
Building Blocks for a Safer Open Source Supply Chain
Reproducible Builds and Software Heritage

Stefano Zacchiroli

Software Heritage
Télécom Paris, Polytechnic Institute of Paris

21 April 2023
KTH Royal Institute of Technology

Stockholm, Sweden

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 1 / 39

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 2 / 39

About the speaker

Professor of Computer Science, Télécom Paris, Polytechnic Institute of Paris

Free/Open Source Software activist (20+ years)

Debian Developer & Former 3x Debian Project Leader

Former Open Source Initiative (OSI) director

Software Heritage co-founder & CTO

Reproducible Builds board member

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 2 / 39

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 3 / 39

The software supply chain

Supply chain: the set of activities required by an organization to deliver goods or
services to consumers.
Software supply chain: the set of software components and software services
required to deliver an IT product or service to users.

libraries, runtimes, and other software component dependencies
base system (operating system, package manager, compiler, . . .)
development tools and platform (e.g., IDEs, build system, GitHub/GitLab, CI/CD, . . .)
etc.

Key artifact for audits: SBOM = Software Bill of Materials

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 3 / 39

(An) open source development workflow

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 4 / 39

Supply chain attacks

A software supply chain attack is a particular kind of cyber-attack that aims at injecting
malicious code into an otherwise legitimate software product.

Notable examples

NotPetya (2017): ransomware concelaed in an update of a popular accounting
software, hitting Ukranian banks and major corps (B$)

CCleaner (2017): malicious version of a popular MS Windows maintenance tool,
distributed via the vendor website

SolarWinds (2020): malicious update of the SolarWinds Orion monitoring software,
shipping a delayed-activation trojan. Breached into several US Gov. branches as
well as Microsoft

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 5 / 39

Open source supply chain attacks

Is this specific to Free/Open Source Software (FOSS)? No.

But modern FOSS package ecosystems are heavily intertwined.
Examples: NPM (JavaScript), PyPI (Python), Crates (Rust), Gems (Ruby), etc.
100/10k/1M packages, depending on each other due to code reuse opportunities.
Reverse transitive dependencies grow fast. A single package could be required by
thousands of others.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 6 / 39

left-pad (2016)
(Not an attack, but gives an idea of how entangled package ecosystems could be.)

function leftpad (str, len, ch) {
str = String(str);
var i = -1;
if (!ch && ch !== 0) ch = ’ ’;
len = len - str.length;
while (++i < len) { str = ch + str; }
return str;

}

Maintainer: "I think I have the right of deleting all my stuff". "Unpublish" package.

Impact: "many thousands of projects"—including major ones like babel and
atom—no longer installable.

NPM operators forcibly "un-unpublish" package.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 7 / 39

Open source supply chain attacks (cont.)

For an attacker, code injection into (transitively) popular leaf packages has a low
opportunity cost.

Also, entirely open FOSS package ecosystems (!= Linux distros) can be easy to
infiltrate.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 8 / 39

Attack tree — Injection

(image from [Ohm20])

Attacker’s goal: package P containing malicious code is available from download from a
distribution platform and P is a reverse transitive dependency of a legitimate package.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 9 / 39

Attack vector — Compromise build system

Injection of Malicious Code� Infect Existing Package� Inject during the Build�
Compromise Build System

Often, code run by users is written but not built by maintainers

Rather, it is built by 3rd-party vendors
e.g., GNU/Linux distros, app store operators, arch "porters"

It hence becomes attractive to break into vendor build systems, compromising
binaries "downstream", without anybody auditing source code noticing

Related attack vectors: Inject into [Package] Repository System (!= VCS)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 10 / 39

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 11 / 39

On untrusted code

You can’t trust code that you did not totally create yourself. [. . .] No amount of
source-level verification or scrutiny will protect you from using untrusted code.
— Ken Thompson, Reflections on Trusting Trust, Turing Lecture 1984

40 years later nobody "totally creates" code they run

Reuse of open source software (FOSS) is everywhere in IT
"99% of audited code bases contain FOSS components" (Synopsis, 2020)

Also, the FOSS we run is often not built by its developers

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 11 / 39

Problem statement

How can we increase users’ trust when running (trusted) FOSS code built by (untrusted)
3rd-party vendors?

