
Dependency Solving Is Still Hard
but We Are Getting Better at It

Stefano Zacchiroli
zack@irif.fr

@zacchiro

joint work with Pietro Abate, Roberto Di Cosmo, and Georgios Gousios

Université de Paris and Inria, France

21 February 2019
SANER 2020

27th Intl. Conf. on Software Analysis, Evolution and Reengineering
London, ON, Canada

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 1 / 8



Reflection on dependency solving (2012)

Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli
Dependency solving: a separate concern in component evolution
management.
Journal of Systems and Software, 85(10):2228–2240, 2012.

Takeaways

Dependency solving is harder than you think

Dependency solving should be expressive and complete

Dependency solvers should be reusable components shared
across package managers

Has this vision been adopted since?

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 2 / 8



Dependency solving is hard

Definition (Dependency solving — simplified)

Input: a set of installed packages (package status), a universe of
available packages, and an user request to alter current status.
Output: upgrade plan that produces a new package status which
satisfies user request (or an error).

Dependency solving is NP complete

Debian case—AND/OR + conflicts (Mancinelli et al. ASE 2006)

all non-trivial cases—multiple package versions that cannot be
co-installed (Abate et al. JSS 2012)

Dependency solving is an optimization problem

not all solutions are equal, you want the “best” one

AKA minimal install problem (Tucker et al. ICSE 2007)

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 3 / 8



Dependency solving is hard

Definition (Dependency solving — simplified)

Input: a set of installed packages (package status), a universe of
available packages, and an user request to alter current status.
Output: upgrade plan that produces a new package status which
satisfies user request (or an error).

Dependency solving is NP complete

Debian case—AND/OR + conflicts (Mancinelli et al. ASE 2006)

all non-trivial cases—multiple package versions that cannot be
co-installed (Abate et al. JSS 2012)

Dependency solving is an optimization problem

not all solutions are equal, you want the “best” one

AKA minimal install problem (Tucker et al. ICSE 2007)

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 3 / 8



Dependency solving is hard

Definition (Dependency solving — simplified)

Input: a set of installed packages (package status), a universe of
available packages, and an user request to alter current status.
Output: upgrade plan that produces a new package status which
satisfies user request (or an error).

Dependency solving is NP complete

Debian case—AND/OR + conflicts (Mancinelli et al. ASE 2006)

all non-trivial cases—multiple package versions that cannot be
co-installed (Abate et al. JSS 2012)

Dependency solving is an optimization problem

not all solutions are equal, you want the “best” one

AKA minimal install problem (Tucker et al. ICSE 2007)

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 3 / 8



Dependency solving desiderata

Correctness: the returned solution satisfies both the user request
and all inter-package relationships (e.g., dependencies
and conflicts)

Completeness: a solution is returned every time at least one
(correct) solution exists

Expressivity: it should be possible:
a for package maintainers to express fine-grained

inter-package relationships; and
b for users to express global optimization criteria

(e.g., “minimize the number of installed packages
coming from the development branch”)

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 4 / 8



Dependency solving desiderata

Correctness: the returned solution satisfies both the user request
and all inter-package relationships (e.g., dependencies
and conflicts)

Completeness: a solution is returned every time at least one
(correct) solution exists

Expressivity: it should be possible:
a for package maintainers to express fine-grained

inter-package relationships; and
b for users to express global optimization criteria

(e.g., “minimize the number of installed packages
coming from the development branch”)

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 4 / 8



Dependency solving desiderata

Correctness: the returned solution satisfies both the user request
and all inter-package relationships (e.g., dependencies
and conflicts)

Completeness: a solution is returned every time at least one
(correct) solution exists

Expressivity: it should be possible:
a for package maintainers to express fine-grained

inter-package relationships; and
b for users to express global optimization criteria

(e.g., “minimize the number of installed packages
coming from the development branch”)

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 4 / 8



Reusable dependency solvers

Figure: a formal model and exchange format for dep. solving scenarios

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 5 / 8



Reusable dependency solvers

Figure: a formal model and exchange format for dep. solving scenarios

Figure: a modular package manager architecture

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 5 / 8



Package
man-
ager

Version
scheme

Solver Distribution
granularity

Version
locking

Qualif. Dependency range
operators

Range
modifiers

Resolution process Approximate
solutions

gt/lt and or not flex
patch

flex
mi-
nor

cor-
rect-
ness

comp-
lete-
ness

user
prefs

missing
deps

conflict

Go
(dep)

git
tags

ad hoc github branch yes no no no no no no no yes yes no error error

npm semver ad hoc archive package yes no yes yes yes no yes yes ? ? no error keep
both

