
Pratica e Teoria del Software Libero

Stefano Zacchiroli

Université Paris Diderot
Debian Project

28 Giugno 2013
Scuola Normale Superiore

Corso di Orientamento Universitario 2013
San Miniato (PI), Italy

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 1 / 34

Computer Science

. . . the core challenge for computing science is hence a
conceptual one: what (abstract) mechanisms we can
conceive without getting lost in complexities of our own
making. (Dijkstra, 1986)

Some sub-disciplines in computer science: (ACM, 2012)

hardware

computer system
organization

networks

software and its
engineering

theory of
computation

mathematics of
computing

information
systems

security and
privacy

human-centered
computing

computing
methodologies

applied
computing

. . .

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 2 / 34

Computer Science

. . . the core challenge for computing science is hence a
conceptual one: what (abstract) mechanisms we can
conceive without getting lost in complexities of our own
making. (Dijkstra, 1986)

Some sub-disciplines in computer science: (ACM, 2012)

hardware

computer system
organization

networks

software and its
engineering

theory of
computation

mathematics of
computing

information
systems

security and
privacy

human-centered
computing

computing
methodologies

applied
computing

. . .

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 2 / 34

Software — for users

CC-BY-SA 3.0, http://www.libreoffice.org/features/impress/

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 3 / 34

http://www.libreoffice.org/features/impress/

Software — for developers

for human consumption: source code
// beta distribution probability density function
double ScInterpreter::GetBetaDistPDF(double fX, double fA, double fB) {

// special cases
if (fA == 1.0) { // result b*(1-x)^(b-1)

if (fB == 1.0)
return 1.0;

if (fB == 2.0)
return -2.0*fX + 2.0;

if (fX == 1.0 && fB < 1.0) {
SetError(errIllegalArgument);
return HUGE_VAL;

}
if (fX <= 0.01)

return fB + fB * ::rtl::math::expm1((fB-1.0) * ::rtl::math::log1p(-fX));
else

return fB * pow(0.5-fX+0.5,fB-1.0);
} if (fB == 1.0) // result a*x^(a-1) {
...

for machine consumption: binary program
400730: 53 push %rbx 400747: c3 retq
400731: e8 ca ff ff ff callq 400700 400748: 31 ed xor %ebp,%ebp
400736: e8 e5 ff ff ff callq 400720 40074a: 49 89 d1 mov %rdx,%r9
40073b: 89 c3 mov %eax,%ebx 40074d: 5e pop %rsi
40073d: 31 c0 xor %eax,%eax 40074e: 48 89 e2 mov %rsp,%rdx
40073f: e8 ac ff ff ff callq 4006f0 400751: 48 83 e4 f0 and $0xfffffff0,%rsp
400744: 89 d8 mov %ebx,%eax 400755: 50 push %rax
400746: 5b pop %rbx ...

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 4 / 34

Free Software

free software (as in “free beer”) software = software that has not (yet)
to be payed

Free Software (as in “free speech”) software = software that offers
four freedoms to its users: (Stallman, 1986)

0 to run the program, for any purpose
1 to study how the program works, and change it

(you need the source code for this)

2 to redistribute copies

3 to improve the program, and release improvements

(there are also obligations, which vary according to the license: BSD, GPL,
LGPL, AGPL, . . .)

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 5 / 34

Why bother? — as citizens

Lester picked up a screwdriver. “You see this? It’s a tool.
You can pick it up and you can unscrew stuff or screw stuff
in. You can use the handle for a hammer. You can use the
blade to open paint cans. You can throw it away, loan it
out, or paint it purple and frame it.” He thumped the
printer. “This [Disney in a Box] thing is a tool, too, but it’s
not your tool. It belongs to someone else — Disney. It isn’t
interested in listening to you or obeying you. It doesn’t want
to give you more control over your life.” [. . .]