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 12 / 39

A reproducible build (r-b) process

Precondition/hypothesis: we can "reproducibly build" all relevant (FOSS) products, i.e.:

The build process of a software product is reproducible if, after designating a spe-
cific version of its source code and all of its build dependencies, every build produces
bit-for-bit identical artifacts, no matter the environment in which the build is per-
formed. — [Lamb22]

(we’ll verify later how realistic this is)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 13 / 39

A reproducible build (r-b) process

Precondition/hypothesis: we can "reproducibly build" all relevant (FOSS) products, i.e.:

The build process of a software product is reproducible if, after designating a spe-
cific version of its source code and all of its build dependencies, every build produces
bit-for-bit identical artifacts, no matter the environment in which the build is per-
formed. — [Lamb22]

(we’ll verify later how realistic this is)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 13 / 39

R-B approach

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 14 / 39

Making Debian reproducible

Experiment

Let’s try a large-scale experiment: making all Debian packages build reproducibly from
source

Debian: one of the largest and most popular GNU/Linux distro, esp. in the
server/cloud market

30’000+ (source) packages, 1+B lines of code

Initial goal of the reproducible-builds.org initiative, est. 2014

Goals
1 Empirical experiment to identify common causes of non-reproducibility
2 Real impact (if successful) due to Debian popularity in the market

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 15 / 39

Build reproducibility in the small

How hard could it be to ensure build reproducibility?

After controlling for source code, build deps., and toolchain, two main classes of issues
arise in practice:

1 Uncontrolled build inputs: when toolchains allow the build process to be affected
by the surrounding environment.

Intuition: this is the build engineering equivalent of breaking encapsulation in
programming

2 Build non-determinism that gets encoded in final built artifacts.

Let’s see some real-world examples. . .

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 16 / 39

Build reproducibility in the small

How hard could it be to ensure build reproducibility?

After controlling for source code, build deps., and toolchain, two main classes of issues
arise in practice:

1 Uncontrolled build inputs: when toolchains allow the build process to be affected
by the surrounding environment.

Intuition: this is the build engineering equivalent of breaking encapsulation in
programming

2 Build non-determinism that gets encoded in final built artifacts.

Let’s see some real-world examples. . .

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 16 / 39

Build reproducibility in the small

How hard could it be to ensure build reproducibility?

After controlling for source code, build deps., and toolchain, two main classes of issues
arise in practice:

1 Uncontrolled build inputs: when toolchains allow the build process to be affected
by the surrounding environment.

Intuition: this is the build engineering equivalent of breaking encapsulation in
programming

2 Build non-determinism that gets encoded in final built artifacts.

Let’s see some real-world examples. . .

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 16 / 39

Build paths

fprintf (stderr,
"DEBUG: boop (%s:%s\n",
__FILE__, __LINE__);

The __FILE__ C preprocessor macro "expands to the name of the current input
file". This results in non reproducibility when the program is built from different
directories, e.g., /home/lamby/tmp vs. /home/zack/tmp.
Fix: introducted gcc -ffile-prefix-map option (and related
-fdebug-prefix-map) to support embedding relative (rather than absolute)
paths

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 17 / 39

Filesystem ordering

NAME
readdir - read a directory

SYNOPSIS
#include <dirent.h>
struct dirent *readdir(DIR *dirp);

[...] The order in which filenames are read by successive
calls to readdir() depends on the filesystem implementation;
it is unlikely that the names will be sorted in any fashion.
[...]

Fix: impose a deterministic order in build systems/recipes, e.g., via an explicit
sort()

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 18 / 39

Build reproducibility in the large

Let’s now assume we know how to fix all micro-issues that affact build
reproducibility.

How do we go about making large FOSS software collections reproducible?
Use case: Debian

Approach: establish a correspondingQuality Assurance process and soft-enforce it
using Continuous Integration (CI).

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 19 / 39

Adversarial rebuilding

How do you find build reproducibility issues, at scale?

Mass-rebuild all packages. . .

. . . building each of them twice. . .

