
So�ware Heritage
Source Code Archival and Analysis at the Scale of the World

Stefano Zacchiroli

Univ. Paris Diderot & Inria — zack@upsilon.cc, @zacchiro

14 November 2019
University of Zurich — Zurich, Switzerland

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 1 / 32

Outline

1 Source code in science

2 So�ware Heritage

3 Research challenges & roadmap

4 Conclusion

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 2 / 32

So�ware Source code: pillar of Open Science

So�ware is everywhere in modern research

[. . .] so�ware [. . .] essential in
their fields.

Top 100 papers (Nature, 2014)

Sometimes, if you dont have the
so�ware, you dont have the data
Christine Borgman, Paris, 2018

Open Science: three pillars

Nota bene
The links in the picture are essential

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 2 / 32

So�ware Source code: pillar of Open Science

So�ware is everywhere in modern research

[. . .] so�ware [. . .] essential in
their fields.

Top 100 papers (Nature, 2014)

Sometimes, if you dont have the
so�ware, you dont have the data
Christine Borgman, Paris, 2018

Open Science: three pillars

Nota bene
The links in the picture are essential

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 2 / 32

So�ware Source code: pillar of Open Science

So�ware is everywhere in modern research

[. . .] so�ware [. . .] essential in
their fields.

Top 100 papers (Nature, 2014)

Sometimes, if you dont have the
so�ware, you dont have the data
Christine Borgman, Paris, 2018

Open Science: three pillars

Nota bene
The links in the picture are essential

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 2 / 32

Source code is special

Harold Abelson, Structure and Interpretation of Computer Programs (1st ed.) 1985

“Programs must be wri�en for people to read, and only incidentally for machines to execute.”

Apollo 11 source code (excerpt) �ake III source code (excerpt)

Len Shustek, Computer History Museum

“Source code provides a view into the mind of the designer.”

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 3 / 32

https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/

Source code is special

Harold Abelson, Structure and Interpretation of Computer Programs (1st ed.) 1985

“Programs must be wri�en for people to read, and only incidentally for machines to execute.”

Apollo 11 source code (excerpt)

�ake III source code (excerpt)

Len Shustek, Computer History Museum

“Source code provides a view into the mind of the designer.”

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 3 / 32

https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/

Source code is special

Harold Abelson, Structure and Interpretation of Computer Programs (1st ed.) 1985

“Programs must be wri�en for people to read, and only incidentally for machines to execute.”

Apollo 11 source code (excerpt) �ake III source code (excerpt)

Len Shustek, Computer History Museum

“Source code provides a view into the mind of the designer.”

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 3 / 32

https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/

Source code is special

Harold Abelson, Structure and Interpretation of Computer Programs (1st ed.) 1985

“Programs must be wri�en for people to read, and only incidentally for machines to execute.”

Apollo 11 source code (excerpt) �ake III source code (excerpt)

Len Shustek, Computer History Museum

“Source code provides a view into the mind of the designer.”

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 3 / 32

https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/

The state of the art is not ideal

Analysis of 613 papers

8 ACM conferences: ASPLOS’12,
CCS’12, OOPSLA’12, OSDI’12,
PLDI’12, SIGMOD’12, SOSP’11,
VLDB’12

5 journals: TACO’9, TISSEC’15,
TOCS’30, TODS’37, TOPLAS’34

all very practical oriented

The basic question

can we get the code to build and run?

The workflow

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 4 / 32

The state of the art is not ideal. . . (cont.)

. . .
. . . that’s a whopping 40% of non reproducible works!

The main reason
source code (or the right version of it) cannot be found

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 5 / 32

The state of the art is not ideal. . . (cont.)

. . .
. . . that’s a whopping 40% of non reproducible works!

The main reason
source code (or the right version of it) cannot be found

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 5 / 32

So�ware is fragile

Like all digital information, FOSS is fragile

inconsiderate and/or malicious code loss (e.g., Code Spaces)

business-driven code loss (e.g., Gitorious, Google Code)

for obsolete code: physical media decay (data rot)

Where is the archive. . .
where do we go if (a repository on) GitHub or GitLab.com goes away?

