
Cross-Distro Dependency Resolution
Reusing Solvers among Distributions

Stefano Zacchiroli Ralf Treinen
zack@{pps.jussieu.fr,debian.org}

http://upsilon.cc/zack

PPS, University Paris Diderot
The Debian Project

6 August 2010
DebConf10, New York City

Outline

1 Dependency solving: relevance and shortcomings

2 CUDF — Common Upgradeability Description Format

3 CUDF implementations and deployment

The notion of “distribution”: why we do what we do

distributions are meant to ease software management

offer coherent software collections (e.g. policies)

key idea: the abstraction of package

killer apps: package managers (deb/rpm war anyone?)

What is the role of package managers, then?

making easy and flexible software “upgrades”
(i.e. install/remove/upgrade packages)

1 abstract over package retrieval
avoid manual downloads, enforce trust paths, . . .

2 low-level deployment on disk (dpkg-/rpm-level)
all fancy features:

triggers, transactions
conffile management
diversions / alternatives
. . .

3 dependency solving

←- Is it as good as we want?

install recursively missing dependencies
spot conflicts
compute upgrade paths (e.g. among distro releases)

What is the role of package managers, then?

making easy and flexible software “upgrades”
(i.e. install/remove/upgrade packages)

1 abstract over package retrieval
avoid manual downloads, enforce trust paths, . . .

2 low-level deployment on disk (dpkg-/rpm-level)
all fancy features:

triggers, transactions
conffile management
diversions / alternatives
. . .

3 dependency solving ←- Is it as good as we want?
install recursively missing dependencies
spot conflicts
compute upgrade paths (e.g. among distro releases)

Dependency solving issues

bold statement:

dependency solving is not (yet) good enough!

main issues:
1 incompleteness

2 poor expressivity

3 not so easy to implement

Dependency solving issues

bold statement:

dependency solving is not (yet) good enough!

main issues:
1 incompleteness

Example

package: a package: b
version: 2 version: 2
depends: b (= 1) depends: a (= 1)

package: a package: b
version: 1 version: 1
depends: b depends: a

“# apt-get install a b” fails, how about yours?

2 poor expressivity
3 not so easy to implement

Dependency solving issues

bold statement:

dependency solving is not (yet) good enough!

main issues:
1 incompleteness

2 poor expressivity (AKA policies)

does your package manager enable you (sysadm) to:

1 minimize installed size cool for embedded

2 minimize download size 28.8 Kbps connections

3 blacklist package maintained by Joe Random Developer

4 name yours worst desire that pinning does not fulfill . . .

3 not so easy to implement

Dependency solving issues

bold statement:

dependency solving is not (yet) good enough!

main issues:
1 incompleteness

2 poor expressivity
3 not so easy to implement (engineering problem)

NP-complete problem, after all
naive implementations have been shown to be either too
naive or explosive (looping)
“new generation” package manager developers welcome
reusing dependency solving logics

Let’s do what we do best: share efforts

how about reusing dependency solvers?
1 within distributions (different package managers have

different solvers, some times even more than one per
package manager, which one a buildd will use?)

2 across distributions (both among “same world” distros
and “different worlds” distros)

3 with the scientific community and companies which are
already doing solving (they are interested in our data)

end goal

“standard” package format
1 find “the” solver / algorithm / technique / paradigm that

works best for our common goals
2 deploy it in each package manager (or in a reusable lib)

CUDF: a common interchange format

Common Upgradeability Description Format: a
file format to describe upgrade scenarios

package universe all known packages

package status the set of currently installed packages

user request desired change to the package status

abstraction challenges (deb vs rpm worlds)

version numbers

package relationships
(depends/recommends/obsoletes/. . .)

lexical conventions (e.g. package names)

virtual packages and their dependencies

multiple version installation vs singleton

CUDF: file format

plain text file format

inspired by RFC 2822 (easy on the eyes and to parse)

list of empty-line-separated stanzas

each stanza: typed key-value pairs

package: m4
version: 3
depends: libc6 >= 8

this is a comment ...
package: openssl
version: 11
depends: libc6 >= 18, libssl0.9.8 >= 8,
zlib1g >= 1 # this is a line continuation

conflicts: ssleay < 1

CUDF: types

integers . . . -2, -1, 0, 1, 2, . . .

positive integers 1, 2, 3, . . .

booleans true, false

package names regexp ^[a-zA-Z0-9+./@()%-]+$
libc6, libdb4.6, libc-dev, /bin/bash

package formulae over versioned package predicates

python-minimal
libedac1 = 1
haskell-doc <= 2
libz-dev != 3
postfix > 2 | exim4-base
ocaml-nox, libc6 >= 6
php4, apache | httpd

package lists degenerate formulae w/o disjunctions (i.e. "|")

CUDF: stanzas

A CUDF document is made of several stanzas:
1 one (optional) preamble stanza for meta-data

2 one stanza for each known package

3 one stanza for the user request

preamble (optional)

package description1

package description2

· · ·
package descriptionn

request description

preamble:
...

package: foo
all known packages ...

package: bar
...

request:
what the user has asked for?
...