. . . in two build environments configured to differ as much as possible:
Clock set 18 months in the future in 2nd build
Changing: hostname, locales, kernel
Reverse filesystem ordering using disorderfs
30+ variations in total

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 20 / 39

https://salsa.debian.org/reproducible-builds/disorderfs

Reproducible Debian — Evolution over time

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 21 / 39

The Reproducible Builds ecosystem

https://reproducible-builds.org/
2014: project started by Debian developers for Debian needs fun

Joined since: Arch Linux, coreboot, F-Droid, Fedora, FreeBSD, Guix, NixOS,
openSUSE, Qubes, Tails, . . .

2017 milestone: Tails (live distro used by Snowden to exfiltrate NSA documents)
publishes a fully reproducible ISO to improve end-user verifiability

R-B is an independent project hosted by Software Freedom Conservancy and
supported by 3rd-party sponsors (e.g., Google, The Linux Foundation, Ford
Foundation, Siemens)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 22 / 39

https://reproducible-builds.org/
https://sfconservancy.org/

Challenges

Debian reached 95% reproducible packages, can we go all the way?
Yes, it’s just busy/constant maintenance work.
Working with upstream and spreading r-b culture helps a lot.

How to make signed buld artifacts reproducible (without distributing signing keys)?
Detached signatures. (Painful for distribution channels.)

How do end-user verify build artifacts before installation?
Particularly challenging on locked-down mobile environments/stores.

How little trusted code is acceptable?
Bootstrappable Builds managed to bootstrap from a 6 KiB trusted ELF binary to GCC
via TCC.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 23 / 39

https://bootstrappable.org/
https://bellard.org/tcc/

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 24 / 39

Open Source is growing. . .

Software is eating the world

Software companies outperform
or buy out traditional companies

Marc Andreesen, 2011

Open Source is eating the Software World

Reuse is the new rule
80% to 90% of a new application is . . . just reuse! (Sonatype survey, 2017)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 24 / 39

. . . concerns are growing too . . . KYSW is coming!
Where does reused software come from? Do you know where it comes from?

the software you ship

the software you use

the software you acquire
the software that

has that bug
has that vulnerability

KYSW: Know Your SoftWare
Like KYC in banking, KYSW is now essential all over IT. . .

Sec. 4. Enhancing Software Supply Chain Security
ensuring and attesting, to the extent practicable, to the integrity
and provenance of open source software

May 2021 POTUS Executive Order

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 25 / 39

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

A long road ahead

Vertical approach

improve security of each component separately

Horizontal approach

explore the whole supply chain

A few key challenging properties

findability needs qualified metadata

availability needs an archive and a system of identifiers

integrity needs crypto

traceability needs a global provenance database

reproducibility needs groundbreaking tools

We need a global coordinated effort. . .
and a common, open, shared infrastructure to track all (Open Source) software!

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 26 / 39

A long road ahead

Vertical approach

improve security of each component separately

Horizontal approach

explore the whole supply chain

A few key challenging properties

findability needs qualified metadata

availability needs an archive and a system of identifiers

integrity needs crypto

traceability needs a global provenance database

reproducibility needs groundbreaking tools

We need a global coordinated effort. . .
and a common, open, shared infrastructure to track all (Open Source) software!

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 26 / 39

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 27 / 39

Software Heritage, in a nutshell www.softwareheritage.org

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Collect, preserve and share all software source code

Preserving our heritage, enabling better software and better science for all

Reference catalog

find and reference all
software source code

Universal archive

preserve and share all
software source code

Research infrastructure

enable analysis of all
software source code

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 27 / 39

Software Heritage, in a nutshell www.softwareheritage.org

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Collect, preserve and share all software source code

Preserving our heritage, enabling better software and better science for all

Reference catalog

find and reference all
software source code

Universal archive

preserve and share all
software source code

Research infrastructure

enable analysis of all
software source code

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 27 / 39

Software Heritage, in a nutshell www.softwareheritage.org

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Collect, preserve and share all software source code

Preserving our heritage, enabling better software and better science for all

Reference catalog

find and reference all
software source code

Universal archive

preserve and share all
software source code

Research infrastructure

enable analysis of all
software source code

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 27 / 39

Software Heritage, in a nutshell www.softwareheritage.org

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Collect, preserve and share all software source code

Preserving our heritage, enabling better software and better science for all

Reference catalog

find and reference all
software source code

Universal archive

preserve and share all
software source code

Research infrastructure

enable analysis of all
software source code

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 27 / 39

Universal software archive, principled http://bit.ly/swhpaper

One infrastructure
open and shared

Largest archive

Technology

transparency and FOSS

replicas all the way down

Content (billions!)

