
Wiki Content Templating

Angelo Di Iorio
Computer Science

Department
University of Bologna

Mura Anteo Zamboni, 7
40127 Bologna, ITALY
diiorio@cs.unibo.it

Fabio Vitali
Computer Science

Department
University of Bologna

Mura Anteo Zamboni, 7
40127 Bologna, ITALY
fabio@cs.unibo.it

Stefano Zacchiroli
Computer Science

Department
University of Bologna

Mura Anteo Zamboni, 7
40127 Bologna, ITALY

zacchiro@cs.unibo.it

ABSTRACT
Wiki content templating enables reuse of content structures
among wiki pages. In this paper we present a thorough
study of this widespread feature, showing how its two state
of the art models (functional and creational templating) are
sub-optimal. We then propose a third, better, model called
lightly constrained (LC) templating and show its implemen-
tation in the Moin wiki engine. We also show how LC tem-
plating implementations are the appropriate technologies to
push forward semantically rich web pages on the lines of
(lowercase) semantic web and microformats.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Hypertext/hypermedia;
H.3.5 [Online Information Services]: Web-based services

General Terms
Design

Keywords
wiki engine, template, semantic web, microformats

1. INTRODUCTION
The Web is the largest and more lively source of infor-

mation encoded in a machine readable format. It is also
mostly useless without a downstream human understanding
of a rendered version of the contained pages. The Web’s
natural evolution—the Semantic Web [1] (with capital “S”
and “W”)—aims to change the encoded information so that
it is not only machine readable, but also machine process-
able, permitting the creation of added-value services based
on the semantics of web pages.

The high footprint of most technologies related to the Se-
mantic Web has so far hindered its diffusion; to counter this,
two recent trends are trying to lower the technological barri-
ers that have so far kept authors away from semantic anno-
tating their content: microformats and semantic wiki. On
one hand microformats [7, 8] and similar enabling technolo-
gies (e.g. RDFa [14]) permit one to express tangible meta-
data as part of the content markup of web pages. Taken
together those technologies are often referred to as seman-
tic web (with lowercase “s” and “w”). On the other hand,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

semantic wikis (e.g. [11, 16, 17]) exploit the content medi-
ation performed by the wiki engine to deliver semantically
rich web pages and give to authors simple interfaces (some-
times even invisible interfaces based on syntactic quirks!) to
semantically annotate their content or to import semantic
metadata.

Though (lowercase) semantic web and semantic wikis fill
a technological gap inhibiting authors to provide metadata,
the question of how to actually foster the creation of seman-
tically rich web pages is still open. By analogy, we observe
that a similar goal has been traditionally pursued by wiki
content templating mechanisms1 which have been available
since the first wiki clones under the name of seeding pages.
The key idea of this work is indeed expressed by the intuition
wiki template = information pattern: (content) templates
are used in wikis to give authors skeletons (or patterns) to
be filled with precise information. Common use cases of
templates are coherent with this intuition:

1. information and navigation boxes in Wikipedia2 are
used to collect sets of information about software (name,
homepage URL, license, version, . . . ) or musician al-
bums (title, genre, year, previous album, . . . ) which
will then be rendered as part of the page;

2. seeding pages are used to foster the creation of pages
which will describe similar items like FAQ entries, meet-
ing minutes, book reviews, . . .

We believe that wiki templates are good handles for en-
riching the semantics of wiki pages, as it permit one to do so
without changing the editing mechanisms and workflow al-
ready known by authors. Assuming a (wiki-compatible) way
to enforce template matching can be found, we can add mi-
croformat capabilities to whatever wiki markup is used and
then use templates to drive the creation of pages as authors
have been done since the early wiki days. This compatibility
with the pre-existing workflow of authors is a big win, and

2
http://www.wikipedia.org

2In the wiki lingo the term “template” is frequently encoun-
tered, but it is used with various meanings. In [9] one of the
most widespread interpretation is used, the presentational
template interpretation: a template is a HTML page skele-
ton with holes to be filled by the wiki engine with the ren-
dering of parts (e.g. title and body) of a wiki page content.
In this paper we are concerned instead with the content tem-
plate interpretation: a template is a mechanism to reuse, to
some extent, wiki page content across different pages. This
justifies our subsequent use of the term “template” to refer
to content templating, unless otherwise stated.

http://www.wikipedia.org


can make the difference with previous attempts at semanti-
cally enriching the web, at least for the slice of it which is
delivered through wikis.

In this paper we therefore study state of the art wiki tem-
plating mechanisms in order to understand if and how they
can be used for the task of fostering the production of se-
mantically rich web pages. In doing so we identify two alter-
native templating models which can be found in state of the
art wiki engines: functional templating (in which templates
are invoked by name and passed parameters) and creational
templating (in which templates are simply copied as new
content at the beginning of a page revision history). We will
see that none of the two is up to the task and, more gener-
ally, that both models have drawbacks even in implement-
ing basic content templating functionalities in a way that
is compatible with foundational wiki principles. We then
propose a new templating model, called lightly constrained
templating, which fixes the drawbacks of the existing mod-
els and which we believe to be a suitable mechanism to ease
the production of template-based (lowercase) semantic web
pages.

It is worth emphasizing that our approach is sensibly dif-
ferent than traditional semantic wikis. We are not devel-
oping yet another semantic wiki, nor providing an interface
to ease the input of explicit semantic metadata. We are
rather showing how to extend traditional wikis with seman-
tic capabilities, without sacrificing the well-established edit-
ing workflow.

Paper structure. To properly classify state of the art wiki
templating models we start in Section 2 from a task anal-
ysis considering the wiki user goals that can be mapped
to template-related tasks. Then, in Section 3, we detail
functional and creational templating models, characterizing
them on the basis of how the conceptual action “apply a
template to a page” is made available to the user. Section 4
presents lightly constrained templating while Section 5 dis-
cusses our implementation and show its deployment possi-
bilities in standard and semantic wikis. Section 6 concludes
the paper and presents some related works.