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 6 / 32

So�ware is fragile

Like all digital information, FOSS is fragile

inconsiderate and/or malicious code loss (e.g., Code Spaces)

business-driven code loss (e.g., Gitorious, Google Code)

for obsolete code: physical media decay (data rot)

Where is the archive. . .
where do we go if (a repository on) GitHub or GitLab.com goes away?

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 6 / 32

So�ware is spread all around

Fashion victims
many disparate development platforms

a myriad places where distribution may happen

projects tend to migrate from one place to another over time

Where is the place . . .

where we can find, track and search all source code?

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 7 / 32

So�ware is spread all around

Fashion victims
many disparate development platforms

a myriad places where distribution may happen

projects tend to migrate from one place to another over time

Where is the place . . .

where we can find, track and search all source code?

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 7 / 32

So�ware lacks its own research infrastructure

A wealth of so�ware research on crucial issues. . .
safety, security, test, verification, proof

so�ware engineering, so�ware evolution

big data, machine learning, empirical studies

If you study the stars, you go to Atacama. . .

. . . where is the very large telescope of source code?

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 8 / 32

So�ware lacks its own research infrastructure

A wealth of so�ware research on crucial issues. . .
safety, security, test, verification, proof

so�ware engineering, so�ware evolution

big data, machine learning, empirical studies

If you study the stars, you go to Atacama. . .

. . . where is the very large telescope of source code?

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 8 / 32

Outline

1 Source code in science

2 So�ware Heritage

3 Research challenges & roadmap

4 Conclusion

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 9 / 32

The So�ware Heritage Project

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Our mission
Collect, preserve and share the source code of all the so�ware that is publicly available.

Past, present and future

Preserving the past, enhancing the present, preparing the future.

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 9 / 32

Our principles

Open approach
open source

transparency

In for the long haul

non profit

replication & mirrors

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 10 / 32

Our principles

Open approach
open source

transparency

In for the long haul

non profit

replication & mirrors

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 10 / 32

Archiving goals

Targets: VCS repositories & source code releases (e.g., tarballs)

We DO archive
file content (= blobs)

revisions (= commits), with full metadata

releases (= tags), di�o

where (origin) & when (visit) we found any of the above

. . . in a VCS-/archive-agnostic canonical data model

We DON’T archive
homepages, wikis

BTS/issues/code reviews/etc.

mailing lists

Long term vision: play our part in a "semantic wikipedia of so�ware"

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 11 / 32

Data flow

deb

deb

hg

hg

hg

git
git

git git

svn

svn

svn

pypi

pypi

software
origins

Package
repos

Software Heritage
Archive

Forges
GitHub
lister

GitLab
lister

Debian
lister

Git
loader

Mercurial
loader

Debian source
package loader

PyPI
lister

PyPI loader

Merkle DAG
+

blob storage

.

.

.

.

.

.Distros

...

Scheduling

Listing
(full/incremental)

Loading
& deduplication

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 12 / 32

The archive: a (giant) Merkle DAG

Origin

+ url: str

branches

Snapshot

*

*

Release

directory

Revision

*

**

*

Merkle DAG

target 1

entries

parents

snapshots

+ id: sha1

Directory
entries

+ id: sha1+ id: sha1
+ author: str
+ name: str
+ message: str
+ timestamp: datetime

+ id: sha1
+ author: str
+ message: str
+ timestamp: datetime

Content

+ id:sha1

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 13 / 32

The archive: a (giant) Merkle DAG
origin visit

https://forge.softwareheritage.org/source/helloworld.git
snapshot

1
timestamp

Fri Feb 9 12:38:45 2018 +01000861db5e…

<<Revision>>
a3ee21ad…

+author = "Stefano Zacchiroli <zack@…>"
+message = "add build toolchain …"
+timestamp = Thu Feb 8 10:49:29 2018 +0100
+directory: Directory
+parents: Revision list