intrinsic identifiers

facts and provenance

Organization

non-profit

multi-stakeholder

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 28 / 39

http://bit.ly/swhpaper

Universal software archive, principled http://bit.ly/swhpaper

One infrastructure
open and shared

Largest archive

Technology

transparency and FOSS

replicas all the way down

Content (billions!)

intrinsic identifiers

facts and provenance

Organization

non-profit

multi-stakeholder

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 28 / 39

http://bit.ly/swhpaper

Universal software archive, principled http://bit.ly/swhpaper

One infrastructure
open and shared

Largest archive

Technology

transparency and FOSS

replicas all the way down

Content (billions!)

intrinsic identifiers

facts and provenance

Organization

non-profit

multi-stakeholder

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 28 / 39

http://bit.ly/swhpaper

A peek under the hood: a universal archive

dsc

dsc

hg

hg
hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Forges
GitHub
lister

GitLab
lister

Debian
lister

PyPi
lister

.

.

.
Distros

...

Listing
(full/incremental)

tar

Global development history permanently archived in a uniform data model

over 14 billion unique source files from over 210 million software projects

~1PB (compressed) blobs, ~30 B nodes, ~400 B edges

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 29 / 39

A peek under the hood: a universal archive

Git
loader

Mercurial
loader

Debian source
package loader

pypi source
package loader

.

.

.

Software Heritage Archive
Merkle DAG + blob storage

Loading
& deduplication

dsc

dsc

hg

hg
hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Forges
GitHub
lister

GitLab
lister

Debian
lister

PyPi
lister

.

.

.
Distros

...

Scheduling

Listing
(full/incremental)

tar

origins

snapshots

releases

revisionsrevisions

directoriesdirectories

contents

Global development history permanently archived in a uniform data model

over 14 billion unique source files from over 210 million software projects

~1PB (compressed) blobs, ~30 B nodes, ~400 B edges

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 29 / 39

A peek under the hood: a universal archive

Git
loader

Mercurial
loader

Debian source
package loader

pypi source
package loader

.

.

.

Software Heritage Archive
Merkle DAG + blob storage

Loading
& deduplication

dsc

dsc

hg

hg
hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Forges
GitHub
lister

GitLab
lister

Debian
lister

PyPi
lister

.

.

.
Distros

...

Scheduling

Listing
(full/incremental)

tar

origins

snapshots

releases

revisionsrevisions

directoriesdirectories

contents

Global development history permanently archived in a uniform data model

over 14 billion unique source files from over 210 million software projects

~1PB (compressed) blobs, ~30 B nodes, ~400 B edges

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 29 / 39

Intrinsic Identifiers for software artefacts
Software Heritage Identifiers (SWHID) see swhid.org

25+B intrinsic, decentralised, cryptographically strong identifiers, SWHIDs

Emerging standard : Linux Foundation SPDX 2.2; IANA registered; WikiData P6138

Full fledged source code references for reproducibility

Examples: Apollo 11 AGC excerpt, Quake III rsqrt; Guidelines available, see ICMS 2020

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 30 / 39

https://swhid.org
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://dx.doi.org/10.1007/978-3-030-52200-1_36

Intrinsic Identifiers for software artefacts
Software Heritage Identifiers (SWHID) see swhid.org

25+B intrinsic, decentralised, cryptographically strong identifiers, SWHIDs

Emerging standard : Linux Foundation SPDX 2.2; IANA registered; WikiData P6138

Full fledged source code references for reproducibility

Examples: Apollo 11 AGC excerpt, Quake III rsqrt; Guidelines available, see ICMS 2020

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 30 / 39

https://swhid.org
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://dx.doi.org/10.1007/978-3-030-52200-1_36

Intrinsic Identifiers for software artefacts
Software Heritage Identifiers (SWHID) see swhid.org

25+B intrinsic, decentralised, cryptographically strong identifiers, SWHIDs

Emerging standard : Linux Foundation SPDX 2.2; IANA registered; WikiData P6138

Full fledged source code references for reproducibility

Examples: Apollo 11 AGC excerpt, Quake III rsqrt; Guidelines available, see ICMS 2020