“If you don’t control your life, you’re miserable. Think of
the people who don’t get to run their own lives: prisoners,
reform-school kids, mental patients. There’s something
inherently awful about living like that. Autonomy makes us
happy.”

— Cory Doctorow, Makers
http://craphound.com/makers/

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 6 / 34

http://craphound.com/makers/

Why bother? — as computer scientists

Free Software has radically changed the way software is:

developed

tested

proven

conceived

marketed

sold

maintained

taught

deployed

. . .

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 7 / 34

Free Software, raw

LibreOffice is cool, let’s install it!

1 download libreoffice_4.0.4.orig.tar.xz
ñ checksum mismatch, missing public key, etc.

2 ./configure
ñ error: missing bar, baz, . . .

3 foreach (bar, baz, . . .) go to 1
until (recursive) success

4 make
ñ error: symbol not found

5 make install
ñ error: cp: cannot create regular file /some/weird/path

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 8 / 34

Free Software, à point: distributions

ease software life-cycle management

key notion: the package abstraction (≈ “app”)

offer coherent software collections

killer application: package managers (≈ “app stores”)

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 9 / 34

Debian

completely Free Software

35’000+ packages
one of the largest (Free) software
collection in existence

12 hardware architectures

developed since 1993 by 1’000+
volunteers world-wide
base for ≈140 other active distributions (47% of the total)

Recent highlights

most popular GNU/Linux on the Web (32.7%) overall; including
derivatives ≈2 Web server out of 10 are based on Debian

— w3techs.com, March 2013

powers: the International Station (NASA, 2013), Google’s public cloud
(Google, 2013), etc.

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 10 / 34

http://w3techs.com

Packages, metadata, installation

package =

some files
some scripts
metadata

identification

inter-package relations

ñ dependencies
ñ conflicts

feature declarations

other (for humans)

ñ package maintainer
ñ textual descriptions
ñ ...

Example (pacakge metadata)
Package: aterm
Version: 0.4.2-11
Section: x11
Installed-Size: 280
Maintainer: Göran Weinholt ...
Architecture: i386
Depends: libc6 (>= 2.3.2.ds1-4),
libice6 | xlibs (> 4.1.0), ...

Conflicts: suidmanager (< 0.50)
Provides: x-terminal-emulator
...

A package is the elemental component of modern distribution systems
(not FOSS-specific). A working system is deployed by installing a package
set (2’000+ for modern FOSS distros)

.Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 11 / 34

The difficult life of distribution maintainers

UpStream

Sources

Security
Patches

Security
Team

Security
incoming

(Manual) package upload
automatic processing

 special/optional process
Standard process

BTS

package installation
Legend

maintenance responsibility
exchange help, discussion

submission, notification

builds

incoming

developer/
maintainer

packaging

power user/
developer

 user/
production

unstable

testing

frozen

by
RM

testing

unstable

stable

stable

proposed updates

proposed updates
security
updates

by
stable
RM

semi official repository

human/
group

transitional
state

stable-updates
(ex volatile)

backports

experimental

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 12 / 34

The difficult life of distribution maintainers (cont.)

A distribution maintainer controls the evolution of a distribution by
regulating the flow of new packages into / old packages out of it.

With 35’000+ packages, and 3’000+ new versions / month, we need
efficient, (semi-)automatic tools to help answering Quality Assurance
questions like:

which packages are in the distro I am releasing?

which packages block the installation of many other packages?

what are the most depended upon packages?

which non-installable packages can only be fixed by changing
them (as opposed to changing other packages in the repo)?

which future version changes will “break” the most packages in
the distro?

. . .

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 13 / 34

The difficult life of distribution maintainers (cont.)

A distribution maintainer controls the evolution of a distribution by
regulating the flow of new packages into / old packages out of it.

With 35’000+ packages, and 3’000+ new versions / month, we need
efficient, (semi-)automatic tools to help answering Quality Assurance
questions like:

which packages are not installable in the distro I am releasing?

which packages block the installation of many other packages?

what are the most depended upon packages?

which non-installable packages can only be fixed by changing
them (as opposed to changing other packages in the repo)?

which future version changes will “break” the most packages in
the distro?