Packagist git
tags

ad hoc github branch yes no yes yes yes no yes no yes ? ? ? error

opam debian CUDF
(any)

git package work-
around

yes yes yes yes yes no no yes yes yes error error

PyPI /
pip

pep-
440

ad hoc archive package yes conda yes yes no yes yes yes yes yes no error error

Nuget semver ad hoc archive package yes no yes yes no no no no yes yes no error nearest
wins

Paket semver ad hoc archive,
github

package,
branch

yes no yes yes no no yes no yes yes no error error

Maven semver ad hoc archive package no yes yes yes yes yes no no yes yes with
plug-
ins

latest nearest
wins

RubyGems semver ad hoc archive package yes bundler yes yes no no yes no ? ? ? error error
Cargo semver ad hoc archive,

git
package,
branch

no yes yes yes no no yes yes yes yes no latest name
man-
gling

CPAN strings ad hoc archive package no yes yes yes yes yes no no no no no error error
Bower semver ad hoc git package ? ? yes yes yes no yes yes yes yes no error use

res-
olu-
tions

Clojars semver ad hoc archive package ? ? yes yes yes yes no no yes yes error error error
CRAN debian ad hoc archive,

git
package ? yes yes yes yes yes no no no no no error error

Hackage
/ cabal

semver ? archive package ? no yes yes yes yes yes no ? no no error error

Debian
(apt)

debian CUDF
(any)

package package pinning yes yes yes yes yes no no yes yes yes error error

RedHat
(dnf)

dnf libzypp archive package ? yes yes yes yes yes yes yes yes yes ? error error

Eclipse
P2

semver sat4j archive package ? yes yes yes yes yes yes yes yes yes yes error error

A Dependency

Solving Census



A dependency solving census — discussion

+ increased availability of expressive inter-package dependencies

– almost no support for flexible user preferences

+ several package managers now rely on complete solvers based
on state-of-the-art constraint resolution techniques

ñ e.g., Eclipse, SUSE, RedHat, Opam, Debian (opt-in)

– very scarce adoption of the separation of concern approach
ñ Opam, Debian (opt-in)

What were the blockers?

CUDF limitations
ñ e.g., supporting P2 qualifiers or NPM intervals takes some work

reluctance to have external dependencies in a core component
of your ecosystem

“if you build it, they will come” is not enough: adoption strongly
correlated with direct involvement from researchers

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 7 / 8



A dependency solving census — discussion

+ increased availability of expressive inter-package dependencies

– almost no support for flexible user preferences

+ several package managers now rely on complete solvers based
on state-of-the-art constraint resolution techniques

ñ e.g., Eclipse, SUSE, RedHat, Opam, Debian (opt-in)

– very scarce adoption of the separation of concern approach
ñ Opam, Debian (opt-in)

What were the blockers?

CUDF limitations
ñ e.g., supporting P2 qualifiers or NPM intervals takes some work

reluctance to have external dependencies in a core component
of your ecosystem

“if you build it, they will come” is not enough: adoption strongly
correlated with direct involvement from researchers

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 7 / 8



we are now well into the 2nd wave of dependency solving
ñ first distro-, now language-specific package managers

old mistakes were remade
ñ e.g., who needs conflicts?, who needs a dependency solver?,

how hard could it be to implement a dependency solver?, . . .

things are getting better, with increased adoption of solid
constraint solving technology (mostly SAT)

reusable dependency solvers will likely remain a dream

Pietro Abate, Roberto Di Cosmo, Georgios Gousios, Stefano Zacchiroli
Dependency Solving Is Still Hard, but We Are Getting Better at It
SANER 2020, 27th Intl. Conf. on Software Analysis, Evolution and
Reengineering. IEEE

preprint: http://bit.ly/saner20-deps

Stefano Zacchiroli
zack@irif.fr
@zacchiro

Stefano Zacchiroli (U-Paris & Inria) Dependency Solving Is Still Hard 21 Feb 2020, SANER 8 / 8

http://bit.ly/saner20-deps
mailto:zack@irif.fr