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 30 / 39

https://swhid.org
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://dx.doi.org/10.1007/978-3-030-52200-1_36

Intrinsic Identifiers for software artefacts
Software Heritage Identifiers (SWHID) see swhid.org

25+B intrinsic, decentralised, cryptographically strong identifiers, SWHIDs

Emerging standard : Linux Foundation SPDX 2.2; IANA registered; WikiData P6138

Full fledged source code references for reproducibility

Examples: Apollo 11 AGC excerpt, Quake III rsqrt; Guidelines available, see ICMS 2020

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 30 / 39

https://swhid.org
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://dx.doi.org/10.1007/978-3-030-52200-1_36

Intrinsic Identifiers for software artefacts
Software Heritage Identifiers (SWHID) see swhid.org

25+B intrinsic, decentralised, cryptographically strong identifiers, SWHIDs

Emerging standard : Linux Foundation SPDX 2.2; IANA registered; WikiData P6138

Full fledged source code references for reproducibility

Examples: Apollo 11 AGC excerpt, Quake III rsqrt; Guidelines available, see ICMS 2020

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 30 / 39

https://swhid.org
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://dx.doi.org/10.1007/978-3-030-52200-1_36

A quick tour

Browse (e.g. Apollo 11, and your work may be already there !)

Trigger archival, use the updateswh browser extension, configure the webhooks

Get and use SWHIDs (full specification available online)
Cite software with biblatex-software package from CTAN

Overleaf ACMART template available

Example in journals: article from IPOL

Example with Parmap: devel on Github, archive in SWH, curated deposit in HAL

Extracting all the software products for Inria, for CNRS, for CNES, for LIRMM or
for Rémi Gribonval using HalTools

Curated deposit in SWH via HAL, see for example: LinBox, SLALOM, Givaro,
NS2DDV, SumGra, Coq proof, . . .
Example use in research articles:

compare Fig. 1 and conclusions in the 2012 version and the updated version
SWHID in a replication experiment

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 31 / 39

https://archive.softwareheritage.org
https://www.softwareheritage.org/2019/07/20/archiving-and-referencing-the-apollo-source-code/
https://twitter.com/gabrielaltay/status/1300218789762662401
https://save.softwareheritage.org
https://www.softwareheritage.org/browser-extensions/
https://archive.softwareheritage.org/api/1/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://ctan.org/pkg/biblatex-software?lang=en
https://www.overleaf.com/latex/templates/template-for-acmart-using-biblatex-and-biblatex-software/hrbzctcdjwvd
http://www.ipol.im/pub/art/2020/300/
https://github.com/rdicosmo/parmap/
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/rdicosmo/parmap
https://hal.archives-ouvertes.fr/hal-03516539v1
https://haltools.archives-ouvertes.fr/Public/afficheRequetePubli.php?struct=inria&&typdoc=(%27SOFTWARE%27)&CB_auteur=oui&CB_titre=oui&CB_article=oui&CB_resume=oui&langue=Anglais&tri_exp=annee_publi&tri_exp2=typdoc&tri_exp3=date_publi&ordre_aff=TA&Fen=Aff&css=../css/VisuRubriqueEncadre.css
https://haltools.archives-ouvertes.fr/Public/afficheRequetePubli.php?struct=cnrs&typdoc=(%27SOFTWARE%27)&CB_auteur=oui&CB_titre=oui&CB_article=oui&CB_resume=oui&langue=Anglais&tri_exp=annee_publi&tri_exp2=typdoc&tri_exp3=date_publi&ordre_aff=TA&Fen=Aff&css=../css/VisuRubriqueEncadre.css
https://haltools.archives-ouvertes.fr/Public/afficheRequetePubli.php?struct=cnes&typdoc=(%27SOFTWARE%27)&CB_auteur=oui&CB_titre=oui&CB_article=oui&CB_resume=oui&langue=Anglais&tri_exp=annee_publi&tri_exp2=typdoc&tri_exp3=date_publi&ordre_aff=TA&Fen=Aff&css=../css/VisuRubriqueEncadre.css
https://haltools.archives-ouvertes.fr/Public/afficheRequetePubli.php?struct=LIRMM&typdoc=(%27SOFTWARE%27)&CB_auteur=oui&CB_titre=oui&CB_article=oui&CB_resume=oui&langue=Anglais&tri_exp=annee_publi&tri_exp2=typdoc&tri_exp3=date_publi&ordre_aff=TA&Fen=Aff&css=../css/VisuRubriqueEncadre.css
https://haltools.archives-ouvertes.fr/Public/afficheRequetePubli.php?auteur_exp=remi%2C+gribonval&struct=cnrs&typdoc=(%27SOFTWARE%27)&CB_auteur=oui&CB_titre=oui&CB_article=oui&CB_resume=oui&langue=Anglais&tri_exp=annee_publi&tri_exp2=typdoc&tri_exp3=date_publi&ordre_aff=TA&Fen=Aff&css=../css/VisuRubriqueEncadre.css
https://haltools.archives-ouvertes.fr/?action=export&lang=fr
https://doc.archives-ouvertes.fr/en/deposit/deposit-software-source-code/
https://hal.archives-ouvertes.fr/hal-02130801
https://hal.archives-ouvertes.fr/hal-01897934
https://hal.archives-ouvertes.fr/hal-02130729
https://hal.archives-ouvertes.fr/hal-02137040
https://hal.archives-ouvertes.fr/lirmm-02136558
https://hal.archives-ouvertes.fr/hal-02155786
http://www.dicosmo.org/Articles/2012-DaneluttoDiCosmo-Pcs.pdf
https://www.dicosmo.org/share/parmap_swh.pdf
https://www.dicosmo.org/Articles/2020-ReScienceC.pdf

