
Open Source SoftwareOpen Source Software
Supply Chain AttacksSupply Chain Attacks

An Introduction & How Reproducible BuildsAn Introduction & How Reproducible Builds
HelpHelp

Télécom Paris, ACES seminarTélécom Paris, ACES seminar
2022-03-182022-03-18

Stefano ZacchiroliStefano Zacchiroli

stefano.zacchiroli@telecom-paris.frstefano.zacchiroli@telecom-paris.fr

https://upsilon.cc/zackhttps://upsilon.cc/zack
@zacchiro@zacchiro

11

mailto:stefano.zacchiroli@telecom-paris.fr
https://upsilon.cc/zack
https://twitter.com/zacchiro

Open Souce Software SupplyOpen Souce Software Supply
Chain AttacksChain Attacks

[Ohm20]: Marc Ohm, Henrik Plate, Arnold Sykosch, Michael Meier.[Ohm20]: Marc Ohm, Henrik Plate, Arnold Sykosch, Michael Meier.
Backstabber’s Knife Collection: A Review of Open Source Software SupplyBackstabber’s Knife Collection: A Review of Open Source Software Supply

Chain AttacksChain Attacks. DIMVA 2020: 23-43.. DIMVA 2020: 23-43.

22

The (software) supply chainThe (software) supply chain

33

Supply chain attacksSupply chain attacks
A A software supply chain attacksoftware supply chain attack is a particular kind of is a particular kind of cyber-attackcyber-attack that that
aims at aims at injecting malicious codeinjecting malicious code into an otherwise into an otherwise legitimate softwarelegitimate software

productproduct..

Notable examplesNotable examples
NotPetyaNotPetya (2017): ransomware concelaed in an update of a popular (2017): ransomware concelaed in an update of a popular
accounting software, hitting Ukranian banks and major corps (B$)accounting software, hitting Ukranian banks and major corps (B$)
CCleanerCCleaner (2017): malicious version of a popular MS Windows (2017): malicious version of a popular MS Windows
maintenance tool, distributed via the vendor websitemaintenance tool, distributed via the vendor website
SolarWindsSolarWinds (2020): malicious update of the SolarWinds Orion (2020): malicious update of the SolarWinds Orion
monitoring software, shipping a delayed-activation trojan.monitoring software, shipping a delayed-activation trojan.
Breached into several US Gov. branches as well as MicrosoftBreached into several US Gov. branches as well as Microsoft

44

Open sourceOpen source supply chain attacks supply chain attacks
Is this specific to Free/Open Source Software (FOSS)? No.Is this specific to Free/Open Source Software (FOSS)? No.
But modern But modern FOSS package ecosystemsFOSS package ecosystems are heavily intertwined. are heavily intertwined.

Examples: NPM (JavaScript), PyPI (Python), Crates (Rust),Examples: NPM (JavaScript), PyPI (Python), Crates (Rust),
Gems (Ruby), etc.Gems (Ruby), etc.
100-10’000x packages, depending on each other due to100-10’000x packages, depending on each other due to
code reuse opportunities.code reuse opportunities.
Reverse transitive dependenciesReverse transitive dependencies grow fast. A single grow fast. A single
package could be required by package could be required by thousandsthousands of others. of others.

55

left-padleft-pad (2016) (2016)

Maintainer: Maintainer: “I think I have the right of deleting all my stuff”“I think I have the right of deleting all my stuff”..
“Unpublish” package.“Unpublish” package.
Impact: “many thousands of projects”, including major ones likeImpact: “many thousands of projects”, including major ones like
babel and atom.babel and atom.
NPM operators forcibly “ununpublish” package.NPM operators forcibly “ununpublish” package.

functionfunction leftpadleftpad ((str, len, chstr, len, ch)) {{
 str = str = StringString(str);(str);
 varvar i = - i = -11;;
 ifif (!ch && ch !== (!ch && ch !== 00) ch =) ch = ' '' ';;
 len = len - str.length; len = len - str.length;
 whilewhile (++i < len) { str = ch + str; } (++i < len) { str = ch + str; }
 returnreturn str; str;
}}

11
22
33
44
55
66
77
88

66

Open sourceOpen source supply chain attacks (cont.) supply chain attacks (cont.)
For an attacker, code injection into (transitively) popular leafFor an attacker, code injection into (transitively) popular leaf
packages has a packages has a low opportunity costlow opportunity cost..
Also, entirely open FOSS package ecosystems (≠ Linux distros)Also, entirely open FOSS package ecosystems (≠ Linux distros)
could be could be easy to infiltrateeasy to infiltrate..