<<Directory>>
b94a90cd…

+entries
 ".gitignore"
 "Makefile"
 "hello.c"

<<Content>>
225ae01b…

+data = "all: hello\n\n…"

<<Revision>>
43ef7dcd…

+author = "Stefano Zacchiroli <zack@…>"
+message = "add licensing information and README"
+timestamp = Thu Feb 8 10:54:09 2018 +0100
+directory: Directory
+parents: Revision list

<<Directory>>
fa8c0908…

+entries
 ".gitignore"
 "COPYING"
 "Makefile"
 "README.md"
 "hello.c"

<<Content>>
a1afd006…

+data = "…Yet another…"

<<Release>>
edf82f21…

+author = "Stefano Zacchiroli <zack@…>"
+name = "1.0"
+message = "1.0 release"
+timestamp = Thu Feb 8 15:51:00 2018 +0100
+target

<<Snapshot>>
0861db5e…

+branches
 HEAD
 refs/heads/master
 refs/tags/1.0

Archive content
after visit 1

<<Content>>
c839dea9…

+data = "#include …"

<<Directory>>
6ca2e444…

+entries
 "hello.c"

<<Revision>>
1886826f…

+author = "Stefano Zacchiroli <zack@…>"
+message = "implement a trivial …"
+timestamp = Thu Feb 8 10:44:35 2018 +0100
+directory: Directory
+parents: Revision list = None

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 14 / 32

The archive: a (giant) Merkle DAG
origin visit

https://forge.softwareheritage.org/source/helloworld.git
snapshot

1
https://forge.softwareheritage.org/source/helloworld.git 2

timestamp
Fri Feb 9 12:38:45 2018 +0100

Fri Feb 9 13:29:00 2018 +01000861db5e…
0861db5e…

<<Revision>>
a3ee21ad…

+author = "Stefano Zacchiroli <zack@…>"
+message = "add build toolchain …"
+timestamp = Thu Feb 8 10:49:29 2018 +0100
+directory: Directory
+parents: Revision list

<<Directory>>
b94a90cd…

+entries
 ".gitignore"
 "Makefile"
 "hello.c"

<<Content>>
225ae01b…

+data = "all: hello\n\n…"

<<Revision>>
43ef7dcd…

+author = "Stefano Zacchiroli <zack@…>"
+message = "add licensing information and README"
+timestamp = Thu Feb 8 10:54:09 2018 +0100
+directory: Directory
+parents: Revision list

<<Directory>>
fa8c0908…

+entries
 ".gitignore"
 "COPYING"
 "Makefile"
 "README.md"
 "hello.c"

<<Content>>
a1afd006…

+data = "…Yet another…"

<<Release>>
edf82f21…

+author = "Stefano Zacchiroli <zack@…>"
+name = "1.0"
+message = "1.0 release"
+timestamp = Thu Feb 8 15:51:00 2018 +0100
+target

<<Snapshot>>
0861db5e…

+branches
 HEAD
 refs/heads/master
 refs/tags/1.0

 Archive content
 after visits 1 and 2

<<Content>>
c839dea9…

+data = "#include …"

<<Directory>>
6ca2e444…

+entries
 "hello.c"

<<Revision>>
1886826f…

+author = "Stefano Zacchiroli <zack@…>"
+message = "implement a trivial …"
+timestamp = Thu Feb 8 10:44:35 2018 +0100
+directory: Directory
+parents: Revision list = None

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 15 / 32

The archive: a (giant) Merkle DAG
origin visit

https://forge.softwareheritage.org/source/helloworld.git
snapshot

1
https://forge.softwareheritage.org/source/helloworld.git 2

timestamp
Fri Feb 9 12:38:45 2018 +0100

Fri Feb 9 13:29:00 2018 +0100

https://forge.softwareheritage.org/source/helloworld.git 3 Fri Feb 9 15:52:50 2018 +0100510aa88b…
0861db5e…
0861db5e…

