
So�ware Heritage
Technical challenges when archiving the entire So�ware Commons

Stefano Zacchiroli

Inria, So�ware Heritage

25 January 2018
Inria Rocquencourt

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 1 / 24

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Technical challenges

5 Community

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 2 / 24

So�ware source code is special

Harold Abelson, Structure and Interpretation of Computer Programs

“Programs must be wri�en for people to read, and only incidentally for machines to execute.”

�ake 2 source code (excerpt) Net. queue in Linux (excerpt)

Len Shustek, Computer History Museum

“Source code provides a view into the mind of the designer.”

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 2 / 24

Our So�ware Commons

Definition (Commons)

The commons is the cultural and natural resources accessible to all members of a
society, including natural materials such as air, water, and a habitable earth. These
resources are held in common, not owned privately. https://en.wikipedia.org/wiki/Commons

Definition (So�ware Commons)

The so�ware commons consists of all computer so�ware which is available at li�le or no
cost and which can be altered and reused with few restrictions. Thus all open source
so�ware and all free so�ware are part of the [so�ware] commons. [. . .]
https://en.wikipedia.org/wiki/Software_Commons

Source code is a precious part of our commons

are we taking care of it?

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 3 / 24

https://en.wikipedia.org/wiki/Commons
https://en.wikipedia.org/wiki/Software_Commons

Our So�ware Commons

Definition (Commons)

The commons is the cultural and natural resources accessible to all members of a
society, including natural materials such as air, water, and a habitable earth. These
resources are held in common, not owned privately. https://en.wikipedia.org/wiki/Commons

Definition (So�ware Commons)

The so�ware commons consists of all computer so�ware which is available at li�le or no
cost and which can be altered and reused with few restrictions. Thus all open source
so�ware and all free so�ware are part of the [so�ware] commons. [. . .]
https://en.wikipedia.org/wiki/Software_Commons

Source code is a precious part of our commons

are we taking care of it?

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 3 / 24

https://en.wikipedia.org/wiki/Commons
https://en.wikipedia.org/wiki/Software_Commons

So�ware is fragile

Like all digital information, FOSS is fragile

inconsiderate and/or malicious code loss (e.g., Code Spaces)

business-driven code loss (e.g., Gitorious, Google Code)

for obsolete code: physical media decay (data rot)

Where is the archive. . .
where we go if (a repository on) GitHub or GitLab.com goes away?

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 4 / 24

So�ware is fragile

Like all digital information, FOSS is fragile

inconsiderate and/or malicious code loss (e.g., Code Spaces)

business-driven code loss (e.g., Gitorious, Google Code)

for obsolete code: physical media decay (data rot)

Where is the archive. . .
where we go if (a repository on) GitHub or GitLab.com goes away?

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 4 / 24

So�ware lacks its own research infrastructure

A wealth of so�ware research on crucial issues. . .
safety, security, test, verification, proof

so�ware engineering, so�ware evolution

big data, machine learning, empirical studies

If you study the stars, you go to Atacama. . .

. . . where is the very large telescope of source code?

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 5 / 24

So�ware lacks its own research infrastructure

A wealth of so�ware research on crucial issues. . .
safety, security, test, verification, proof

so�ware engineering, so�ware evolution

big data, machine learning, empirical studies

If you study the stars, you go to Atacama. . .

. . . where is the very large telescope of source code?

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 5 / 24

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Technical challenges

5 Community

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 6 / 24

The So�ware Heritage Project

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Our mission
Collect, preserve and share the source code of all the so�ware that is publicly available.

Past, present and future

Preserving the past, enhancing the present, preparing the future.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 6 / 24

Our principles

Open approach
open source

transparency

In for the long haul

non profit

replication

Collaboration
minimalism

interfaces

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 7 / 24

Our principles

Open approach
open source

transparency

In for the long haul

non profit

replication

Collaboration
minimalism

interfaces

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 7 / 24

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Technical challenges

5 Community

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 8 / 24

Archiving goals

Targets: VCS repositories & source code releases (e.g., tarballs)

We DO archive
file content (= blobs)

revisions (= commits), with full metadata

releases (= tags), di�o

where (origin) & when (visit) we found any of the above

. . . in a VCS-/archive-agnostic canonical data model

We DON’T archive
homepages, wikis

BTS/issues/code reviews/etc.

mailing lists

Long term vision: play our part in a "semantic wikipedia of so�ware"

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 8 / 24

Data flow

dsc

dsc

hg

hg

hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Software Heritage
Archive

Forges
GitHub
lister

GitLab
lister

Debian
lister

Git
loader

Mercurial
loader

Debian source
package loader

PyPi
lister

tar loader

Merkle DAG
+

blob storage

.