. . .

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 13 / 34

The difficult life of distribution maintainers (cont.)

A distribution maintainer controls the evolution of a distribution by
regulating the flow of new packages into / old packages out of it.

With 35’000+ packages, and 3’000+ new versions / month, we need
efficient, (semi-)automatic tools to help answering Quality Assurance
questions like:

which packages are not installable in the distro I am releasing?

which packages block the installation of many other packages?

what are the most depended upon packages?

which non-installable packages can only be fixed by changing
them (as opposed to changing other packages in the repo)?

which future version changes will “break” the most packages in
the distro?

. . .

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 13 / 34

Developing a formal model for packages

Before developing tools, or even only thinking about algorithms,
we need a clear mathematical model of the problem!

Once we have a model we can profit from existing knowledge
(and existing tools) for the chosen formalisms.

so let’s digress a bit. . .

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 14 / 34

Developing a formal model for packages

Before developing tools, or even only thinking about algorithms,
we need a clear mathematical model of the problem!

Once we have a model we can profit from existing knowledge
(and existing tools) for the chosen formalisms.

so let’s digress a bit. . .

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 14 / 34

Propositional logic — syntax

Let P = p,q, r, . . . be a set of (atomic) propositions. Over an alphabet
of symbols = P ∪

{
¬,),∨,∧, (,→

}
, we want to define a language to

express simple logical statements.

Definition (well-formed formula)

The set of well-formed formulae (WFF) of propositional logic is the
smallest set such that:

P ⊆ WFF

if F ∈ WFF then (¬F) ∈ WFF

if F ,G ∈ WFF then:
ñ (F ∧ G) ∈ WFF
ñ (F ∨ G) ∈ WFF
ñ (F → G) ∈ WFF

We omit parentheses according to conventional precedence rules, e.g.:

p → q∧¬r ∨ s is the same of p → ((q∧ (¬r))∨ s)

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 15 / 34

Propositional logic — truth assignments

Definition (truth assignment)

A truth assignment is a function mapping propositions to either T
(true) or F (false).

We can canonically represent a truth assignment as the set of
propositions mapped to T.

Example

{p,q} ∈ 2P is the truth assignment in which p and q are mapped to
T, and everything else (r, s, t, . . .) is mapped to F.

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 16 / 34

Propositional logic — semantics (cont.)

Definition (semantics of propositional logic)

The semantics of propositional logic is a relation î between the set
of all truth assignments 2P and WFF, i.e. î ⊆ 2P ×WFF, defined
inductively as the smallest set s.t.:

A î p if p ∈ A

A î ¬F if A 6î F

A î F ∧ G if A î F and A î G

A î F ∨ G if either A î F or A î G

A î F → G if when A î F it also holds A î G

Example

{p,q} î p ∧ q read as “{p,q} is a model of p ∧ q”

{p} î p ∨ q “{p} is a model of p ∨ q”

{q} 6î (p ∨ q)→ p “{q} is not a model of (p ∨ q)→ p”

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 17 / 34

Some decision problems in propositional logic

GFDL, http://en.wikipedia.

org/wiki/File:

Decision_Problem.svg

Evaluation: given as input F ∈ WFF and A ∈ 2P

tells whether A î F or not

intuitively, this is easy: we “propagate” the
truth value from sub-formulae to larger
formulae, starting from propositions

this is what digital electronic circuits do

Satisfiability (SAT): given as input F ∈ WFF tells
whether ∃A such that A î F

how hard is this?