<<Revision>>
a3ee21ad…

+author = "Stefano Zacchiroli <zack@…>"
+message = "add build toolchain …"
+timestamp = Thu Feb 8 10:49:29 2018 +0100
+directory: Directory
+parents: Revision list

<<Directory>>
b94a90cd…

+entries
 ".gitignore"
 "Makefile"
 "hello.c"

<<Content>>
225ae01b…

+data = "all: hello\n\n…"

<<Revision>>
43ef7dcd…

+author = "Stefano Zacchiroli <zack@…>"
+message = "add licensing information and README"
+timestamp = Thu Feb 8 10:54:09 2018 +0100
+directory: Directory
+parents: Revision list

<<Revision>>
c7640e8d…

+author = "Stefano Zacchiroli <zack@…>"
+message = "move source code to src/\n…"
+timestamp = Thu Feb 8 15:26:08 2018 +0100
+directory: Directory
+parents: Revision list

<<Directory>>
fa8c0908…

+entries
 ".gitignore"
 "COPYING"
 "Makefile"
 "README.md"
 "hello.c"

<<Content>>
a1afd006…

+data = "…Yet another…"

<<Directory>>
45f0c078…

+entries
 "COPYING"
 "Makefile"
 "README.md"
 "src"

<<Release>>
edf82f21…

+author = "Stefano Zacchiroli <zack@…>"
+name = "1.0"
+message = "1.0 release"
+timestamp = Thu Feb 8 15:51:00 2018 +0100
+target

<<Snapshot>>
0861db5e…

+branches
 HEAD
 refs/heads/master
 refs/tags/1.0

<<Snapshot>>
510aa88b…

+branches
 HEAD
 refs/heads/master
 refs/heads/doc
 refs/tags/1.0

 Archive content
 after visits 1 and 2

<<Content>>
c839dea9…

+data = "#include …"

<<Directory>>
6ca2e444…

+entries
 "hello.c"

<<Revision>>
1886826f…

+author = "Stefano Zacchiroli <zack@…>"
+message = "implement a trivial …"
+timestamp = Thu Feb 8 10:44:35 2018 +0100
+directory: Directory
+parents: Revision list = None

...

Archive content
after visits 1, 2 and 3

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 16 / 32

Archive coverage — archive.so�wareheritage.org

~400 TB (uncompressed) blobs, ~20 B nodes, ~280 B edges

The richest public source code archive, . . . and growing daily!

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 17 / 32

Archive coverage — archive.so�wareheritage.org

~400 TB (uncompressed) blobs, ~20 B nodes, ~280 B edges

The richest public source code archive, . . . and growing daily!

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 17 / 32

Outline

1 Source code in science

2 So�ware Heritage

3 Research challenges & roadmap

4 Conclusion

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 18 / 32

Realizing the "large telescope of source code" in practice

Requirements

Availability: So�ware Heritage mirror, relatively up-to-date

E�iciency: massive computing resources with fast access to the mirror

Sustainability: pay-per-use or bring-your-own-computing

Challenges

mirroring

compression

e�icient processing

experiments description language

big code analysis (i.e., ML on source code)

. . . at the scale of the world!

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 18 / 32

Challenge #1: Mirroring

Thomas Je�erson, February 18, 1791

Let us save what remains: not by vaults and locks which fence them from the public
eye and use in consigning them to the waste of time, but by such a multiplication
of copies, as shall place them beyond the reach of accident.

Mirroring: the good

big, but not that big

append-only archive (in theory), easy to journal and incrementally update

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 19 / 32

Challenge #1: Mirroring

Thomas Je�erson, February 18, 1791

Let us save what remains: not by vaults and locks which fence them from the public
eye and use in consigning them to the waste of time, but by such a multiplication
of copies, as shall place them beyond the reach of accident.

Mirroring: the good

big, but not that big

append-only archive (in theory), easy to journal and incrementally update

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 19 / 32

Challenge #1: Mirroring (cont.)