.

.

.

.

.Distros

...

Scheduling

Listing
(full/incremental)

Loading
& deduplication

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 9 / 24

Merkle trees
Merkle tree (R. C. Merkle, Crypto 1979)

Combination of

tree

hash function

Classical cryptographic construction

fast, parallel signature of large data structures

widely used (e.g., Git, blockchains, IPFS, . . .)

built-in deduplication

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 10 / 24

Merkle trees
Merkle tree (R. C. Merkle, Crypto 1979)

Combination of

tree

hash function

Classical cryptographic construction

fast, parallel signature of large data structures

widely used (e.g., Git, blockchains, IPFS, . . .)

built-in deduplication
Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 10 / 24

Example: a So�ware Heritage revision

Note: most object kinds currently have Git-compatible identifiers

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 11 / 24

The archive: a (giant) Merkle DAG

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 12 / 24

Archive coverage

Current sources
live: GitHub, Debian

one-o�: Gitorious, Google Code

WIP: Bitbucket

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest public source code archive, . . . and growing daily!

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 13 / 24

Archive coverage

Current sources
live: GitHub, Debian

one-o�: Gitorious, Google Code

WIP: Bitbucket

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest public source code archive, . . . and growing daily!

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 13 / 24

Archive coverage

Current sources
live: GitHub, Debian

one-o�: Gitorious, Google Code

WIP: Bitbucket

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest public source code archive, . . . and growing daily!

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 13 / 24

Web API

First public version of our Web API (Feb 2017)
https://archive.softwareheritage.org/api/

Features
pointwise browsing of the So�ware Heritage archive

. . . releases → revisions → directories → contents . . .

full access to the metadata of archived objects
crawling information

when have you last visited this Git repository I care about?
where were its branches/tags pointing to at the time?

Complete endpoint index

https://archive.softwareheritage.org/api/1/

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 14 / 24

https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/1/

Roadmap

Features. . .
(done) lookup by content hash
browsing: "wayback machine" for archived code

(done) via Web API
(stay tuned) via Web UI

(stay tuned) download: wget / git clone from the archive

(stay tuned) deposit of source code bundles directly to the archive

(todo) provenance lookup for all archived content

(todo) full-text search on all archived source code files

. . . and much more than one could possibly imagine

all the world’s so�ware development history in a single graph!

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 15 / 24

Roadmap

Features. . .
(done) lookup by content hash
browsing: "wayback machine" for archived code

(done) via Web API
(stay tuned) via Web UI

(stay tuned) download: wget / git clone from the archive

(stay tuned) deposit of source code bundles directly to the archive

(todo) provenance lookup for all archived content

(todo) full-text search on all archived source code files

. . . and much more than one could possibly imagine

all the world’s so�ware development history in a single graph!

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 15 / 24

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Technical challenges

5 Community

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 16 / 24

Technology: how do you store the SWH DAG?

Problem statement
How would you store and query a graph with 10 billion nodes and 60 billion edges?

How would you store the contents of more than 3 billion files, 300TB of raw data?

. . . on a limited budget (100 000 € of hardware overall)

Our hardware stack
two hypervisors with 512GB RAM, 20TB SSD each, sharing access to a storage
array (60 x 6TB spinning rust)

one backup server with 48GB RAM and another storage array

Our so�ware stack
A RDBMS (PostgreSQL, what else?), for storage of the graph nodes and edges

filesystems for storing the actual file contents

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 16 / 24

Technology: how do you store the SWH DAG?

Problem statement
How would you store and query a graph with 10 billion nodes and 60 billion edges?

How would you store the contents of more than 3 billion files, 300TB of raw data?

. . . on a limited budget (100 000 € of hardware overall)

Our hardware stack
two hypervisors with 512GB RAM, 20TB SSD each, sharing access to a storage
array (60 x 6TB spinning rust)

one backup server with 48GB RAM and another storage array

Our so�ware stack
A RDBMS (PostgreSQL, what else?), for storage of the graph nodes and edges

filesystems for storing the actual file contents

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 16 / 24

Technology: archive storage components

Metadata storage

Python module swh.storage

thin Python API over a pile of PostgreSQL functions

motivation: keeping relational integrity at the lowest layer

Content ("object") storage

Python module swh.objstorage

very thin object storage abstraction layer (PUT, APPEND and GET) over regular
storage technologies

separate layer for asynchronous replication and integrity management
(swh.archiver)

motivation: stay as technology neutral as possible for future mirrors

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 17 / 24

Technology: object storage

Primary deployment

Storage on 16 sharded XFS filesystems; key = sha1 (content), value = gzip (content)

if sha1 = abcdef01234. . . , file path = / srv / storage / a / ab / cd / ef / abcdef01234. . .