77

(An) open source development workflow(An) open source development workflow

(image from [Ohm20])(image from [Ohm20])

88

Attack tree — InjectionAttack tree — Injection

(image from [Ohm20])(image from [Ohm20])

Attacker’s goal:Attacker’s goal: package P containing malicious code is available from package P containing malicious code is available from
download from a distribution platform download from a distribution platform andand P is a reverse transitive P is a reverse transitive

dependency of a legitimate package.dependency of a legitimate package.

99

Injection vector — TyposquattingInjection vector — Typosquatting
Injection → Create New Package → TyposquattingInjection → Create New Package → Typosquatting

1. Create a Create a new packagenew package with a with a name similarname similar (e.g., Levenshtein (e.g., Levenshtein
distance <= 2) to an existing popular package, including maliciousdistance <= 2) to an existing popular package, including malicious
code. Examples:code. Examples:

squat on PyPI the Debian package name (“python-sqlite” v.squat on PyPI the Debian package name (“python-sqlite” v.
“sqlite”)“sqlite”)
English variants (“color” v. “colour”)English variants (“color” v. “colour”)
Unicode tricksUnicode tricks

2. Upload it to a distribution platform (e.g., PyPI)Upload it to a distribution platform (e.g., PyPI)

3. Wait for users to mistype (e.g., Wait for users to mistype (e.g., pip install python-sqlitepip install python-sqlite))

Related attack vector: Related attack vector: Use After FreeUse After Free

1010

Injection vector — Become maintainerInjection vector — Become maintainer
Injection → Infect Existing Package → Inject into Source → Commit (as maintainer) → Social Engineering to become MaintainerInjection → Infect Existing Package → Inject into Source → Commit (as maintainer) → Social Engineering to become Maintainer

1. Package maintainer: “I no longer have time for this project, whoPackage maintainer: “I no longer have time for this project, who
wants to take over its maintenance?”wants to take over its maintenance?”

2. Attacker: raises handAttacker: raises hand
3. Attacker: releases new version including malicious codeAttacker: releases new version including malicious code

Might require early investment to accrue enough “street credibility” toMight require early investment to accrue enough “street credibility” to
win over maintenance at the right moment. For popular packages withwin over maintenance at the right moment. For popular packages with

low bus factor it could be worth it.low bus factor it could be worth it.

1111

Injection example — Compromise buildInjection example — Compromise build
systemsystem

Injection of Malicious Code → Infect Existing Package → Inject during the Build → Compromise Build SystemInjection of Malicious Code → Infect Existing Package → Inject during the Build → Compromise Build System

Often, the code run by users run is Often, the code run by users run is written but not builtwritten but not built by by
maintainersmaintainers

Rather, it is built by Rather, it is built by 3rd-party vendors3rd-party vendors

e.g., GNU/Linux distros, app store operators, arch “porters”e.g., GNU/Linux distros, app store operators, arch “porters”

It becomes attractive to It becomes attractive to break into vendor build systemsbreak into vendor build systems,,
compromising binaries “downstream”, without anybody lookingcompromising binaries “downstream”, without anybody looking
merely at source code noticingmerely at source code noticing

1212

Reproducible BuildsReproducible Builds

[Lamb22]: Chris Lamb, Stefano Zacchiroli. [Lamb22]: Chris Lamb, Stefano Zacchiroli. Reproducible Builds:Reproducible Builds:
Increasing the Integrity of Software Supply ChainsIncreasing the Integrity of Software Supply Chains. IEEE Softw. 39(2): 62-. IEEE Softw. 39(2): 62-

70 (2022).70 (2022).