2. TASK ANALYSIS
The abstract concept of wiki templating concept is fre-

quently blurred to a specific templating mechanism imple-
mentation available in a wiki engine. For example, a Wikipedia
user probably thinks that wiki templating as a whole is
achieved through the creation of pages like the software in-
fobox3 template and their invocations from the markup of
other pages. Similarly a MoinMoin4 user hearing “wiki tem-
plate” probably depicts in her mind the list of seeding pages
she can choose from when clicking on a page creation dan-
gling link.

To analyze templating in an engine-agnostic way, we per-
formed a task analysis [13] of user activities that can benefit
from templating support implemented by wiki engines. The
results of our task analysis are summarized in Table 1. In
the table we stick to some well-established terms [13]: a goal
is a state of the system a user wishes to achieve, an internal
task (or simply a task) is a sequence of one or more activities
the user thinks are required to achieve a goal.

3
http://en.wikipedia.org/wiki/Template:Infobox_software

4
http://moinmo.in/

Table 1: Goals and tasks (with roles of users pursu-
ing them) that can be mapped to actions on devices
implemented by wiki templating mechanisms.

No. Role Task / Goal
1. editor instantiate a boilerplate page

goal : (quickly) create a new page that is
instance of another one

2. tailor create/modify a boilerplate page
goal : publish a generic page to foster pop-
ulation of the wiki space with boilerplate
instances, by easing their creation

3. editor copy and modify the content of an existing
page (including adding/removing content)
goal : (quickly) create a new page that is
similar to another one

4. editor apply/unapply to a page, the content
structure of other pages
goal : uniform (distinguish) the content
organization of a page with (from) other
pages

5. tailor create a predefined content organization
for future use
goal : publish a reusable page component
to foster population of the wiki space with
wiki pages that share organization of con-
tent (parts)

6. tailor change at once the structure of several
pages
goal : (quickly) change the content organi-
zation of several pages to smooth visitors’
experience when reading them

7. editor copy and reorganize the content of an ex-
isting page
goal : create an alternative view of some
content already present in the wiki

We will not bother the reader with the hierarchical task
analysis of each task, since the more the tasks are decom-
posed, the tighter their dependencies become on a specific
templating mechanism implementation. Yet we observe that
all tasks can be eventually decomposed to actions on devices
that are specific of some templating mechanisms, such ac-
tions will be presented in Section 3.

Each task of Table 1 is specific of a peculiar wiki user
role (that notwithstanding the fact that the same user can
play different roles at different times). The roles we have
considered are the following:

visitor the most common user role, i.e. a user browsing
the wiki simply to view pages authored by others. All
template-related actions are hidden to such an user,
so she is the actor of none of the tasks shown in Ta-
ble 1. Yet visitors are relevant to our discussion, as
users in other roles act for them, in particular to im-
prove their user experience by uniforming the organi-
zation of pages;

editor a user that edits the source text of wiki pages either
to create new pages from scratch or to change pre-
existing pages;

http://en.wikipedia.org/wiki/Template:Infobox_software
http://moinmo.in/


tailor users that are responsible of some wiki parts (i.e. page
sets), for example of all the pages pertaining to a given
subject, category, or which share other characteristics
such as being co-located in the page namespace. Note
that tailors are not the only authors of these parts of
the wiki, but they are in charge of the customization of
the contained pages [10], since otherwise the intrinsic
editing freedom of the wiki would have been defeated.

Sometimes tailors have access to privileged technical
features that are not available to other users. In such
settings, according to folklore, users gain tailor (or“ad-
min”, as it is called in some wiki communities) priv-
ileges on the basis of reputation. Well-known exam-
ples of tailor expressions in real wiki communities are
Wikipedia’s bureaucrats5 and administrators6.

Task highlights. Task 1 and 2 (as we will see they often
come in pairs) are both related to the common need of pro-
viding representations, in the form of several wiki pages, of
objects of an universe that conceptually belong to the same
class. For instance, a set of courses offered by computer
science departments might need to be described by similar
wiki pages, the same can be required for publishing period-
ically on the wiki reports of some recurring event (software
releases, work meetings, football matches, . . . ), or to “poll”
users on a given subject.

Tasks 1 and 2 map to complementary activities pursued
by a tailor and an editor. The former wants to foster the
creation of several pages describing objects of the same class.
Her strategy for achieving so, according to task 2, is prepar-
ing a generic page (boilerplate page) which represents a generic
instance of the class of interest. The generality is expressed
as page incompleteness: to obtain from the boilerplate an
actual page (i.e. a page describing a class instance), the set of
“holes” occurring in the page should be filled with instance-
specific data. This strategy is the wiki workflow equivalent
of the Prototype object-oriented design pattern [5]: an
instance of a desired class is obtained by first copying an
available prototype of the same class, and then filling in the
missing information.

The issue of how to avoid that future edits on the instance
page do not change “fixed” parts of the generic page, there-
fore breaking the class-instance relationship, is not trivial to
achieve in some templating models (see Section 3). Task 1 is
the point of view of an editor on the strategy of the tailor of
task 2: to create an instance page of some class she chooses
the corresponding prototypical page at page creation time
(as it happens with seeding pages) and fills its holes.

Task 3 is similar, but acts on page pairs which are not re-
lated by a prototype-instance relationship: the editor wants
to create a page which is only similar to another and, as it
frequent happens, she starts doing so by copying and past-
ing the markup of the similar page. Obviously, in order to
fulfil this task we require no templating mechanism device
at all.

A different goal is that of enforcing a common content
organization on several pages, in the hope of inducing a
common look and feel and smoothing user experiences while
browsing pages that share the same organization. Several

5
http://en.wikipedia.org/wiki/Wikipedia:BUR

6
http://en.wikipedia.org/wiki/Wikipedia:SYSOP

examples of this need can be found in Wikipedia, where
information/navigation boxes are made available by tailors
to be used to describe conceptually similar parts of related
pages. To name just a few of them: the software informa-
tion box we mentioned earlier in this section, the box used
to summarize the information of a discography album7 and
to navigate chronologically among several albums, the tax-
onomy box8 associated to each animal page, . . . together
with countless other.