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 18 / 34

http://en.wikipedia.org/wiki/File:Decision_Problem.svg
http://en.wikipedia.org/wiki/File:Decision_Problem.svg
http://en.wikipedia.org/wiki/File:Decision_Problem.svg

Some decision problems in propositional logic

GFDL, http://en.wikipedia.

org/wiki/File:

Decision_Problem.svg

Evaluation: given as input F ∈ WFF and A ∈ 2P

tells whether A î F or not

intuitively, this is easy: we “propagate” the
truth value from sub-formulae to larger
formulae, starting from propositions

this is what digital electronic circuits do

Satisfiability (SAT): given as input F ∈ WFF tells
whether ∃A such that A î F

how hard is this?

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 18 / 34

http://en.wikipedia.org/wiki/File:Decision_Problem.svg
http://en.wikipedia.org/wiki/File:Decision_Problem.svg
http://en.wikipedia.org/wiki/File:Decision_Problem.svg

On the complexity of decision problems

some decision problems are impossible to solve (for a machine,
in the general case), they are called undecidable problems, e.g.:

Halting problem

Given the description of an arbitrary program and a
finite input, decide whether the program finishes running or
will run forever (Turing, 1936)

other decision problems can be solved efficiently, i.e. given an
input of size n, they can be solved using an amount of time
which is at most polynomial in it (n, n2, n3, . . .). These are
called polynomial time (P) problems

ñ e.g. evaluation of propositional logic formulae

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 19 / 34

On the complexity of decision problems

some decision problems are impossible to solve (for a machine,
in the general case), they are called undecidable problems, e.g.:

Halting problem

Given the description of an arbitrary program and a
finite input, decide whether the program finishes running or
will run forever (Turing, 1936)

other decision problems can be solved efficiently, i.e. given an
input of size n, they can be solved using an amount of time
which is at most polynomial in it (n, n2, n3, . . .). These are
called polynomial time (P) problems

ñ e.g. evaluation of propositional logic formulae

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 19 / 34

On the complexity of decision problems (cont.)

Some decision problems can be solved, but (at present) not
efficiently, i.e. they can be solved using an amount of time which is
exponential in the size of the input. These are called
(non-deterministic polynomial) NP-complete problems

the above apply to finding a solution; verifying that a solution is
correct can be done efficiently

NP-complete problems enjoy an interesting property: if you can
efficiently solve one of them, then all can be solved efficiently

(and our digital world will crumble)

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 20 / 34

On the complexity of SAT

Example (NP-complete decision problem)

satisfiability of proposition logic (SAT) is NP-complete (Cook, 1971)

i.e. no known algorithm can efficiently solve all instances of SAT. In
the worst case scenario they will be as efficient as:

sat(F) = // brute force approach
P = atomic_propositions(F)
A = truth_assignments(P) // there are 2|P| of these
foreach a ∈ A do

if eval(F, A) then // this step is polynomial
return T

return F

SAT solvers are specialized software that give answers to SAT
decision problems (as) efficiently (as possible).

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 21 / 34

Packages, repositories, installation

Let’s go back to packages. . .

Package: aterm
Version: 0.4.2-11
Section: x11
Installed-Size: 280
Maintainer: Göran Weinholt ...
Architecture: i386
Depends: libc6 (>= 2.3.2.ds1-4),
libice6 | xlibs (> 4.1.0), ...

Conflicts: suidmanager (< 0.50)
Provides: x-terminal-emulator
...

a repository R is a set of
packages where no two
packages have the same
name and version

an installation I ⊆ R is a set of
packages s.t.:

ñ abundance: ∀p ∈ I, the
dependencies of p are
satisfied

ñ peace: ∀p ∈ I, the conflicts
of p are not satisfied

formal details in (Di Cosmo et al. 2006)

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 22 / 34

Modeling packages (w/o versions)

package = proposition
ñ intuition: T for installed packages
ñ e.g. "Package: python" becomes p

dependencies: p → φ where φ is a positive formula
ñ e.g. "Depends: foo, bar | qux" becomes p → f ∧ (b ∨ q)

conflicts between 2 packages: ¬(p ∧ q)
ñ e.g. "Conflicts: q" becomes ¬(p ∧ q)

package not available (but mentioned) in repository: ¬p

Intuition: installation = model

Theorem

p is installable in repository R ⇐⇒ TR ∧ p is satisfiable

where Tr is obtained by applying the above translation to all
packages in R and ∧-ing together the obtained formulae