https://reproducible-builds.org/https://reproducible-builds.org/

1313

https://reproducible-builds.org/

On untrusted codeOn untrusted code

40 years later nobody “totally creates” code they run40 years later nobody “totally creates” code they run

Reuse of open source software (FOSS) is everywhere in ITReuse of open source software (FOSS) is everywhere in IT

“99% of audited code bases contain FOSS components”“99% of audited code bases contain FOSS components”
(Synopsis 2020)(Synopsis 2020)

Also, the FOSS Also, the FOSS we runwe run is often not is often not builtbuilt by its developers by its developers

“You can’t trust code that you did not totally create“You can’t trust code that you did not totally create
yourself. […] No amount of source-level verificationyourself. […] No amount of source-level verification

or scrutiny will protect you from using untrustedor scrutiny will protect you from using untrusted
code.”code.”

— Ken Thompson, — Ken Thompson, Reflections on Trusting TrustReflections on Trusting Trust,,
Turing Lecture 1984Turing Lecture 1984

1414

Problem statementProblem statement
How can we increase users' trust when running (trusted)How can we increase users' trust when running (trusted)

FOSS code built by (untrusted) 3rd-party vendors?FOSS code built by (untrusted) 3rd-party vendors?

1515

Problem statementProblem statement
How can we increase users' trust when running (trusted)How can we increase users' trust when running (trusted)

FOSS code built by (untrusted) 3rd-party vendors?FOSS code built by (untrusted) 3rd-party vendors?

1515

A reproducible build (r-b) processA reproducible build (r-b) process
Precondition/hypothesis: we can “reproducibly build” all relevant (FOSS)Precondition/hypothesis: we can “reproducibly build” all relevant (FOSS)

products, i.e.:products, i.e.:

(we’ll verify later how realistic this is)(we’ll verify later how realistic this is)

The The build processbuild process of a software product is of a software product is
reproduciblereproducible if, after designating a specific version if, after designating a specific version

of its source code and all of its buildof its source code and all of its build
dependencies, every build produces dependencies, every build produces bit-for-bitbit-for-bit

identical artifactsidentical artifacts, no matter the environment in, no matter the environment in
which the build is performed. — [Lamb22]which the build is performed. — [Lamb22]

1616

R-B approachR-B approach

1717

Making Debian reproducibleMaking Debian reproducible

Let’s try a large-scale experiment: Let’s try a large-scale experiment: making all Debian packages buildmaking all Debian packages build
reproduciblyreproducibly from source from source

Debian: one of the largest and most popular GNU/LinuxDebian: one of the largest and most popular GNU/Linux
distro, esp. in the server/cloud marketdistro, esp. in the server/cloud market
30’000+ (source) packages, 1+B lines of code30’000+ (source) packages, 1+B lines of code
initial goal of the initial goal of the initiative, est. 2014 initiative, est. 2014

Goals:Goals:

1. empirical experiment to map the origins of non-empirical experiment to map the origins of non-
reproducibilityreproducibility

2. real impact (if successful) due to Debian popularity in thereal impact (if successful) due to Debian popularity in the
industryindustry

reproducible-builds.orgreproducible-builds.org

1818

http://reproducible-builds.org/

Build reproducibility in the smallBuild reproducibility in the small
How hard could it be to ensure build reproducibility?How hard could it be to ensure build reproducibility?

1919

Build reproducibility in the smallBuild reproducibility in the small
How hard could it be to ensure build reproducibility?How hard could it be to ensure build reproducibility?

After After controlling for source code, build deps., and toolchaincontrolling for source code, build deps., and toolchain, two main, two main
classes of issues arise in practice:classes of issues arise in practice:

1. Uncontrolled build inputs:Uncontrolled build inputs: when toolchains allow the build when toolchains allow the build
process to be affected by the surrounding environment.process to be affected by the surrounding environment.

Intuition: build engineering equivalent of Intuition: build engineering equivalent of breakingbreaking
encapsulationencapsulation in programming in programming

2. Build non-determinismBuild non-determinism that gets encoded in final built artifacts. that gets encoded in final built artifacts.

