
Ultra-Large-Scale Repository Analysis via Graph Compression

Stefano Zacchiroli
zack@irif.fr
@zacchiro

joint work with Paolo Boldi, Antoine Pietri, and Sebastiano Vigna

Université de Paris & Inria, France

19 February 2020
SANER 2020: 27th Intl. Conf. on So�ware Analysis, Evolution and Reengineering

London, ON, Canada

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 1 / 16

Motivations

Free/Open Source So�ware (FOSS) + social coding (GitHub, GitLab, . . .)
= massive amount of data for empirical so�ware engineering (ESE)

so�ware evolution and clone detection have vastly benefited from it

An ESE growth crisis?

GitHub alone: ~100 M repositories

exponential growth rate, doubling every ~2 years (Rousseau et al., 2009)

possibly the tip of the iceberg w.r.t. the rise of distributed forges and non-public
collaborative development (cf. inner source)

Current mitigation approaches

scale-out analysis: not always applicable, expensive

sampling: (e.g., top-starred repos) prone to selection bias and external validity issues

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 2 / 16

Motivations

Free/Open Source So�ware (FOSS) + social coding (GitHub, GitLab, . . .)
= massive amount of data for empirical so�ware engineering (ESE)

so�ware evolution and clone detection have vastly benefited from it

An ESE growth crisis?

GitHub alone: ~100 M repositories

exponential growth rate, doubling every ~2 years (Rousseau et al., 2009)

possibly the tip of the iceberg w.r.t. the rise of distributed forges and non-public
collaborative development (cf. inner source)

Current mitigation approaches

scale-out analysis: not always applicable, expensive

sampling: (e.g., top-starred repos) prone to selection bias and external validity issues

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 2 / 16

Motivations

Free/Open Source So�ware (FOSS) + social coding (GitHub, GitLab, . . .)
= massive amount of data for empirical so�ware engineering (ESE)

so�ware evolution and clone detection have vastly benefited from it

An ESE growth crisis?

GitHub alone: ~100 M repositories

exponential growth rate, doubling every ~2 years (Rousseau et al., 2009)

possibly the tip of the iceberg w.r.t. the rise of distributed forges and non-public
collaborative development (cf. inner source)

Current mitigation approaches

scale-out analysis: not always applicable, expensive

sampling: (e.g., top-starred repos) prone to selection bias and external validity issues

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 2 / 16

Research question

Is it possible to e�iciently perform so�ware development history
analyses at ultra large scale, on a single, relatively cheap machine?

development history: all information captured by state-of-the-art Version Control
Systems (VCS)

cheap machine: commodity hardware, desktop- or server-gread, few kUSD of
investment

ultra large scale: in the ballpark of (the known extent of) all publicly available
so�ware source code

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 3 / 16

Research question

Is it possible to e�iciently perform so�ware development history
analyses at ultra large scale, on a single, relatively cheap machine?

development history: all information captured by state-of-the-art Version Control
Systems (VCS)

cheap machine: commodity hardware, desktop- or server-gread, few kUSD of
investment

ultra large scale: in the ballpark of (the known extent of) all publicly available
so�ware source code

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 3 / 16

Research question

Is it possible to e�iciently perform so�ware development history
analyses at ultra large scale, on a single, relatively cheap machine?

development history: all information captured by state-of-the-art Version Control
Systems (VCS)

cheap machine: commodity hardware, desktop- or server-gread, few kUSD of
investment

ultra large scale: in the ballpark of (the known extent of) all publicly available
so�ware source code

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 3 / 16

Research question

Is it possible to e�iciently perform so�ware development history
analyses at ultra large scale, on a single, relatively cheap machine?

development history: all information captured by state-of-the-art Version Control
Systems (VCS)

cheap machine: commodity hardware, desktop- or server-gread, few kUSD of
investment

ultra large scale: in the ballpark of (the known extent of) all publicly available
so�ware source code

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 3 / 16

Corpus — So�ware Heritage

our proxy for publicly available so�ware:

T H E G R E AT L I B R A RY O F S O U RC E C O D E

both source code and its development history as captured by VCS
coverage:

all public repositories from GitHub and GitLab.com
historical forges: Google Code, Gitorious
package manager repositories: NPM, PyPI, Debian

90 M repositories, 5.5 B unique files, 1.1 B unique files (data dump: 2018-09-25)

available as o�line dataset
Antoine Pietri, Diomidis Spinellis, Stefano Zacchiroli
The So�ware Heritage Graph Dataset: Public so�ware development under one roof
MSR 2019: 16th Intl. Conf. on Mining So�ware Repositories. IEEE

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 4 / 16

(Web) graph compression

Definition (The graph of the Web)

Directed graph that has Web pages as nodes and hyperlinks between them as edges.