Tasks 5 and 6 correspond respectively to tailor activities
needed to setup a piece of reusable content structure, and
to perform a batch change to all pages using it. Task 4
is the editor activity required to deal with a reusable con-
tent structure: use it in a page (by adding its invocation
in the markup, possibly passing it parameters) or get rid of
its usage (by removing the corresponding markup, possibly
inlining template parts by hand).

Task 7 is related to a broader meaning of the word “tem-
plating”, which considers the informative content—or the
semantics, in the context of semantic wikis—of a page as a
template to be applied to (the informative content of) other
pages. Exotic as it may appears, scenarios in which this kind
of templating is are infrequent. For example, in Wikipedia
several conceptual sets of items do exist and are represented
as several lists sorted with varying criteria. A paradigmatic
case: from the Lists of countries9 (note the plural “lists”)
page, several list of countries by ... pages are linked
and are supposed to contain all the same countries, yet
sorted differently. A way to see such an organization is to
consider the List of countries10 (singular “list”) page as an
informative content template page, and the other lists as
different presentation of the same content.

3. TEMPLATING MODELS
The fact that wikis have increasingly been rising to com-

plex content management systems (CMSs), in different do-
mains and for different uses, should have led implementors
to concentrate hardly on templating functionalities. Motiva-
tions and user needs behind templating have been discussed
in the previous section, but a question is still unanswered:
“how is wiki templating actually deployed?”. We address it
in this section.

A side objective of our research was to feel the pulse of
the wiki clones with regard to that issue. Some very inter-
esting surprises came out. First of all, we have discovered
that a relatively small number of clones actually support
content templating: in most cases clones use the term “tem-
plating” in the presentational template interpretation (see
Section 1) to characterize customizable and interchangeable
layouts and skins, more than the automatic generation of
new pages based on existing ones. The good news is that
content templating is supported by the most widespread
wikis, with interesting differences.

Although different in the implementation details, all the
templating models we are aware of can be framed into a
single architecture, depicted in Figure 1. In that and subse-
quents figures, straight arrows represent wiki actions, with
the distinction of external actions (initiated by a user and

7
http://en.wikipedia.org/wiki/Template:Infobox_album

8
http://en.wikipedia.org/wiki/Template:Taxobox

9
http://en.wikipedia.org/wiki/Lists_of_countries

10
http://en.wikipedia.org/wiki/List_of_countries

http://en.wikipedia.org/wiki/Wikipedia:BUR
http://en.wikipedia.org/wiki/Wikipedia:SYSOP
http://en.wikipedia.org/wiki/Template:Infobox_album
http://en.wikipedia.org/wiki/Template:Taxobox
http://en.wikipedia.org/wiki/Lists_of_countries
http://en.wikipedia.org/wiki/List_of_countries


Figure 1: Template relationships with (common
and template-specific) wiki actions in a generic tem-
plating model. The actual implementation of the
ApplyTo action characterizes different templating
models.

depicted with bold labels) and internal actions; dashed ar-
rows represent generic relationship among wiki entities; the
big black arrow represents the mapping of conceptual actions
to their actual implementations.

Two kinds of pages are involved in template processing:

template (e.g. FooTemplate in Figure 1): the master page
on which other pages can be based;

instance (e.g. FooishPage): the result page obtained by
applying a master page to a target one.

The core of templating is the ApplyTo action. It con-
sists of actually generating an instance page from a template
(i.e. applying a template to a target page). Different imple-
mentations of ApplyTo characterize different templating
models.

Before discussing these models, it is worth remarking that
templates are normal wiki pages, which can be accessed and
edited as any other page of the wiki site. Unlike“real”CMSs,
where templates are treated as special resources, wikis con-
sider templates and instances at the same level, and allow
users to manage both kinds in (almost) the same way.

As a consequence, the View action can be applied to both
template and instance pages: it produces a rendered page,
where content is blended with the overall layout of a wiki
site, and enriched with user interface elements and hyper-
links. Similarly, a Save action can be performed to create
new versions of templates and instances. The Edit action
presents some differences: it is a common wiki Edit for the
templates, but can be limited to some extent when applied
to the instances, as we will discuss in a while.

Narrowing the analysis to the ApplyTo action, we have
identified two different templating models: functional tem-
plating, in which templates are invoked by name and possi-
bly passed parameters, and creational templating, in which
templates are simply copied as new pages at the beginning
of instance revision histories.

Figure 2: Functional templating: ApplyTo action
implementation.

3.1 Functional Templating
The most common example of functional templating is im-

plemented by MediaWiki11 and heavily used in Wikipedia.
A functional template is a page including a set of (possibly)
named placeholders (or “holes”) which will be substituted
for actual values passed as formal parameters, when invok-
ing the template for a specific content. For instance, most
Wikipedia information boxes providing structured informa-
tion about countries, sports, animals, and plants are created
with such technique.

A functional template is applied invoking it by name and
passing actual parameters. Both invocation and parameter
passing are achieved with special purpose syntax in the wiki
markup. Figure 2 summarizes this templating model.

The first characteristic of such templating is a strong and
permanent connection between a template and its instances:
whenever an instance page is displayed, the template is ex-
panded on-the-fly and the result is in turn passed to the
rendering engine of the wiki clone. There is no way to have
individual instances differ from the original template other
than in filling its named holes.

A second relevant aspect is about the source code of tem-
plates and instances. They are quite different: a template
contains instructions and structures to organize the final
content, while an instance contains the invocation of tem-
plate by name and parameter passing.

As a consequence, the user experiences while editing tem-
plates or instances are sensibly different. It involves deal-
ing with placeholders and (HTML or wiki-syntax based)
structures in templates, and with parameters modifications
in instances. In the latter, users can simply add, remove,
or change parameters (which can be arbitrarily complex
though) and cannot modify the overall structure of the tem-
plate content, unless they are willing to directly modify the
source of the template. That however is a different action to
be performed on a different page, possibly requiring different
access permissions as it would affect several other pages.