1919

Build reproducibility in the smallBuild reproducibility in the small
How hard could it be to ensure build reproducibility?How hard could it be to ensure build reproducibility?

After After controlling for source code, build deps., and toolchaincontrolling for source code, build deps., and toolchain, two main, two main
classes of issues arise in practice:classes of issues arise in practice:

1. Uncontrolled build inputs:Uncontrolled build inputs: when toolchains allow the build when toolchains allow the build
process to be affected by the surrounding environment.process to be affected by the surrounding environment.

Intuition: build engineering equivalent of Intuition: build engineering equivalent of breakingbreaking
encapsulationencapsulation in programming in programming

2. Build non-determinismBuild non-determinism that gets encoded in final built artifacts. that gets encoded in final built artifacts.

Let’s see a bestiary of real-world examples…Let’s see a bestiary of real-world examples…

1919

Build timestampsBuild timestamps

The The __DATE____DATE__ C preprocessor macro “expands to a string C preprocessor macro “expands to a string
constant that describes the date on which the preprocessor isconstant that describes the date on which the preprocessor is
being run.”being run.”

Fix: Fix: SOURCE_DATE_EPOCHSOURCE_DATE_EPOCH envvar (standardized by r-b) to enable envvar (standardized by r-b) to enable
controlling for thiscontrolling for this

voidvoid usageusage()() {{
 fprintffprintf(stderr,(stderr,
 "foo-utils version 3.141 (built %s)\n""foo-utils version 3.141 (built %s)\n",,
 __DATE__); __DATE__);
}}

11
22
33
44
55

2020

Build pathsBuild paths

The The __FILE____FILE__ C preprocessor macro “expands to the name of the C preprocessor macro “expands to the name of the
current input file”. This results in non reproducibility when thecurrent input file”. This results in non reproducibility when the
program is built from different directories, e.g.,program is built from different directories, e.g.,
/home/lamby/tmp/home/lamby/tmp vs. vs. /home/zack/tmp/home/zack/tmp..
Fix: introducted gcc Fix: introducted gcc -ffile-prefix-map-ffile-prefix-map option (and related option (and related --
fdebug-prefix-mapfdebug-prefix-map) to support embedding relative (rather than) to support embedding relative (rather than
absolute) pathsabsolute) paths

fprintffprintf (stderr, (stderr,
 "DEBUG: boop (%s:%s\n""DEBUG: boop (%s:%s\n",,
 __FILE__, __LINE__); __FILE__, __LINE__);

11
22
33

2121

Filesystem orderingFilesystem ordering

Fix: impose a deterministic order in build systems/recipes, e.g., viaFix: impose a deterministic order in build systems/recipes, e.g., via
an explicit an explicit sort()sort()

NAMENAME
 readdir - read a directory readdir - read a directory

SYNOPSISSYNOPSIS
 #include <dirent.h> #include <dirent.h>
 struct dirent *readdir(DIR *dirp); struct dirent *readdir(DIR *dirp);

[…] The order in which filenames are read by successive calls to[…] The order in which filenames are read by successive calls to
readdir() depends on the filesystem implementation; it is unlikelyreaddir() depends on the filesystem implementation; it is unlikely
that the names will be sorted in any fashion. […]that the names will be sorted in any fashion. […]

11
22
33
44
55
66
77
88
99

1010

2222

Archive metadataArchive metadata

Archive formats like Archive formats like .zip.zip and and .tar.tar embeds various kinds of embeds various kinds of
metadata by defaultmetadata by default

user/group ownership (e.g., user/group ownership (e.g., zackzack v. v. lambylamby))
file modes (umask)file modes (umask)
timestampstimestamps

Fix: control for this, e.g.:Fix: control for this, e.g.:

tar --owner=0 --clamp-mtime=Ttar --owner=0 --clamp-mtime=T
touch --date=$SOURCE_DATE_EPOCHtouch --date=$SOURCE_DATE_EPOCH

2323

RandomnessRandomness
Even when the entire environment inputs are controlled for, many buildsEven when the entire environment inputs are controlled for, many builds

remain remain non-deterministicnon-deterministic. For instance due to . For instance due to randomness inrandomness in
unexpected placesunexpected places..

