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Reflection on dependency solving (2012)

Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli
Dependency solving: a separate concern in component evolution
management.
Journal of Systems and Software, 85(10):2228–2240, 2012.

Takeaways

Dependency solving is harder than you think

Dependency solving should be expressive and complete

Dependency solvers should be reusable components shared
across package managers

Has this vision been adopted since?
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Dependency solving is hard

Definition (Dependency solving — simplified)

Input: a set of installed packages (package status), a universe of
available packages, and an user request to alter current status.
Output: upgrade plan that produces a new package status which
satisfies user request (or an error).

Dependency solving is NP complete

Debian case—AND/OR + conflicts (Mancinelli et al. ASE 2006)

all non-trivial cases—multiple package versions that cannot be
co-installed (Abate et al. JSS 2012)

Dependency solving is an optimization problem

not all solutions are equal, you want the “best” one

AKA minimal install problem (Tucker et al. ICSE 2007)
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Dependency solving desiderata

Correctness: the returned solution satisfies both the user request
and all inter-package relationships (e.g., dependencies
and conflicts)

Completeness: a solution is returned every time at least one
(correct) solution exists

Expressivity: it should be possible:
a for package maintainers to express fine-grained

inter-package relationships; and
b for users to express global optimization criteria

(e.g., “minimize the number of installed packages
coming from the development branch”)
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Reusable dependency solvers

Figure: a formal model and exchange format for dep. solving scenarios
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Reusable dependency solvers

Figure: a formal model and exchange format for dep. solving scenarios

Figure: a modular package manager architecture
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A dependency solving census — discussion

+ increased availability of expressive inter-package dependencies

– almost no support for flexible user preferences

+ several package managers now rely on complete solvers based
on state-of-the-art constraint resolution techniques

ñ e.g., Eclipse, SUSE, RedHat, Opam, Debian (opt-in)

– very scarce adoption of the separation of concern approach
ñ Opam, Debian (opt-in)

What were the blockers?

CUDF limitations
ñ e.g., supporting P2 qualifiers or NPM intervals takes some work

reluctance to have external dependencies in a core component
of your ecosystem

“if you build it, they will come” is not enough: adoption strongly
correlated with direct involvement from researchers
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we are now well into the 2nd wave of dependency solving
ñ first distro-, now language-specific package managers

old mistakes were remade
ñ e.g., who needs conflicts?, who needs a dependency solver?,

how hard could it be to implement a dependency solver?, . . .

things are getting better, with increased adoption of solid
constraint solving technology (mostly SAT)

reusable dependency solvers will likely remain a dream
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