CUDF: package stanzas

Each package stanza describes a package known to the
package manager
Legacy package properties:

package: ... (mandatory; type: package name;
must be the 1st in the stanza)

version: ... (mandatory; type: positive integer)
installed: ... (optional; default: false; type: bool)
depends: ... (optional; type: package formula)
conflicts: ... (optional; type: package list)
provides: ... (optional; type: package list)

package: gasoline-engine
version: 1
depends: turbo
provides: engine
conflicts: engine, gasoline-engine
installed: true

CUDF: package highlights

1 versions are positive integers
usual version strings "1.2.3-4" are not accepted (no clear
cross-distro semantics)
each set of versions in a distro has a total order → can
be easily mapped to positive integers

2 provides: account for features / virtual packages

3 conflicts are not implicit among different versions of the
same package

4 self-conflicts on virtual packages are ignored, too

CUDF: package highlights

1 versions are positive integers
2 provides: account for features / virtual packages

features are versioned, you can provides: httpd > 2
unversioned features provide all possible versions

3 conflicts are not implicit among different versions of the
same package

4 self-conflicts on virtual packages are ignored, too

CUDF: package highlights

1 versions are positive integers

2 provides: account for features / virtual packages
3 conflicts are not implicit among different versions of the

same package
multiple versions of the same package are co-installable
. . . but self-conflicts are ignored

package: bash
version: 5
conflicts: bash
i.e. conflict with all other versions of foo

4 self-conflicts on virtual packages are ignored, too

CUDF: package highlights

1 versions are positive integers

2 provides: account for features / virtual packages

3 conflicts are not implicit among different versions of the
same package

4 self-conflicts on virtual packages are ignored, too

package: postfix # mutual exclusion
version: 2
provides: mail-transport-agent
conflicts: mail-transport-agent

package: exim
version: 3
provides: mail-transport-agent
conflicts: mail-transport-agent

CUDF: extra properties

Extra properties are permitted for packages, e.g.:

download-size: posint

installed-size: posint

maintainer: string

security-fix: bool

priority: enum[essential, important]

suite: enum[stable, testing, unstable]

Extra property must be typed and declared in the preamble

preamble:
property: suite: enum[stable,testing,unstable] = [stable]
property: bugs: int = 0
property: pin-priority: int

CUDF: request stanza

request: ... (mandatory; type: string;
just a delimiter)

instal l: ... (optional; type: package list)
remove: ... (optional; type: package list)
upgrade: ... (optional; type: package list)

install/remove/upgrade: which packages must be
installed/removed/upgraded.

version requirements can be specified, e.g.
install: bash > 3 request installation of a version of
bash greater than 3

all upgraded packages
1 must have a single version installed in the solution

proposed by the solver
2 cannot be downgraded to a version strictly smaller to the

one that was previously installed

CUDF: putting all together

package : car
version : 1
depends : engine , wheel , door , battery
installed : true

package : bicycle
version : 7

package : gasoline−engine
version : 1
depends : turbo
provides : engine
conflicts : engine , gasoline−engine
installed : true

package : gasoline−engine
version : 2
provides : engine
conflicts : engine , gasoline−engine

package : e lec t r i c−engine
version : 1
depends : solar−col lector | huge−battery
provides : engine
conflicts : engine , e lec t r ic−engine

. . .

request : source : Debian/CUDF 733963bab9fe1f78fd551ad20485b217
instal l : bicycle , e lec t r ic−engine = 1
upgrade : door , wheel > 2

CUDF specifications

http://www.mancoosi.org/cudf/

A full-fledged specification of CUDF is available. Extras:

detailed (formal) semantics: useful to double-check
implementations

DUDF a related format to collect distro-specific upgrade
scenario information a la popcon

offspring usage: collect package manager bug reports

a CUDF primer is available as well
http://www.mancoosi.org/cudf/primer/

Forthcoming changes:

support for multiarch and locally rebuilt packages

http://www.mancoosi.org/cudf/
http://www.mancoosi.org/cudf/primer/

libCUDF

libCUDF is a reference implementation of CUDF

CUDF parsing
of CUDF documents (packages + problem)
of solutions

consistency checking is the package status healthy?

solution checking does the solution fulfill user request?