Properties (1)

Locality: pages links to pages whose URL is lexicographically similar. URLs share
long common prefixes.

→ use D-gap compression

Adjacency lists

Node Outdegree Successors
.
15 11 13,15,16,17,18,19,23,24,203,315,1034
16 10 15,16,17,22,23,24,315,316,317,3041
17 0
18 5 13,15,16,17,50
.

D-gapped adjacency lists
Node Outdegree Successors

.
15 11 3,1,0,0,0,0,3,0,178,111,718
16 10 1,0,0,4,0,0,290,0,0,2723
17 0
18 5 9,1,0,0,32
.

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 5 / 16

(Web) graph compression (cont.)

Definition (The graph of the Web)

Directed graph that has Web pages as nodes and hyperlinks between them as edges.

Properties (2)

Similarity: pages that are close together in lexicographic order tend to have many
common successors.

→ use reference compression

Adjacency lists
Node Outd. Successors

.
15 11 13,15,16,17,18,19,23,24,203,315,1034
16 10 15,16,17,22,23,24,315,316,317,3041
17 0
18 5 13,15,16,17,50
.

Copy lists

Node Ref. Copy list Extra nodes
.
15 0 13,15,16,17,18,19,23,24,203,315,1034
16 1 01110011010 22,316,317,3041
17
18 3 11110000000 50
.

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 6 / 16

Data model

Origin

+ url: str

branches

Snapshot

*

*

Release

directory

Revision

*

**

*

Merkle DAG

target 1

entries

parents

snapshots

+ id: sha1

Directory
entries

+ id: sha1+ id: sha1
+ author: str
+ name: str
+ message: str
+ timestamp: datetime

+ id: sha1
+ author: str
+ message: str
+ timestamp: datetime

Content

+ id:sha1

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 7 / 16

Corpus — as a graph

Nodes

Node type N. of nodes
origins 88 M
snapshots 57 M
releases 9.9 M
revisions 1.1 B
directories 4.9 B
contents 5.5 B
Total nodes 12 B

Edges

Edge type N. of edges
origin → snapshot 195 M
snapshot → revision 616 M
snapshot → release 215 M
release → revision 9.9 M
revision → revision 1.2 B
revision → directory 1.1 B
directory → directory 48 B
directory → revisiony 482 M
directory → content 112 B
Total edges 165 B

Archive snapshot 2018-09-25, from the So�ware Heritage graph dataset.
Growth rate: exponential, doubling every 22-30 months.

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 8 / 16

Compression pipeline

MPH

BV compress

BFS

Permute
Compressed

graph
(forward)

Transpose
Compressed

graph
(backward)

Merkle
DAG

MPH: minimal perfect hash, mapping Merkle IDs to 0..N-1 integers

BV compress: Boldi-Vigna compression (based on MPH order)

BFS: breadth-first visit to renumber

Permute: update BV compression according to BFS order

(Re)establishing locality

key for good compression is a node ordering that ensures locality and similarity

which is very much not the case with Merkle IDs. . .

. . . but is the case again a�er BFS

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 9 / 16

Compression time

We ran the compression pipeline on the input corpus using the WebGraph framework

Paolo Boldi and Sebastiano Vigna.
The WebGraph framework I: Compression techniques
WWW 2004: 13th Intl. World Wide Web Conference. ACM

Step Wall time (hours)
MPH 2
BV Compress 84
BFS 19
Permute 18
Transpose 15
Total 138 (6 days)

server equipped with 24 CPUs and 750 GB of RAM
RAM mostly used as I/O cache for the BFS step
minimum memory requirements are close to the RAM needed to load the final
compressed graph in memory

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 10 / 16

Compression e�iciency

Forward graph

total size 91 GiB
bits per edge 4.91

Backward graph

total size 83 GiB
bits per edge 4.49

Operation cost

The structure of a full bidirectional archive graph fits in less than 200 GiB of RAM, for a
hardware cost of ~300 USD.