Mirroring: the bad — Merkle DAGs with "holes"

the world sucks: corrupted repositories, takedown notices, data losses
nodes can go missing at archival time or disappear later on

top-level hash(es) no longer capture the full state of the archive

Open questions

how do you capture such full state then?
by extension: how do you timestamp the archive?

how do you e�iciently check if something is to be re-archived?

ultimately, what’s your notion of having "fully archived" something?

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 20 / 32

Challenge #2: Compression — file contents

Storage figures

file contents: ~400 TB (raw), ~200 TB compressed (1-by-1 content compression)

median compressed size: 3 KB → a lot (~6 B) of very small files

Practical problem: scale-out object storages are not designed for this workload.

Content compression

low compression ratio (2x) with 1-by-1 compression

typical Git/VCS packing heuristics do not work here, because contents occur in
many di�erent contexts
early experiences with Rabin-style compression & co. were unsatisfactory

increased deduplication granularity (e.g., SLOCs) will likely su�er of the same problem

research lead: object packing, using heuristics that maximize the chances of
compressability (e.g., having a file name in common)

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 21 / 32

Challenge #2: Compression — file contents

Storage figures

file contents: ~400 TB (raw), ~200 TB compressed (1-by-1 content compression)

median compressed size: 3 KB → a lot (~6 B) of very small files

Practical problem: scale-out object storages are not designed for this workload.

Content compression

low compression ratio (2x) with 1-by-1 compression

typical Git/VCS packing heuristics do not work here, because contents occur in
many di�erent contexts
early experiences with Rabin-style compression & co. were unsatisfactory

increased deduplication granularity (e.g., SLOCs) will likely su�er of the same problem

research lead: object packing, using heuristics that maximize the chances of
compressability (e.g., having a file name in common)

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 21 / 32

Challenge #2: Compression — graph

Storage figures

Merkle DAG: ~20 B nodes, ~280 B edges
breakdown by node type: ~40% contents, ~40% directories, ~10% commits

Still outside the limits of what (cheaply & trivially) fits in RAM.

Graph compression

related: Web graph compression techniques in the style of, e.g.:

Paolo Boldi, Sebastiano Vigna
The WebGraph framework I: compression techniques
WWW 2004

challenges: no canonical identifiers with good locality properties, di�erent node
types/subgraphs, live updates

research lead: graph topology characterization

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 22 / 32

Challenge #2: Compression — graph

Storage figures

Merkle DAG: ~20 B nodes, ~280 B edges
breakdown by node type: ~40% contents, ~40% directories, ~10% commits

Still outside the limits of what (cheaply & trivially) fits in RAM.

Graph compression

related: Web graph compression techniques in the style of, e.g.:

Paolo Boldi, Sebastiano Vigna
The WebGraph framework I: compression techniques
WWW 2004

challenges: no canonical identifiers with good locality properties, di�erent node
types/subgraphs, live updates

research lead: graph topology characterization

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 22 / 32

Graph compression — preliminary results

MPH

BV compress

BFS

Permute
Compressed

graph
(forward)

Transpose
Compressed

graph
(backward)

Merkle
DAG

Dataset
archive snapshot 2018-09-25

size: 12 B nodes, 165 B edges

Compression e�iciency (space)

forward graph
total size 91 GiB
bits per edge 4.91
compression ratio 15.8%

backward graph
total size 83 GiB
bits per edge 4.49
compression ratio 14.4%

The structure of a full bidirectional archive graph fits in less than 200 GiB of RAM, for a
hardware cost of ~300 USD.

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 23 / 32

Graph compression — preliminary results

MPH

BV compress

BFS

Permute
Compressed

graph
(forward)

Transpose
Compressed

graph
(backward)

Merkle
DAG

Dataset
archive snapshot 2018-09-25

size: 12 B nodes, 165 B edges

Compression e�iciency (space)

forward graph
total size 91 GiB
bits per edge 4.91
compression ratio 15.8%

backward graph
total size 83 GiB
bits per edge 4.49
compression ratio 14.4%

The structure of a full bidirectional archive graph fits in less than 200 GiB of RAM, for a
hardware cost of ~300 USD.