Another related editing problem in instances is the non-
linearity of the markup with respect to its rendered form.
Wiki editors can usually edit source text in wiki engines
and syntaxes they do not know by spatial analogy: the de-
sired editing point can be found comparing the rendered text
of a page with its companion source text, possibly comple-

11
http://www.mediawiki.org/wiki/MediaWiki

http://www.mediawiki.org/wiki/MediaWiki


menting this with some plain text search. This cognitive
process is possible only if the markup is linear with respect
to the rendered text, i.e. only if a particular change (addi-
tion, modification, removal) to the source text maps to a
similar change in its rendered form. Functional templates
violate this property: if the user try to find its editing point
looking at some rendered text that comes from the template,
she has no hope to find the corresponding source text in the
markup of the instance page.

With respect to the tasks discussed in Section 2 functional
templating scores pretty well, as on top of its devices tasks 2,
4, 5, and 6 can be implemented straightforwardly. However,
task 1 requires additional syntactic and conceptual knowl-
edge, and produces as a result pages potentially troublesome
for the average editor, due to markup non-linearity.

This brief analysis helps us in highlighting the most rele-
vant pro/con aspects of functional templating. First of all,
evident benefits derive from the strong connection between
templates and instances: template matching is automat-
ically enforced since pages are actually generated on-the-
fly. Deviation from the original template are prevented and
pages (or better, template fragments) are automatically and
permanently uniform. Moreover changes on a template are
automatically spread all over the instances so that manag-
ing set of pages with the same template is simple, fast, and
reliable.

The creation and editing of page instances is another im-
portant advantage: authors do not need to master complex
structures or deal with the overall organization of page con-
tent, but they simply have to provide a value for each pa-
rameter. Functional templating is then very useful for input
of structured data, like table records.

On the other hand, the fact that the source content of an
instance does not correspond to the actual template content
arises some issues, in terms of adherence to the wiki philos-
ophy. One of the most appreciated and comfortable features
of a wiki is the full control over the content that is provided
to authors, despite the simplicity of the syntax. Wiki users
are not required to master complex languages and proto-
cols, yet have fine-grained editing control over their pages.
To some extent, such control is lost in the functional model
since users pass their parameters to a black box which is in
charge of re-organizing their presentation.

Users might be also interested in slight modifications to
their pages in places other than the named holes, even if
they are generated from a template. Those changes cannot
be applied by strictly adopting a functional approach, since
the modification on a template would be propagated over all
the derived pages.

3.2 Creational Templating
The term “creational template” introduced in this paper

indicates those pages (seeding pages) used as the starting
point for the creation of new ones, with the same structure
and initial content. Though seeding pages were available in
the early wiki days, MoinMoin first re-introduced such tem-
plating model giving it wide-acceptance. Creational tem-
plating is now supported by other wiki clones: basically it
consists of simply copying the whole source code of a page
into a new one, and then editing the new page as usual. Cre-
ational templates are widely used to create (initially) uni-
form pages in a wiki site or to quickly generate new content
from preexisting content. Figure 3 summarizes this model.

Figure 3: Creational templating: ApplyTo action
implementation.

In several respects, creational templates are dual to func-
tional templates. First of all, with creational templating,
templates and instances are only weakly connected: once a
page has been derived from a template, it lives as an in-
dependent entity within the wiki. It can be modified and
twisted, up to become something completely different from
the original source. Accordingly, two pages derived from
the same template can end up having nothing in common.
There is no way (although there would be many reasons) to
connect a page and a template for the whole content life-
cycle. Even though intuitively there is nothing preventing
creational templates to keep back references to the template
used to create a page, practically no wiki engine we are aware
of exploits such back-pointers to avoid “excessive” drifts of
instances from templates.

The second point is the fact that the source code of a
template and its instances use the same syntax, and that
such syntax can be mostly templating-agnostic. Modifying
an instance means modifying directly the (HTML or wiki-
syntax based) structures of the page. The content of an
edited instance page is, in fact, directly passed to the ren-
dering engine which transforms it into the final wiki page; no
access to the template page is needed at View-time. Thus,
the Edit action is template-agnostic both for instances and
templates.

Editing a template, however, does not imply changes in
the instances derived in the past from that template, as it
happens in the functional model. Of course such changes do
affect instances that will be created in the future.

Regarding the task analysis of Section 2, we observe that
tasks 1, 2, 3 are straightforwardly implemented on top of
creational templating devices. Task 5 is possible in theory,
but it has to be built on top of an input mechanism that
permits to choose a creational template while editing part
of a page. To our best knowledge none of the wiki clones
supporting creational templating implements this.12

12However, a workflow supporting such local creational tem-
plating is easily conceivable. Consider for example a wiki
engine with support for section (i.e. heading-delimited page
part) editing. When the user clicks on the edit link for an
empty section, a creational template selection box can be
presented to her. Then, the selected template can be used
to fill only the section being edited instead of the whole page
as it happens in other creational template capable engines.



As expected, the orthogonality with the functional ap-
proach is mirrored by pros and cons of creational templat-
ing. Creational templating does not provide any mechanism
to enforce template-matching on future revisions of a page
and so it makes possible (and very common) that radical
changes happen between the initial instance and subsequent
versions. Since the connection between a template and its
instances practically disappears after the first Copy action,
these templates do not guarantee uniformity among pages.
For the same reason, users cannot modify with a single ac-
tion all the pages derived from a template (i.e. task 6 is not
mappable to actions on creational templating devices), and
the management of set of pages still requires manual and
error-prone interventions.

On the other hand, the fact that the output of the Ap-
plyTo action is the final content (not yet rendered into the
layout and formatting of the wiki site, but already organized
in tables, lists, . . . ) is a point of strength for the creational
approach. Users, in fact, have fine-grained control over the
pages and they can easily customize template instances, sav-
ing the straightforwardness and speed of the wikis. Markup
linearity with respect to the rendered text is not hindered
by creational templating.

3.3 Templates in State of the Art Clones
Thus far our analysis of basic wiki templating capabilities

has not ended up with the proclamation of a winning model.
On the contrary, both functional and creational approaches
proved to have benefits and drawbacks, according to user
needs. It is no accident that they are differently supported
by wiki clones.