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 23 / 34

Installability as SAT — example (w/o versions)

Repository R

Package: a Package: b
Depends: b | d Conflicts: d

Package: c Package: d
Depends: d | e Conflicts: c

TR = (a → b ∨ d)∧¬(b ∧ d)∧ (c → d ∨ e)∧¬(c ∧ d)∧¬e

package a is installable in ⇐⇒ TR ∧ a is satisfiable
{a,d} î Tr ∧ a therefore package a is installable

ñ corollary: {a, d} is an installation of R
ñ there might be other installations containing a, e.g. {a, b}

Exercise
Prove that package c is not installable in repository R.

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 24 / 34

Modeling versions

To also capture package versions we need the following changes:
1 use atomic propositions to stand for pairs 〈name, version〉
2 before applying the translation, we perform an expansion phase

on the repository:

replace every package name with version constraint (e.g. p (≥ 3)) by
the disjunction (∨) of all package versions that satisfy the constraint
(e.g. p3 ∨ p4 ∨ p7)

This way we don’t have to care about versions and comparisons
in the logical model

3 add implicit conflicts between different versions of the same
package1

1this is a common requirement in Debian and other packaging systems
Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 25 / 34

Installability as SAT — complete example

Install libc6 version
2.3.2.ds1-22 in

Package: libc6
Version: 2.2.5-11.8

Package: libc6
Version: 2.3.5-3

Package: libc6
Version: 2.3.2.ds1-22
Depends: libdb1-compat

Package: libdb1-compat
Version: 2.1.3-8
Depends: libc6 (>=
2.3.5-1)

Package: libdb1-compat
Version: 2.1.3-7
Depends: libc6 (>=
2.2.5-13)

⇒

libc62.3.2.ds1−22

∧
¬(libc62.3.2.ds1−22 ∧ libc62.2.5−11.8)
∧
¬(libc62.3.2.ds1−22 ∧ libc62.3.5−3)
∧
¬(libc62.3.5−3 ∧ libc62.2.5−11.8)
∧
¬(libdb1-compat2.1.3−7 ∧ libdb1-compat2.1.3−8)
∧
libc62.3.2.ds1−22 →
(libdb1-compat2.1.3−7 ∨ libdb1-compat2.1.3−8)
∧
libdb1-compat2.1.3−7 →
(libc62.3.2.ds1−22 ∨ libc62.3.5−3)
∧
libdb1-compat2.1.3−8 → libc62.3.5−3

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 26 / 34

How hard are package installation problems?

We have translated package installability into SAT, therefore:

we can now use a SAT solver to check installability (practice)

we know installability is not harder than SAT (theory)

But is installability easier than SAT?

Theorem
Package (co-)installability is NP-complete.

Proof technique
Mapping of general SAT instances (in 3-SAT form) to package
installation problems. (Di Cosmo et al. 2006)

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 27 / 34

How hard are package installation problems?

We have translated package installability into SAT, therefore:

we can now use a SAT solver to check installability (practice)

we know installability is not harder than SAT (theory)

But is installability easier than SAT?

Theorem
Package (co-)installability is NP-complete.

Proof technique
Mapping of general SAT instances (in 3-SAT form) to package
installation problems. (Di Cosmo et al. 2006)

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 27 / 34

Practical complexity

Solving an NP-complete problem?

Checking installability is NP-complete, but recent SAT solvers
are able to handle easily current instances.

In practice: explicit conflicts between packages are not very
frequent (but they are crucial when they exist!)

When checking installability wrt a single repository: only one
version per package (except rare exceptions), hence no implicit
conflicts.

A practical tool

The dose-distcheck tool (Vouillon, 2006) checks installability
of all packages wrt a repository of 35’000+ packages in a few
seconds on commodity desktop hardware.