3 directory levels deep, each level 256-wide = 16 777 216 directories (1 048 576 per
partition)

Secondary deployment

Storage on Azure blob storage

16 storage containers, objects stored in a flat structure there

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 18 / 24

Technology: object storage review

Generic model is fine
The abstraction layer is fairly simple and generic, and the implementation of the upper
layers (replication, integrity checking) was a breeze.

Filesystem implementation is bad

Slow spinning storage + li�le RAM (48GB) + 16 million dentries = (very) bad performance

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 19 / 24

Technology: metadata storage

Current deployment

PostgreSQL deployed in primary/replica mode, using pg_logical for replication:
di�erent indexes on primary (tuned for writes) and replicas (tuned for reads).

most logic done in SQL

thin Pythonic API over the SQL functions

End goals

proper handling of relations between objects at the lowest level

doing fast recursive queries on the graph (e.g., find the provenance info for a
content, walking up the whole graph, with a single query)

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 20 / 24

Technology: metadata storage review

Limited resources
PostgreSQL works really well

. . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage but Massive deduplication = exponential width
for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 21 / 24

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage but Massive deduplication = exponential width
for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 21 / 24

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage but Massive deduplication = exponential width
for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 21 / 24

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage

but Massive deduplication = exponential width
for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 21 / 24

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage but Massive deduplication = exponential width
for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 21 / 24

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage but Massive deduplication = exponential width
for recursive queries

Reality check

Referential integrity?

Real repositories downloaded from the internet are all kinds of
broken.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 21 / 24

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage but Massive deduplication = exponential width
for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 21 / 24

Technology: outlook

Object storage

Our Azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.

We are now
experimenting with scale-out object storages (and in particular Ceph) for the main copy
of the archive.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong. We could probably migrate to "dumb" object storages for each type
of object, with another layer to check metadata integrity regularly.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 22 / 24

Technology: outlook

Object storage

Our Azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much. We are now
experimenting with scale-out object storages (and in particular Ceph) for the main copy
of the archive.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong. We could probably migrate to "dumb" object storages for each type
of object, with another layer to check metadata integrity regularly.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 22 / 24

Technology: outlook

Object storage

Our Azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much. We are now
experimenting with scale-out object storages (and in particular Ceph) for the main copy
of the archive.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.

We could probably migrate to "dumb" object storages for each type
of object, with another layer to check metadata integrity regularly.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 22 / 24

Technology: outlook

Object storage

Our Azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much. We are now
experimenting with scale-out object storages (and in particular Ceph) for the main copy
of the archive.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong. We could probably migrate to "dumb" object storages for each type
of object, with another layer to check metadata integrity regularly.

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 22 / 24

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Technical challenges

5 Community

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 23 / 24

Sponsors Testimonials

UNESCO/Inria agreement (April 3rd, 2017)

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 23 / 24

You can help!

Coding

www.softwareheritage.org/community/developers/
forge.softwareheritage.org — our own code

Current development priorities

888 listers for unsupported forges, distros, pkg. managers
888 loaders for unsupported VCS, source package formats
88 Web UI: eye candy wrapper around the Web API
8 content indexing and search

. . . all contributions equally welcome!

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 23 / 24

www.softwareheritage.org/community/developers/
forge.softwareheritage.org

Conclusion

It is urgent to preserve so�ware source code; So�ware Heritage has took a
systematic approach at it and has already assembled the largest archive to date.

So�ware Heritage responds to cultural, research, and industry needs; it is a shared
infrastructure that can benefit us all.

We should collaborate and pool resources to make it so.

References
Roberto Di Cosmo, Stefano Zacchiroli. So�ware Heritage: Why and How to Preserve So�ware
Source Code. iPRES 2017. Preprint: http://deb.li/swhipres17

Come in, we’re open!

www.softwareheritage.org — sponsoring, job openings
wiki.softwareheritage.org — internships, leads
forge.softwareheritage.org — our own code

Stefano Zacchiroli So�ware Heritage Inria Rocquencourt 24 / 24

http://deb.li/swhipres17
www.softwareheritage.org
wiki.softwareheritage.org
forge.softwareheritage.org

	The Software Commons
	Software Heritage
	Architecture
	Technical challenges
	Community