In order to evaluate the actual support for wiki content
templating, we have studied the most popular wiki engines.
As popularity sources we have used the topmost entries
(with a coverage of about 40% of the total) of authorita-
tive wiki comparison web pages: c2.com wiki13, wikima-
trix14, Wikipedia’s page “Comparison of wiki software”15,
“wiki popularity”16 page in WikiCreole. The URL refer-
ences of the considered wiki engines as well as other details
are available in a separate technical report [3]. Such an anal-
ysis gives us a clear picture of templating implementation in
state of the art wiki clones.

A first fact is the different support between creational and
functional templates: about a half of the clones adopt a
creational approach, while less than a fifth adopt a func-
tional one. Actually, full-fledged functional templating is
supported only by MediaWiki (and Wikia which is MediaWiki-
based). We have considered in the same class also other
wikis, such as WackoWiki, TikiWiki, and OddMuse, which
support functional templating without parameter passing
(i.e. as some form of page inclusion). This choice is justified
by the observation that pros/cons of functional templating
are only marginally affected by parameter passing.

Similarly, XWiki allows designers to define patterns of
structured information (stored as a different page, and called
by an include-function) which can be re-used in any page.

From there on, the templating model is identical to that
presented in this section.

13
http://c2.com/cgi/wiki?TopTenWikiEngines

14
http://www.wikimatrix.org/

15
http://en.wikipedia.org/wiki/Comparison_of_wiki_

software
16
http://www.wikicreole.org/wiki/WikiPopularity

Table 2: Templating model support in popular state
of the art wiki engines.

Wiki Engine Creational Functional
AtlassianConfluence 3 7
DekiWiki 3 3
DidiWiki 7 7
DokuWiki 3 7
EclipseWiki 7 7
EditMe 7 7
ErfurtWiki 7 7
FlexWiki 3 3
InstikiWiki 7 7
JSPWiki 7 7
KwikiKwiki 7 7
MediaWiki 3 3
MicKI 7 7
MoinMoin 3 7
OddMuseWiki 7 3
OpenWiki 3 7
PerSpective 3 7
PhpWiki 7 7
PmWiki 7 7
ProntoWiki 7 7
SocialText 3 7
TeleparkWiki 7 7
TiddlyWiki 3 7
TikiWiki 3 3
TigerWiki 7 7
TWiki 3 7
UseModWiki 7 7
VeryQuickWiki 3 7
VimKi 7 7
WackoWiki 7 3
WakkaWiki 3 7
WiClear 3 7
Wikia 3 3
WikiWig 7 7
XwikiWiki 7 7
YaWiki 3 7
ZwiKi 7 7

Total : 37 17 7
(100%) (≈ 46%) (≈ 19%)

Pages containing such information can be edited and re-
edited as simple HTML forms, and will be rendered as the
original template. Even if the word “template” is not explic-
itly used by XWiki, and users do not access the source/text
code of the invocation, such feature can undoubtedly be clas-
sified as a functional templating.

Also the class of creational templates includes some wikis
which do not provide such templates in their original form
(as MoinMoin does), but implement some differences. For
instance DokuWiki provides different namespaces to cluster
set of pages sharing a common skeleton. When a page is
created, DokuWiki looks up whether there is a template
for that namespace and copies it into the edit field for the
new page. However, such template file cannot be edited
directly through a web interface, but an administrator has
to access and change a text file saved on the server. TWiki

http://c2.com/cgi/wiki?TopTenWikiEngines
http://www.wikimatrix.org/
http://en.wikipedia.org/wiki/Comparison_of_wiki_software
http://en.wikipedia.org/wiki/Comparison_of_wiki_software
http://www.wikicreole.org/wiki/WikiPopularity


implements a creational approach natively for some pages
(for instance, user profiles) and allows users to simulate it
for other pages customizing the installation.

Creational templates are very often supported by wikis
which integrate a WYSIWYG editor: for instance Conflu-
ence, TikiWiki, and PerSpective allow users to select a tem-
plate, to create a new page based on that template, and
to further change its content, without accessing the source
code. Even in those cases, however, the template is only
used for the first deployment of that page.

Finally, we also found many lists of requested features
(for instance, for ZWiki or JSPWiki) where both creational
(referred to as “a la MoinMoin”) or functional (“a la Medi-
aWiki”) templates hold a relevant position. Our feeling is
that there is still a strong willingness to support and improve
wiki content templating.

4. BETTER CREATIONAL TEMPLATES
Our answer to the question of whether state of the art

wiki templating model can be improved is affirmative. In
this section we present a novel templating model, as an at-
tempt to create a merger of the positive aspects of the two
templating model presented in the previous section. Our
model is not radically new, but rather a conceptual “patch”
for creational templating.

Our starting point is maintaining access to the markup of
the page as a fundamental feature of wikis. This has led us to
base our proposal on top of creational rather than functional
templating. The main drawback of creational templates is
the lack of “retroactivity”, induced by the weak connection
between templates and instances: no change which breaks
the original template can be prevented or notified. Our solu-
tion to this issue consists of integrating a non-invasive mech-
anism to validate a posteriori page content, so as to check
whether the prototype-instance relationship has been vio-
lated. Our proposal is still a model of the architecture of
Figure 1 (being a patch of the creational model) and ex-
ploits an instantiation of the light constraint framework [4],
which is briefly described in the next section.

4.1 Light Constraints in a Nutshell
Light constraints [4] on wiki pages are, roughly speak-

ing, desiderata on page contents. They are just “desiderata”
since even when violated they do not inhibit users to ac-
cess the page either for reading or writing, as opposed to
hard constraints which do that. Light constraints tend to
appear spontaneously as best practices in wiki communi-
ties, but also in domain-specific wikis where they are inher-
ited from the given domain (e.g. mathematical correctness of
proofs presented as wiki pages). Light constraints can also
be thought as constraints whose enforcement is compatible
with“The Wiki Way”workflow of viewing and editing pages.