Code:

OCaml library + command line checker

C bindings available (fully hiding OCaml)

LGPL

http://www.mancoosi.org/cudf/
Debian and RPM packages available

http://www.mancoosi.org/cudf/

cudf-check

./cudf-check -univ examples/universe.cudf
parsing package universe ...
installation status consistent

./cudf-check -univ examples/universe-broken.cudf
parsing package universe ...
installation: broken (reason: Cannot satisfy
dependencies turbo of package gasoline-engine
(version 1))

./cudf-check -cudf examples/legacy.cudf
parsing CUDF ...
installation status consistent

cudf-check (cont.)

./cudf-check -cudf examples/legacy.cudf \
-sol examples/legacy-sol.cudf

loading CUDF ...
loading solution ...
installation status consistent
is_solution: true

./cudf-check -cudf examples/legacy.cudf \
-sol examples/legacy-sol-bad.cudf

loading CUDF ...
loading solution ...
installation status consistent
is_solution: false (reason: Unmet installation request,
missing packages: bicycle)

CUDF: deployment and other implementations

CUDF is being deployed in various places.

In Debian:

ongoing discussion on deity@lists.debian.org
1st goal: share solvers within Debian

CUDF support in: CUPT

forthcoming in: APT, APT2

Elsewhere:

CUDF support in: URPMi

forthcoming in: RPM5

Next:

. . . your favorite package manager?

CUDF: deployment and other implementations

CUDF is being deployed in various places.

In Debian:

ongoing discussion on deity@lists.debian.org
1st goal: share solvers within Debian

CUDF support in: CUPT

forthcoming in: APT, APT2

Elsewhere:

CUDF support in: URPMi

forthcoming in: RPM5

Next:

. . . your favorite package manager?

. . . a solving competition?

As part of the Mancoosi project we have run the 1st edition
of a solving competition. Goals:

1 collect a (CUDF) corpus of real-life upgrade scenarios

2 make the scientific community aware of our needs

3 find a 1st reusable common-ground dependency solver

held @ http://lococo2010.mancoosi.org

MISC competition

2 tracks: “trend” & “paranoid”

11 participants (total over the 2 tracks)

http://www.mancoosi.org/misc-2010/

http://lococo2010.mancoosi.org

MISC: paranoid track

Satisfy my request, but by changing as less as possible my
system !

1 minimize the number of removed packages

2 minimize the number of changes in the installation
status (to avoid gratuitous installation of new packages)

MISC: trendy track

Satisfy my request, and if possible update packages to their
most recent version and install recommended packages!

1 minimize the number of removed packages

2 minimize the number of packages not in the most recent
version

3 minimize the number of not satisfied recommendations
of installed packages

4 minimize the number of newly installed packages.

The problem classes

Five categories of problems have been used for the 2010
competition.

cudf_set Encoding in cudf of 1-in-3-SAT

debian-dudf Real installation problems, Problems collected
via dudf-save.

easy Debian unstable / desktop installation from
unstable / 10 install - 10 remove

difficult Debian stable + unstable / server installation
from stable / 10 install - 10 remove - 1 upgrade
all

impossible Debian oldstable, stable, testing, unstable /
server installation from oldstable / 10 install -
10 remove - 1 upgrade all

The participants of MISC 2010

aspcud - Answer Set Programming

INESC - a SAT-based solver, MaxSAT

apt-pbo - APT + minisat

UCL

P2 - SAT, Eclipse

2nd

UNSA

1st

The participants of MISC 2010

aspcud - Answer Set Programming

INESC - a SAT-based solver, MaxSAT

apt-pbo - APT + minisat

UCL

P2 - SAT, Eclipse 2nd
UNSA 1st

Questions & discussion

Questions?

zack@debian.org http://www.mancoosi.org/

PS we welcome suggestions on exciting policies that
dependency solving should enable:

minimize installed size cool for embedded

minimize download size 28.8 Kbps connections

blacklist package maintained by Joe Random Developer

. . . what else? Share your thoughts!

http://www.mancoosi.org/

	Dependency solving: relevance and shortcomings
	CUDF — Common Upgradeability Description Format
	CUDF implementations and deployment

