index Rj , j > i. After inserting N keys there exist at
most O(log

2
(N

M
)) RSCAS indexes, hence a key is moved at most

O(log
2
(N
M
)) times. The amortized I/O overhead when all N keys

are bulk-loaded at once is 1

N
× cost(N,M,B). Hence, the amortized

I/O overhead of a single insertion in a sequence of N insertions is
O(log

2
(N
M
) × 1

N
× cost(N,M,B)). ◻

B Tuning τ

The following provides more details on how to calibrate the partition-
ing threshold τ discussed in Section 8.4.1. In particular, we quantify
the effects leading to the shape of the curves depicted in Figure 15. Al-
though we have not been able to develop a closed formula (so far), the
results below are important steps towards such a formula.

The diagrams in Figure 15(a) and Figure 15(b), showing the im-
pact of τ on the number of nodes and the overall time for bulk-loading
the index, are not particularly interesting for the calibration, as there
is a clear relationship: the larger the value of τ , the faster we can stop
the partitioning and the smaller the number of created nodes. Conse-
quently, the execution time for bulk-loading goes down, as we can skip
more and more partitioning steps.

Figure 15(c) and Figure 15(d) are much more interesting, as we
have two effects counteracting each other in both figures. We start with
Figure 15(d), showing the impact of τ on the index size. First of all,
τ influences the total amount of metadata stored on each disk page.
Clearly, the fewer leaf nodes per page we have, the smaller the amount
of this metadata. Assuming that we actually fill every leaf node with
exactly τ key suffixes and that we store d bytes of metadata, the over-

head is
Np ⋅d

τ
per disk page (with Np being the number of input keys

per disk page). This reciprocal function flattens out quickly and ex-
plains why the curve in Figure 15(d) drops at the beginning. However,
there is a second effect at play. The more key suffixes share a leaf node
(i.e., the larger the value of τ), the higher the probability that they share
a common prefix that has not been factored out, because we stopped the

27

partitioning early. We found estimating the expected value of overlap-
ping prefixes in leaf nodes very hard to do, as it depends on the data
distribution. A simplified version can be computed as follows. Assume

we have n different prefixes x1, x2, . . . , xn that appear in the key suf-
fixes stored in leaf nodes and that all prefixes have the same likelihood
of appearing. Moreover, let u be the number of unique prefixes in a
leaf node, then we have τ − u prefixes that are stored multiple times
(the first time a prefix shows up in a leaf node, it is fine, but every sub-
sequent appearance adds to the overhead). For a leaf node, let Ri be
a random variable that is 1 if xi is in the node, and 0 otherwise. Then
the number X of different prefixes found in the node is∑n

i=1Ri. Due
to the linearity of expectation, E[X] = ∑n

i=1 E[Ri]. The probability
of at least one prefix xi appearing in a leaf node is equal to one mi-
nus the probability that there is none, which is equal to 1 − (n−1

n
)τ .

Thus, E[X] = n(1 − (n−1
n
)τ), which means that the expected over-

head is τ − E[X] per leaf node. This rises slowly for small values of
τ , but ascends more quickly for larger values of τ . Nevertheless, this is
still a simplification, as it counts the prefixes rather than summing their
lengths.

We now turn to the impact of the threshold τ on the query runtime
(Figure 15(c)). The threshold determines how many internal nodes we
have that distinguish subsets of keys. For τ = 1, when evaluating a
query, we visit a path down the trie containing all discriminative bytes.
When increasing τ , the path shortens, as we skip the final discrimi-
native bytes. Mapping τ to the path length is not straightforward, as
this depends on the distribution of the keys again. Assuming that every
discriminative byte splits a set of keys into b subsets and that the full
length of a trie path for τ = 1 is l, the number of internal nodes visited
by a query is equal to l− logb τ . The curve of this function drops at the
beginning, but then quickly flattens out, explaining the left-hand part of
Figure 15(c). The second effect of increasing τ is that we are accessing
more and more keys that are not relevant for our query. The irrelevant
keys just happen to be in the same leaf node, because we no longer
distinguish them from the relevant keys. There is at least one key in the
node that satisfies the query, for the other keys we compute the proba-
bility that they are relevant. We cannot just use the selectivity σc of the
complete query, since we need the selectivity σs of the suffix stored
in the leaf node. Thus, the expected number of keys in a leaf node not
satisfying the query predicate is (1 − σs)(τ − 1). Assuming uniform
distribution and independence, we can estimate σs given σc: if the
length of the suffix in the leaf node is 1

s
of the total length of a key,

then σs = s
√
σc. Since all selectivities are within the range of [0,1],

σs ≥ σc, which means that (1 − σs) ≤ (1 − σc), so (1 − σs)(τ − 1)
is usually a relatively flat ascending line. This explains the shape of the
curve on the right-hand side of Figure 15(c).

While the distribution of the keys has a direct impact on all of
these parameters, as far as we can see, the total number of input keys
does not directly influence them. Consequently, we can use a sample
to calibrate τ (as we have done in Section 8.4.1).

28

	1 Introduction
	2 Application Scenario
	3 Related Work
	4 Background
	4.1 Data Representation
	4.2 Content-and-Structure (CAS) Queries
	4.3 Interleaving of Composite Keys

	5 Theoretical Foundation – Dynamic Interleaving
	5.1 -Partitioning
	5.2 Properties of the -Partitioning
	5.3 Dynamic Interleaving
	5.4 Efficiency of Interleavings

	6 Robust and Scalable CAS (RSCAS) Index
	6.1 Structure of an RSCAS Trie
	6.2 RSCAS Index
	6.3 Storage Layout
	6.3.1 Memory-Optimized RSCAS Trie
	6.3.2 Disk-Optimized RSCAS Trie

	7 Algorithms
	7.1 Querying RSCAS
	7.1.1 Query Algorithm

	7.2 Updating Memory-Based RSCAS Trie
	7.2.1 Lazy Restructuring
	7.2.2 Inserting Keys with Lazy Restructuring

	7.3 Bulk-Loading a Disk-Based RSCAS Trie
	7.3.1 Bulk-Loading Algorithm

	7.4 Merging RSCAS Tries Upon Overflow
	7.5 Analytical Evaluation
	7.5.1 Total I/O Overhead During Bulk-Loading
	7.5.2 Amortized I/O Overhead During Insertions

	8 Experimental Evaluation
	8.1 Setup
	8.2 Impact of Datasets on RSCAS's Structure
	8.3 Query Performance
	8.4 Scalability
	8.4.1 Calibration
	8.4.2 Bulk-Loading Performance
	8.4.3 Insertion Performance
	8.4.4 Evaluating the Cost Model
	8.4.5 Index Size

	9 Conclusion and Outlook
	A Proofs
	B Tuning