Today integrated in the dose3 library (Abate, Zacchiroli et
al. http://www.mancoosi.org/software/).

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 28 / 34

http://www.mancoosi.org/software/

dose-debcheck — example

package: libgnuradio-dev
version: 3.2.2.dfsg-1
architecture: all
source: gnuradio (= 3.2.2.dfsg-1)
status: broken
reasons:

-
missing:
pkg:
package: libgruel0
version: 3.2.2.dfsg-1+b1
architecture: amd64
unsat-dependency: libboost-thread1.40.0 (>= 1.40.0-1)

depchains:
-
depchain:
-
package: libgnuradio-dev
version: 3.2.2.dfsg-1
architecture: all
depends: libgnuradio (= 3.2.2.dfsg-1)

-
package: libgnuradio
version: 3.2.2.dfsg-1
architecture: all
depends: libgnuradio-core0

-
package: libgnuradio-core0
version: 3.2.2.dfsg-1+b1
architecture: amd64
depends: libgruel0 (= 3.2.2.dfsg-1+b1)

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 29 / 34

Usage in Debian

http://edos.debian.net/weather/

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 30 / 34

http://edos.debian.net/weather/

Usage in Debian (cont.)

Verify installability of packages before uploading them to the
archive

ñ used daily by Emdebian

Check that build-dependencies are satisfiable before attempting
a package build

ñ “life changing” for porters (quote)

Generate test cases for finding errors occurring during package
installation

ñ file conflicts, by Ralf Treinen
ñ http://edos.debian.net/file-overwrites/

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 31 / 34

http://edos.debian.net/file-overwrites/

Dijkstra
On a cultural gap
The Mathematical Intelligencer 8 (1986), 1:48–52 http:
//www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD924.html

Association for Computing Machinery
The 2012 ACM Computing Classification System
http://www.acm.org/about/class/2012

Turing
On computable numbers, with an application to the Entscheidungsproblem
http://www.turingarchive.org/browse.php/B/12, 1936

Cook
The complexity of theorem-proving procedures
ACM symposium on Theory of computing, 1971.

Di Cosmo et al.
Managing the complexity of large free and open source package-based
software distributions.
ASE 2006: Automated Software Engineering.

Di Cosmo, Treinen, Zacchiroli
Formal Aspects of Free and Open Source Software Components
FMCO 2012, http://upsilon.cc/~zack/research/publications/
fmco2012-foss-components.pdf

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 32 / 34

http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD924.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD09xx/EWD924.html
http://www.acm.org/about/class/2012
http://www.turingarchive.org/browse.php/B/12
http://upsilon.cc/~zack/research/publications/fmco2012-foss-components.pdf
http://upsilon.cc/~zack/research/publications/fmco2012-foss-components.pdf

Looking back: our approach

start from a CS discipline: software engineering

observation of its social and technical ramifications
ñ in particular: of Free Software

analysis of some existing issue
ñ in particular: QA in complex component-based systems

development of a formal model that capture the relevant parts
of the issue

theory: upper and lower bounds to algorithmic complexity

practice: tool development

communication to promote the tools to the relevant public

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 33 / 34

Thanks!

Questions?
Stefano Zacchiroli
zack@upsilon.cc

http://upsilon.cc/zack

http://identi.ca/zack

about the slides:
available at https://gitorious.org/zacchiro/talks/trees/master/2013/20130628-normale
copyright © 2010–2013 Stefano Zacchiroli
license CC BY-SA 3.0 — Creative Commons Attribution-ShareAlike 3.0

Stefano Zacchiroli (Univ. Paris Diderot) Pratica e Teoria del Software Libero SNS — San Miniato, Italy 34 / 34

http://upsilon.cc/zack
http://identi.ca/zack
https://gitorious.org/zacchiro/talks/trees/master/2013/20130628-normale
http://creativecommons.org/licenses/by-sa/3.0/