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 11 / 16

A domain-agnostic benchmark — full corpus traversal

Benchmark — Full BFS visit

Forward graph
wall time 1h48m
throughput 1.81 M nodes/s

(553 ns/node)

Backward graph
wall time 3h17m
throughput 988 M nodes/s

(1.01 µs/node)

Benchmark — Edge lookup

random sample: 1 B nodes (8.3% of entire graph)

Forward graph
visited edges 13.6 B
throughput 12.0 M edges/s

(83 ns/edge)

Backward graph
visited edges 13.6 B
throughput 9.45 M edges/s

(106 ns/edge)

Note how edge lookup time is close to DRAM random access time (50-60 ns).
Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 12 / 16

Domain-specific benchmarks — source code artifact multiplication

Simple clone detection style experiments realized exploiting the compressed corpus:
1 file→commit multiplication: how much identical source code files re-occur in

di�erent comments
2 commit→origin multiplication: how much identical commits re-occur in di�erent

repositories

Implementation

for each node—content for (1), commit for (2)—visit the backward graph and count
all reachable nodes of the desired type—commit for (1), origin for (2)

naive approach, O(|V|x|E|) complexity

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 13 / 16

File→commit multiplication — results

Multiplication factor Visit size

random sample of 953 M contents (17% of the full corpus)
processing time: ~2.5 days (single machine with 20 x 2.4 GHz cores)

in spite of the naive O(|V|x|E|) approach, generally considered intractable at this scale

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 14 / 16

Limitations
Incrementality

compression is inherently not incremental

not an issue for most research use cases, because we analyze immutable data dumps

common workaround (e.g., for the Web and social networks) is to keep an
uncompressed in-memory overlay for graph updates, and periodically recompress

In-memory v. on-disk

the compressed in-memory graph structure has no a�ributes
usual data design is to exploit the 0..N-1 integer ranges to memory map node
a�ributes to secondary storage

we have done this with a node type map; it weights 4 GB (3 bit per node)

works well for queries that do graph traversal first and "join" node a�ributes last;
ping-pong between the two is expensive

edge a�ributes are more problematic

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 15 / 16

Limitations
Incrementality

compression is inherently not incremental

not an issue for most research use cases, because we analyze immutable data dumps

common workaround (e.g., for the Web and social networks) is to keep an
uncompressed in-memory overlay for graph updates, and periodically recompress

In-memory v. on-disk

the compressed in-memory graph structure has no a�ributes
usual data design is to exploit the 0..N-1 integer ranges to memory map node
a�ributes to secondary storage

we have done this with a node type map; it weights 4 GB (3 bit per node)

works well for queries that do graph traversal first and "join" node a�ributes last;
ping-pong between the two is expensive

edge a�ributes are more problematic

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 15 / 16

Wrapping up

Graph compression is a viable technique to analyze the history of all public source
code, as captured by modern version control systems (VCS), on a budget.

It is a novel tool for VCS analyses that might allow to expand the scope of our
experiments, reducing selection biases and improving external validity.

More work is needed to provide compression incrementality and allow to e�iciently
query VCS properties during traversal.

See full paper for more details

Paolo Boldi, Antoine Pietri, Sebastiano Vigna, Stefano Zacchiroli
Ultra-Large-Scale Repository Analysis via Graph Compression
SANER 2020, 27th Intl. Conf. on So�ware Analysis, Evolution and Reengineering. IEEE

preprint: http://bit.ly/swh-graph-saner20

Contacts
Stefano Zacchiroli / zack@irif.fr / @zacchiro / talk to me at SANER 2020!

Stefano Zacchiroli Large scale VCS analysis via graph compression 19 Feb 2020, SANER 16 / 16

http://bit.ly/swh-graph-saner20

	Introduction
	Background
	Data model
	VCS compression
	Exploitation
	Discussion
	Conclusion