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 23 / 32

Graph compression — preliminary results (cont.)

Analysis e�iciency (time) — Full BFS visit

forward graph
wall time 1h48m
throughput 1.81 M nodes/s

(553 ns/node)

backward graph
wall time 3h17m
throughput 988 M nodes/s

(1.01 µs/node)

Analysis e�iciency (time) — Edge lookup

random sample: 1 B nodes (8.3% of entire graph)

forward graph
visited edges 13.6 B
throughput 12.0 M edges/s

(83 ns/edge)

backward graph
visited edges 13.6 B
throughput 9.45 M edges/s

(106 ns/edge)

Note how edge lookup time is close to DRAM random access time (50-60 ns).
Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 24 / 32

Challenge #3: E�icient processing — graph

Big graphs calls for scale-out processing, e.g.:

Malewicz, Grzegorz, et al.
Pregel: a system for large-scale graph processing
ACM SIGMOD 2010

Roy, Amitabha, et al.
Chaos: Scale-out graph processing from secondary storage
ACM SOSP 2015

support very large graphs, exploiting topological characteristics (e.g., small world)

So�ware Heritage graph characteristics

scale-free, not small world (?)

connected components size distribution unclear yet

Approach: topological characterization

if amenable to scale-out → distribution

if not → scale-up using graph compression

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 25 / 32

Challenge #3: E�icient processing — file contents

Code search: a natural need
Find code snippets for reuse, find reverse dependencies for maintenance, impact
analysis, etc.

Approaches vary with their level of code "understanding"

full-text search: treat source code as text

symbol extraction (e.g., ctags)

AST search (language-specific)

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 26 / 32

Challenge #3: E�icient processing — file contents (cont.)

Russ Cox
Regular Expression Matching with a Trigram Index or How Google Code Search Worked
2012, h�ps://swtch.com/ rsc/regexp/regexp4.html

Use regexs, Luke!

build an inverted index of trigrams for all source code files

compile regex to trigrams, find potential matches

grep each potential match using map reduce

Application

Google Code Search (now gone)
Debsources (https://sources.debian.org)

scale up to 1 B SLOCs (Debian development branch)

Challenge

Scale it up to So�ware Heritage, several orders of magnitude later
Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 27 / 32

https://sources.debian.org

Challenge #4: Experiment definition

Problem
How would researchers define their experiments on the dataset?

corpus selection (code? history? sampling? etc.)

how will they run their tools in a fully-deduplicated world?

job scheduling (well-known HPC problem)

Related work (at a smaller scale)

Robert Dyer et al.
Boa: Ultra-large-scale so�ware repository and source-code mining
ACM TOSEM 25.1 (2015): 7

Approach

formal languages, DSLs, tool adapters/porting

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 28 / 32

Challenge #5: Machine Learning on code

Big Code = Big Data + Source Code

Popular research trends: NLP on code / SBSE using ML, e.g.:

Miltiadis Allamanis et al.
A survey of machine learning for big code and naturalness
ACM Computing Surveys

Xiaodong Gu, Hongyu Zhang, Sunghun Kim
Deep Code Search
ICSE 2018

Common assumptions: AST availability, "small" datasets (e.g., random GitHub samples)

Example (Universal programming language detection)

programming language detection at the scale of So�ware Heritage

no AST, only bytes (not characters!)

supervised or unsupervised (would be best for language evolution)

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 29 / 32

Outline

1 Source code in science

2 So�ware Heritage

3 Research challenges & roadmap

4 Conclusion

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 30 / 32

MSR 2020 Mining Challenge = So�ware Heritage Graph Dataset

https://2020.msrconf.org/track/msr-2020-mining-challenge

Antoine Pietri, Diomidis Spinellis, Stefano Zacchiroli
The So�ware Heritage graph dataset: public so�ware development under one roof
MSR 2019: Mining So�ware Repositories, IEEE