Previous work [4] has detailed a framework for dealing
with light constraints on the content of wiki pages, observ-
ing how de facto constraints spontaneously appear in wiki
communities to encode best authoring practices or to ac-
count for the peculiar requirements of domain-specific wiki
engines.

A framework for dealing with light constraints has been
presented in the past [4]. In such a framework constraints
are expressed as validator functions17 that can be associated

17this means that light constraints are described procedurally

Figure 4: Lightly constrained templating: ApplyTo
implementation and overall architecture.

to pages (in a many-to-many relationship) and used to check
whether the constraints have been respected, a step possibly
involving additional pages (the validation context). Failed
validation attempts return sets of localized error messages.

Since saving cannot be inhibited when constraints are vio-
lated without diminishing authors’ freedom, the framework
uses conditional saving to present to the author validation
errors (if any) as a single additional step before a Save ac-
tion can be completed. The editor can then either ignore
the errors and save the page anyway or perform additional
editing round-trips to fix them. Similarly, the View action
is changed to annotated viewing : visitors viewing a page
are shown the usual page content as well as validation in-
formation such as validators, contexts, and error messages.
This way the internal state of the engine is fully disclosed to
visitors and the efforts of WikiGnomes18 can be driven (by
tailors) to fix validation errors.

4.2 Lightly Constrained Templating
We use the term Lightly Constrained Templates (LC Tem-

plates) to indicate creational templates, empowered by light
constraints on template matching. The key observation con-
sists of encoding as a light constraint the fact that a page
should match the template it has been generated from, and
hence a given information pattern. Whenever a page is
displayed or saved, the system verifies if that template is
matched and notifies the validation status to the users. Fig-
ure 4 shows this approach.

Each page is associated to a set of validators which take
as input the page content a validation context. A valida-
tion context is a set of pages required for validation: in this
case, it is only the original template which generated the
current page. The validator produces either a “ok” message
if the template matches the instance, or a list of localized er-
rors (indicating where mismatches occur) when it does not.
According to our general architecture the View action be-

and externally to the wiki page space; they are associated
declaratively with pages (by tailors). The alternative ap-
proach to use domain specific languages to describe declar-
atively light constraints, together with pros/cons of the two
approaches, is briefly discussed in [4]

18
http://en.wikipedia.org/wiki/Wikignomes

http://en.wikipedia.org/wiki/Wikignomes


comes an annotated viewing (the page contains both the
actual content and the validation report), while the Save
action becomes a conditional save (the report is displayed
before saving, and users can choose to ignore or take it into
account, by fixing mismatches).

It is worth observing that such architecture is indepen-
dent from the granularity and power of the validation pro-
cess. Different solutions can be implemented: from regular
expression matching to search over predefined areas, up to
advanced templating on the informative content of a page.
In Section 5 we will discuss a possible spectrum of valida-
tors. What is relevant here is the fact that such validators
improve the templating model without interfering with the
open wiki philosophy.

Our model implements a permanent connection between
templates and their instances, this is achieved through the
introduction of light constraints. Although a page is not ac-
tually generated from a template on every View (as happens
in the functional approach), the validation process guaran-
tees a permanent relation between those pages. As an ad-
ditional benefit LC templates enable template re-targeting.
Given that the instance-template relationship is kept in the
validation context, and given that the validation context can
be changed by tailors, it is possible to change the template
applied to a page even after the page’s creation time. If the
new template still matches the instance page no constraint
violation will be reported, otherwise all mismatches will be
shown to the tailor and, for those left unfixed, to editors and
visitors.

Note also that LC templating allows tailors to modify
a template and consequently modify all the derived pages.
The general light constraint architecture provides for a dae-
mon in charge of notifying changes of a page to all the pages
which include it in their validation context. Applied to this
domain, it means that a modification on a template is spread
all over the wiki. Whenever a page “connected” to that tem-
plate will be displayed, a notification message will be in-
cluded in that page. Then users can spontaneously work to
fix the mismatch. There is a subtle but important difference
with functional templating here: while function templating
enforces template-matching (at the price of limiting edit-
ing freedom) our approach verifies and notifies mismatches.
Users can ignore notifications, and go on saving their con-
tent. At the same time, they have complete freedom and
full information on their content. In a sense we are decen-
tralizing batch changes exploiting the primary power of wiki
communities: collaboration.

The linearity of markup is another positive aspect of LC
templating. Being substantially a patched version of the cre-
ational templating, our approach provides a correspondence
between the source of a page and its rendered version. Users
access the same content, but also receive information about
the templates and, if needed, can apply changes and cus-
tomization. Another interesting property derives from the
decoupling of validation and rendering. Since validation is
performed outside the wiki (even if a wiki module performs
that operation, it remains logically independent), different
validators can run (as we discuss later on) without chang-
ing the overall architecture of the wiki. Moreover the same
validator can be potentially re-used in different wiki clones.

Summarizing, we believe LC templating to be the best
trade-off for wiki content templating in a generic setting.
Specific settings, such as strong needs of structured edit-

Figure 5: Screenshot of our LC templating imple-
mentation in the MoinMoin wiki engine. The shown
tooltip is associated to the first of the template mis-
match errors summarized at the top of the page,
localized at the second (error) marker in the page.

ing, might still consider the adoption of functional templat-
ing (see Section 6). The need of templating page parts, as
opposed to whole pages, can be easily addressed with LC
templates by implementing the local creational templating
workflow proposed in Section 3.2.

5. LC-TEMPLATES IMPLEMENTATION
We have implemented LC templating on top of the Moin-

Moin wiki engine, a screenshot of our implementation in ac-
tion can be seen in Figure 5. At the time of writing we have
not yet implemented any specific microformat syntax, but
we believe this to be the easiest part of the problem at hand.
We have therefore rather chosen to fully implemented the
light constraint architecture of [4], and the template match-
ing mechanism as a specific validator.

In Figure 5 it can be seen that the page is about a review
of Hemingway’s book“The Old Man and the Sea”. The page
itself is an instance of the template BookTemplate and this
is reflected in the page having a specific template match-
ing validator and the (template) page BookTemplate in its
validation context. Validator and context are automatically
associated to the page when it is firstly created using the
usual Moin workflow for this, and are then stored as part
of the page markup using Moin’s #pragmas. This choice en-
ables template re-targeting by simply changing the template
name in the page markup and is also the preferred Moin’s
place where to keep page meta-information.