Perl’s hash type does not define an ordering of its keys, so a call to sortPerl’s hash type does not define an ordering of its keys, so a call to sort
should be inserted before should be inserted before keys %hkeys %h to make it deterministic. to make it deterministic.

mymy %h = (%h = (a =>a => 11, , b =>b => 22, , c =>c => 33););
foreachforeach mymy $k ($k (keyskeys %h) { %h) {
 printprint "$k\n""$k\n";;
}}

11
22
33
44

2424

Uninitialized memoryUninitialized memory
Many data structures have Many data structures have undefined areasundefined areas that do not affect their that do not affect their
operation, but could end up being operation, but could end up being serialized in build artifactsserialized in build artifacts..
Padding for natural memory alignmentPadding for natural memory alignment can also be filled with can also be filled with
random content.random content.
Fix: explicitly zero-out memory.Fix: explicitly zero-out memory.

A patch for A patch for to ensure a to ensure a direntry_tdirentry_t struct does not struct does not
contain uninitialized memory.contain uninitialized memory.

--- a/direntry.c--- a/direntry.c
+++ b/direntry.c+++ b/direntry.c
@@ -24,6 +24,7 @@@@ -24,6 +24,7 @@

 void initializeDirentry(void initializeDirentry(
 direntry_t *entry, Stream_t *Dir) { direntry_t *entry, Stream_t *Dir) {
+ memset(entry, 0, sizeof(direntry_t));+ memset(entry, 0, sizeof(direntry_t));
 entry->entry = -1; entry->entry = -1;
 entry->Dir = Dir; entry->Dir = Dir;

GNU mtoolsGNU mtools

11
22
33
44
55
66
77
88
99

2525

https://www.gnu.org/software/mtools/

Build reproducibility in the largeBuild reproducibility in the large
Now let’s assume we know how to fix all micro-issues that affactNow let’s assume we know how to fix all micro-issues that affact
build reproducibility.build reproducibility.
How do we go about How do we go about making large FOSS software collectionsmaking large FOSS software collections
reproduciblereproducible??
Use case: DebianUse case: Debian
Approach: establish a corresponding Approach: establish a corresponding Quality Assurance processQuality Assurance process
and soft-enforce it using Continuous Integration (CI)and soft-enforce it using Continuous Integration (CI)

2626

Adversarial rebuildingAdversarial rebuilding
How do you find build reproducibility issues, at scale?How do you find build reproducibility issues, at scale?

mass-rebuild all packages…mass-rebuild all packages…

…building each of them twice……building each of them twice…

…in two build environments configured to …in two build environments configured to differ as much asdiffer as much as
possiblepossible

clock set 18 months in the future in 2nd buildclock set 18 months in the future in 2nd build
changing: hostname, locales, kernelchanging: hostname, locales, kernel
reverse filesystem ordering using reverse filesystem ordering using
30+ variations in total30+ variations in total

disorderfsdisorderfs

2727

https://salsa.debian.org/reproducible-builds/disorderfs

Recording build informationRecording build information

According to our definition of a reproducible build, According to our definition of a reproducible build, legitimate buildlegitimate build
inputsinputs should be controlled for and replicated identical in the 2nd should be controlled for and replicated identical in the 2nd
buildbuild

source version of product under buildsource version of product under build
ditto for all transitive build dependenciesditto for all transitive build dependencies
toolchain versiontoolchain version

To that end, the To that end, the .buildinfo.buildinfo file format has been standardized to file format has been standardized to
capture these informationcapture these information

2828

.buildinfo.buildinfo — Example — Example

An example An example .buildinfo.buildinfo file, recording both the environment and file, recording both the environment and
results of building Debian’s results of building Debian’s blackblack package. (See package. (See .).)