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 30 / 32

https://2020.msrconf.org/track/msr-2020-mining-challenge

We’re hiring! (a postdoc)

Paris-based postdoc on so�ware provenance

large-scale, big data graph analysis

tracking the provenance of source code artifacts

. . . at the scale of the world (what else?)

in the context of industrial partnerships on open source license compliance

supervision: Stefano Zacchiroli, Roberto Di Cosmo

Learn more and apply

https://www.softwareheritage.org/jobs/
ask me! zack@upsilon.cc

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 31 / 32

https://www.softwareheritage.org/jobs/

Wrapping up

So�ware Heritage archives all so�ware source code with its development history.

It is a major endeavor that benefits society, science, and industry.

For computer scientists, it is a gold mine of research opportunities. Wanna join?

References

Antoine Pietri, Diomidis Spinellis, Stefano Zacchiroli
The So�ware Heritage graph dataset: public so�ware development under one roof
MSR 2019: Mining So�ware Repositories, IEEE

Jean-François Abramatic, Roberto Di Cosmo, Stefano Zacchiroli
Building the Universal Archive of Source Code
Communications of the ACM, October 2018

Roberto Di Cosmo, Stefano Zacchiroli
So�ware Heritage: Why and How to Preserve So�ware Source Code
iPRES 2017: Intl. Conf. on Digital Preservation

Contacts
Stefano Zacchiroli / zack@upsilon.cc / @zacchiro

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 32 / 32

So�ware Heritage Graph dataset
Use case: large scale analyses of the most comprehensive corpus on the development
history of free/open source so�ware.

Dataset
Relational representation of the full graph as a set of tables

Available as open data: https://doi.org/10.5281/zenodo.2583978

Formats
Local use: PostgreSQL dumps, or Apache Parquet files (~1 TiB each)

Live usage: Amazon Athena (SQL-queriable)

References and sample queries

Antoine Pietri, Diomidis Spinellis, Stefano Zacchiroli
The So�ware Heritage Graph Dataset: Public so�ware development under one roof
MSR 2019: Intl. Conf. on Mining So�ware Repositories, IEEE
non-paywalled preprint: http://deb.li/swhmsr19

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 1 / 3

https://doi.org/10.5281/zenodo.2583978
http://deb.li/swhmsr19

Graph dataset — sample queries

Most frequent first commit words

SELECT COUNT(*) AS c, word FROM (
SELECT LOWER(REGEXP_EXTRACT(FROM_UTF8(
message), ’^\w+’)) AS word FROM revision)

WHERE word != ’’
GROUP BY word ORDER BY COUNT(*) DESC LIMIT 5;

Count Word
71’338’310 update
64’980’346 merge
56’854’372 add
44’971’954 added
33’222’056 fix

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 2 / 3

Graph dataset — sample queries

Fork arity

i.e., how o�en is a commit based upon?

SELECT fork_deg, count(*) FROM (
SELECT id, count(*) AS fork_deg
FROM revision_history GROUP BY id) t

GROUP BY fork_deg ORDER BY fork_deg;

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106
 1x107
 1x108
 1x109

 1x1010

 0.1 1 10 100 1000 10000 100000 1x106 1x107

N
u
m

b
e
r

o
f

n
o
d

e
s

Degree

Merge arity

i.e., how large are merges?

SELECT merge_deg, COUNT(*) FROM (
SELECT parent_id, COUNT(*) AS merge_deg
FROM revision_history GROUP BY parent_id) t

GROUP BY deg ORDER BY deg;

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106
 1x107
 1x108
 1x109

 1x1010

 0.1 1 10 100 1000 10000 100000 1x106 1x107

N
u
m

b
e
r

o
f

n
o
d

e
s

Degree

Stefano Zacchiroli So�ware Heritage 14 Nov 2019, UZH 3 / 3

	Source code in science
	Software Heritage
	Research challenges & roadmap
	Conclusion
	Appendix