The box at the top of Figure 5 shows the validation out-
come for the validators associated to the page. The lat-
ter two validators show that template matching is smoothly
integrated with the generic validation infrastructure of [4].
The former validator is the template matcher validator and
is spotting two localized errors, namely that sections “Au-
thor” and “Review” are missing in the page markup. This
is the peculiar aspect of our solution: authors are notified
that parts of the original templates are missing and are en-
couraged to fill in the appropriate information.



We do not hope to have our implementation adopted by
the majority of the wiki engine deployed on the web right
away, therefore in the remainder of this session we discuss
deployment techniques for LC templates in wikis for which
an instance of the light constraint framework is available.

5.1 Syntactic Template Matching
With the light constraints machinery already in place,

the task at hand is brought to implement a single valida-
tor whose specification is as follows.19 The validator can be
associated to instance pages and relies on a singleton valida-
tion context containing the template that has to match the
instance. In fact it is recommended that in a LC deployment
the association is added automatically by the engine when a
page (or a section, in case of local templating) is generated
creationally choosing from a list of the available templates.
Of course tailors are free in the future to remove the asso-
ciation or to change it, re-targeting the instance page. The
validator will be invoked on instance pages at (conditional)
Save-time, or alternatively in a batch fashion (if a batch
validator is available) or, as a last resort, at View-time,
depending on the details of the light constraint machinery
implementation. Its output, the validation outcome, is ei-
ther an assessment that the instance matches its template
or a list of error messages containing the string "template

mismatch" and localized where the mismatches happen.
Fulfilling the above specification implementing the corre-

sponding function is straightforward. We only require that
a special markup syntax, a marker, is available for denot-
ing where holes occur in the source text of a template page.
Such a template can be converted to a non deterministic
regular expression by replacing hole markers with blocks of
“any character sequence” (which would be .* in popular reg-
ular expression syntaxes). The obtained regular expression
can be applied (with the appropriate flags such as multi-line
support and with appropriate string delimiters) to instance
pages to check for template matching.

If the regular expression matches an instance it is safe to
return a validity assessment. If it does not, a naive assump-
tion is that the page is not an instance of the template. In
order to be less naive, a few additional steps in the genera-
tion of the regular expression can be be taken. For example
the template page can be parsed by the legacy wiki engine
page parser and “any character sequence” blocks (or more
specific blocks like “any blank character”) can be inserted
where appropriate.

Localization of mismatches can be easily implemented as
well. Indeed atomic .*-delimited blocks of the generated
regular expressions can be wrapped in optional groups (...)?
(a feature that is supported by all major regular expression
implementations) and a posteriori checking for empty groups
can be used to identify where (i.e. at which character posi-
tion) an expected markup structure is missing. Yet easier,
PCRE (the most widespread regular expression engine) sup-
ports callouts20, external functions that can be attached to
regular expression markers and are invoked when the engine
encounter them. Callouts are passed the current position of
the underlying automata on the input string and can store
that information for further processing.

19We recall that a validator is usually a simple function writ-
ten in the implementation language of the wiki engine and
loaded as an external plugin.

20
http://www.pcre.org/pcre.txt

To also achieve “named” error messages for template mis-
matches, in our implementation we added, using Moin’s
macros, optional labels to the fixed text parts of a template.
If the match failure is due to the lack of such a fixed text part
then an error can be reported stating that a given labeled
section is missing (which is precisely what is happening in
Figure 5).

5.2 Semantic Template Matching
Though our proposal is in apparent contrast with semantic

wikis, it is worth observing that LC templating has synergies
with them. In this section we discuss some of them.

In [4] it is discussed how validators can benefit from the
availability of page semantics to perform validity checks which
are more intimately related to the informative content of a
page than to its presentational structure alone. This aspect,
reconsidered in the LC templating setting, leads to a sce-
nario in which the content structure of a template page is
its semantic: what is the “meaning” of a content template
if not the very same set of content structures which builds
it up? Similar structural meanings have already been stud-
ied both in the document engineering community [2] and
for wiki-specific needs [12]. Once such kind of meanings are
available the template matching validator would be more
reliable, being capable of abstracting over string matching
and syntactic ambiguities.

An added benefit of LC templating coupled with seman-
tic annotations would be the ability to implement devices
that support task 7 of Table 1, which has been left unsup-
ported by the templating models discussed so far. Indeed
we can push forward the above-mentioned idea and consider
the (non-structural) meaning of a page, i.e. the set of its
semantic annotations, as a novel templating content. We
call it meaning templating and we like to place it in the far
extreme of the following templating spectrum:

presentational
templating

−→ content
templating

−→ meaning
templating

where being more on the right corresponds to a higher degree
of machine understanding of templates. With meaning tem-
plating the informative content of a page is encoded as se-
mantic annotations and semantic verification among the in-
formative contents of two pages can be performed. This can
be exploited for example to ensure (to fulfill the Wikipedia
needs of Section 2) that two pages contain the same set of
items, notwithstanding their orders.

6. CONCLUSIONS AND RELATED WORK
In this paper we have argued that wiki content templating

is a good handle to use for the diffusion of semantically rich
web pages. We believe that a clever use of templating can
succeed where other approaches failed, namely in convincing
authors to enrich their wiki pages. We believe so because
we are not requiring them to change their editing habits or
mechanisms. However, to be successful we need two tools:
wiki markup support for microformats and a suitable tem-
plating technology. The former should be trivial to achieve,
will be subject of our future work, and we are quite sure that
in the forthcoming years it will be adopted spontaneously by
the main actors in the wiki clone playground. The latter re-
quires some background study and it is exactly what we have
delivered with this paper: a systematic study of state of the
art wiki templating models which have spot some deficien-

http://www.pcre.org/pcre.txt


cies, an improved model which has fixed them, and an easy
to implement (as shown by our own realization) deployment
technique for the proposed model.