Source: blackSource: black
Version: 20.8b1-1Version: 20.8b1-1
Checksums-Sha1:Checksums-Sha1:
 9915459ae7a1a5c3efb984d7e5472f7976e996b1 2584 black_20.8b1-1.dsc 9915459ae7a1a5c3efb984d7e5472f7976e996b1 2584 black_20.8b1-1.dsc
 14bfd3011b795f85edbc8cc4dc034a91cfaa9bcd 111096 black_20.8b1-1_all.deb 14bfd3011b795f85edbc8cc4dc034a91cfaa9bcd 111096 black_20.8b1-1_all.deb
 69c3d4ae7115c51e7b00befe8b4afd5963601d66 285684 python-black-doc_20.8b1-1_all.d 69c3d4ae7115c51e7b00befe8b4afd5963601d66 285684 python-black-doc_20.8b1-1_all.d
Checksums-Sha256: [...]Checksums-Sha256: [...]
Build-Architecture: amd64Build-Architecture: amd64
Installed-Build-Depends: autoconf (= 2.69-11.1), automake (= 1:1.16.2-4), […], gcInstalled-Build-Depends: autoconf (= 2.69-11.1), automake (= 1:1.16.2-4), […], gc

full versionfull version

11
22
33
44
55
66
77
88
99

2929

https://buildinfo.debian.net/sources/black/20.8b1-1

Build attestationsBuild attestations
.buildinfo.buildinfo files also contain the files also contain the cryptographic checksums ofcryptographic checksums of
final build artifactsfinal build artifacts, acting as , acting as build attestationsbuild attestations

Anyone (for QA or independent verification purposes) can rerunAnyone (for QA or independent verification purposes) can rerun
the build and publish their own build attestationsthe build and publish their own build attestations

I, Alice, given source X, build dependenciesI, Alice, given source X, build dependencies
Y_1,…,Y_n and toolchain Z, have conducted a buildY_1,…,Y_n and toolchain Z, have conducted a build

run obtaining a set of artifacts with checksumsrun obtaining a set of artifacts with checksums
K_1,…,K_m.K_1,…,K_m.

3030

.buildinfo.buildinfo — Usage — Usage

Before installation, users verify package checksums againstBefore installation, users verify package checksums against
published build attestationspublished build attestations
Published by either vendors they trust; or relying on somePublished by either vendors they trust; or relying on some
consensus within a network of independent rebuildersconsensus within a network of independent rebuilders
Debian publishes 27+M build attestations atDebian publishes 27+M build attestations at
https://buildinfo.debian.nethttps://buildinfo.debian.net

3131

https://buildinfo.debian.net/

Reproducible Debian — Evolution over timeReproducible Debian — Evolution over time

3232

Quality assurance synergiesQuality assurance synergies

systematic R-B testing ⇒ systematic systematic R-B testing ⇒ systematic build testingbuild testing, catching any, catching any
FTBFSFTBFS bug bug

some software will only FTBFS in the extreme R-B buildsome software will only FTBFS in the extreme R-B build
environment; fixing it will make the environment; fixing it will make the software more robustsoftware more robust in in
generalgeneral

e.g., expired SSL certificates at +18 months, or unusuale.g., expired SSL certificates at +18 months, or unusual
timezone offsetstimezone offsets

R-B testing can detect user-level breakages by serendipityR-B testing can detect user-level breakages by serendipity

e.g., HTML documentation pointing toe.g., HTML documentation pointing to
/tmp/build/foo/usage.html/tmp/build/foo/usage.html instead of instead of
/usr/share/doc/foo/usage.html/usr/share/doc/foo/usage.html

3333

Quality assurance synergies — securityQuality assurance synergies — security
Security issues can also be spotted during R-B testing bySecurity issues can also be spotted during R-B testing by
serendipityserendipity

An example An example ConfigData.pmConfigData.pm. As it was created at build time, all users. As it was created at build time, all users
shared the same shared the same OpenIDConsumerSecretOpenIDConsumerSecret. (See: . (See:

.).)

{{
 'cgibin''cgibin' => => '/usr/lib/cgi-bin/gbrowse''/usr/lib/cgi-bin/gbrowse',,
 'conf''conf' => => '/etc/gbrowse''/etc/gbrowse',,
 'databases''databases' => => '/var/lib/gbrowse/databases''/var/lib/gbrowse/databases',,
 'htdocs''htdocs' => => '/usr/share/gbrowse/htdocs''/usr/share/gbrowse/htdocs',,
 'OpenIDConsumerSecret''OpenIDConsumerSecret' => => '639098210478536''639098210478536',,
 'tmp''tmp' => => '/var/cache/gbrowse''/var/cache/gbrowse'
},},

Debian bugDebian bug
#833885#833885

11
22
33
44
55
66
77
88

3434

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=833885

The Reproducible Builds ecosystemThe Reproducible Builds ecosystem

2014: project kicjstarted by Debian folks for 2014: project kicjstarted by Debian folks for Debian needsDebian needs fun fun
joined since: Arch Linux, coreboot, F-Droid, Fedora, FreeBSD, Guix,joined since: Arch Linux, coreboot, F-Droid, Fedora, FreeBSD, Guix,
NixOS, openSUSE, Qubes, TailsNixOS, openSUSE, Qubes, Tails
2017 milestone: Tails (live distro used by Snowden to exfiltrate2017 milestone: Tails (live distro used by Snowden to exfiltrate
NSA documents) publishes a fully reproducible ISO to improveNSA documents) publishes a fully reproducible ISO to improve
end-user verifiabilityend-user verifiability
independent project hosted by Software Freedom Conservancy +independent project hosted by Software Freedom Conservancy +
corporate sponsors (e.g., Google, The Linux Foundation, Fordcorporate sponsors (e.g., Google, The Linux Foundation, Ford
Foundation, Siemens)Foundation, Siemens)

https://reproducible-builds.org/https://reproducible-builds.org/

3535

https://reproducible-builds.org/

ChallengesChallenges

Debian reached 95% reproducible packages, can we go all the way?Debian reached 95% reproducible packages, can we go all the way?

Yes, it’s just busy/constant maintenance work.Yes, it’s just busy/constant maintenance work.
Working with upstream and spreading r-b culture helps a lot.Working with upstream and spreading r-b culture helps a lot.

How to make How to make signed buld artifactssigned buld artifacts reproducible (without distributing reproducible (without distributing
signing keys)?signing keys)?

Detached signatures. (Painful for distribution channels.)Detached signatures. (Painful for distribution channels.)

How do end-user verify build artifacts before installation?How do end-user verify build artifacts before installation?

Particularly challenging on locked-down mobileParticularly challenging on locked-down mobile
environments/stores.environments/stores.

How little trusted code is acceptable?How little trusted code is acceptable?

 managed to bootstrap from a 6 KiB trusted managed to bootstrap from a 6 KiB trusted
executable to gcc via executable to gcc via ..
Bootstrappable BuildsBootstrappable Builds

TCCTCC
3636

https://bootstrappable.org/
https://bellard.org/tcc/

TakeawaysTakeaways
Open source software supply chain attacksOpen source software supply chain attacks are a hot topic in are a hot topic in
cybersecurity right now.cybersecurity right now.
Several ACES team members have started working in this space.Several ACES team members have started working in this space.
Reproducible BuildsReproducible Builds help countering help countering build/distribution injectionbuild/distribution injection
attacks.attacks.

Marc Ohm, Henrik Plate, Arnold Sykosch, Michael Meier. Marc Ohm, Henrik Plate, Arnold Sykosch, Michael Meier. Backstabber’s Knife Collection: A Review of Open Source Software Supply Chain AttacksBackstabber’s Knife Collection: A Review of Open Source Software Supply Chain Attacks ..
DIMVA 2020: 23-43.DIMVA 2020: 23-43.
Chris Lamb, Stefano Zacchiroli. Chris Lamb, Stefano Zacchiroli. Reproducible Builds: Increasing the Integrity of Software Supply ChainsReproducible Builds: Increasing the Integrity of Software Supply Chains . IEEE Softw. 39(2): 62-70 (2022).. IEEE Softw. 39(2): 62-70 (2022).

3737

AppendixAppendix

3838

Root cause analysis — Root cause analysis — DiffoscopeDiffoscope

3939

https://diffoscope.org/