To our best knowledge, the wiki literature is mostly de-
void of works on wiki-specific templating needs, with the
notable exception of Wiki-Templates [6]. The authors pro-
pose their own templating mechanism, specially crafted to
support editing of structured wiki pages. Our analysis in this
paper is more general and the models we have discussed are
applicable both to structured and structureless wiki pages.
An additional contribution of [6] is the identification of a
set of requirements for supporting editing of structured wiki
pages. It is interesting to discuss how our templating model
scores with respect to such requirements. On the basis of
the following considerations we claim that LC templating,
in spite of not having being designed for structured editing,
does fulfill most of its needs.

As expected, LC templating fails to properly address “R1:
structure” (i.e. helping users to organize structured data),
since it is structure-agnostic. However, if the pages are
structured per se, adopting LC templating does not pose
any additional problem: structure can be copied when tem-
plates are applied, and structure-specific user interfaces can
be used for editing the templates themselves (e.g. the edit-
ing of the edit template of Wiki-Templates) and their in-
stances (e.g. the complex web forms generated from edit

templates of Wiki-Templates). Structure and LC templates
can even exhibit synergism since structure, if expressed as
the semantics of a given page, can be exploited to write val-
idators with a deep understanding of page content.

With respect to requirement “R2: readability” (i.e. mak-
ing easier to access content) we believe LC templates per-
form better than Wiki-Templates due to markup linearity.
In Wiki-Templates a user willing to contribute to a page
associated to an edit template (the template which has
generated the input data form) is likely to experience inter-
action breakdown [15] either if it comes from a wiki engine
other than Wiki-Templates or if the edit template has been
changed. In a sense we are convinced that edit templates

may hinder habit formation: they are probably worthwhile if
structured editing is a major goal, but not in a more generic
setting. LC templating on the contrary ensures markup lin-
earity helping the user in finding the desired editing point in
the source text by spatial analogy. Similar arguments holds
for Wiki-Templates display templates.

Requirement “R3: safety regarding unintended changes”
(i.e. making users aware of the effects of their edits) is ful-
filled by LC templates which can enforce safety by the mean
of validation (see Section 5). Finally, requirements “R4: tai-
loring” (i.e. allowing users to customize their content struc-
tures) and “R5: sharing of tailorings” (i.e. allowing users to
share their templates) are satisfied for free in LC templating
since templates live in the same space of ordinary pages. As
such they can be published and customized by tailors with-
out the need of implementing new conceptual wiki actions.

Future work. On the topic of LC templating and its syn-
ergy with (lowercase) semantic web, future work still needs
to be done. As anticipated, an implementation of real-
life microformats as specific wiki syntaxes, or rather piggy-
backed on existing syntaxes (e.g. that of tables), is needed,
together with some user testing. We also plan to investigate
the differences (if any) between using microformats within

wikis and within other, more constrained web authoring en-
vironments.

7. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The

semantic web. Scientific American, 284:28–37, 2001.

[2] A. Di Iorio, D. Gubellini, and F. Vitali. Design
patterns for descriptive document substructures. In
Proceedings of the Extreme Markup Conference, 2005.

[3] A. Di Iorio, F. Vitali, and S. Zacchiroli. Templating
wiki content for fun and profit. Technical Report
UBLCS-2007-21, Department of Computer Science,
University of Bologna, 2007.

[4] A. Di Iorio and S. Zacchiroli. Constrained wiki: an
oxymoron? In WikiSym ’06: Proceedings of the 2006
international symposium on Wikis, pages 89–98, New
York, NY, USA, 2006. ACM Press.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional, 1st edition, 1995.

[6] A. Haake, S. Lukosch, and T. Schümmer.
Wiki-templates: adding structure support to wikis on
demand. In WikiSym ’05: Proceedings of the 2005
international symposium on Wikis, pages 41–51, New
York, NY, USA, 2005. ACM Press.

[7] R. Khare. Microformats: The next (small) thing on
the semantic web? IEEE Internet Computing,
10(1):68–75, 2006.

[8] R. Khare and T. Çelik. Microformats: a pragmatic
path to the semantic web. In WWW ’06: Proceedings
of the 15th international conference on World Wide
Web, New York, NY, USA, 2006. ACM.

[9] B. Leuf and W. Cunningham. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley
Professional, pap/cdr edition, Apr. 2001.

[10] A. MacLean, K. Carter, L. Lövstrand, and T. Moran.
User-tailorable systems: pressing the issues with
buttons. In CHI ’90: Proceedings of the SIGCHI
conference on Human factors in computing systems,
New York, NY, USA, 1990. ACM Press.

[11] E. Oren. Semperwiki: a semantic personal wiki. In
Proc. of 1st Workshop on The Semantic Desktop,
Galway, Ireland, 2005.

[12] E. Oren and M. Völkel. Towards a wiki interchange
format (wif). In Proceedings of the First Workshop on
Semantic Wikis, 2006.

[13] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland,
and T. Carey. Human-Computer Interaction: Concepts
And Design. Addison Wesley, 1st edition, Apr. 1994.

[14] RDFa primer: embedding structured data in web
pages. W3C Editor’s Draft, 26 October 2007,
http://www.w3.org/2006/07/SWD/RDFa/primer/.

[15] Y. Rogers. Coordinating computer-mediated work.
Computer Supported Cooperative Work (CSCW), 1(4),
Dec. 1993.

[16] A. Souzis. Building a semantic wiki. IEEE Intelligent
Systems, 20(5):87–91, 2005.

[17] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and
R. Studer. Semantic wikipedia. In WWW ’06:
Proceedings of the 15th international conference on
World Wide Web, New York, NY, USA, 2006. ACM.

http://www.w3.org/2006/07/SWD/RDFa/primer/

	Introduction
	Task Analysis
	Templating Models
	Functional Templating
	Creational Templating
	Templates in State of the Art Clones

	Better Creational Templates
	Light Constraints in a Nutshell
	Lightly Constrained Templating

	LC-Templates Implementation
	Syntactic Template Matching
	Semantic Template Matching

	Conclusions and Related Work
	References