A revolutionary infrastructure for industry
The graph of public software development

Snapshots

Releases

Revisions

Directories

Contents

All of the software development in a single graph!

lookup by content hash
wayback machine for software development

http://archive.softwareheritage.org/

. . . and much more

The global ledger of public code

All of a software development. . . in a single Merkle graph!
Widely used crypto (e.g., Git, blockchains, IPFS, . . .)

built-in deduplication

intrinsic, unforgeable identifiers at all levels

simplifies traceability (licensing, supply chain
management)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 32 / 39

http://archive.softwareheritage.org/

A revolutionary infrastructure for industry
The graph of public software development

Snapshots

Releases

Revisions

Directories

Contents

All of the software development in a single graph!

lookup by content hash
wayback machine for software development

http://archive.softwareheritage.org/

. . . and much more

The global ledger of public code

All of a software development. . . in a single Merkle graph!
Widely used crypto (e.g., Git, blockchains, IPFS, . . .)

built-in deduplication

intrinsic, unforgeable identifiers at all levels

simplifies traceability (licensing, supply chain
management)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 32 / 39

http://archive.softwareheritage.org/

A revolutionary infrastructure for research and innovation

A pillar of Open Science

The reference archive of Research Software for Open Science
curated deposit of research software

in collaboration with HAL, CCSD and Inria IES
now open to all researchers!

intrinsic identifiers for reproducibility

Reference platform for Big Code

unique observatory of all software development

big data, machine learning paradise: classification, trends, coding
patterns, code completion. . .

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 33 / 39

A revolutionary infrastructure for research and innovation

A pillar of Open Science

The reference archive of Research Software for Open Science
curated deposit of research software

in collaboration with HAL, CCSD and Inria IES
now open to all researchers!

intrinsic identifiers for reproducibility

Reference platform for Big Code

unique observatory of all software development

big data, machine learning paradise: classification, trends, coding
patterns, code completion. . .

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 33 / 39

Industry use cases (selection)

Open Source complete and corresponding source code distribution (Intel)

Software Heritage members can:

archive source code in Software Heritage, distribute only the SWHID

Traceability and integrity (OIN for the Linux System Definition)

Software Heritage members can:

archive source code in Software Heritage

track it and verify its integrity using its SWHID

And much more!
an open source, open data source code scanner for open compliance
(swh-scanner)
security (large project with French Government)

supply chain management, long term archive add your use case here

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 34 / 39

Industry use cases (selection)

Open Source complete and corresponding source code distribution (Intel)

Software Heritage members can:

archive source code in Software Heritage, distribute only the SWHID

Traceability and integrity (OIN for the Linux System Definition)

Software Heritage members can:

archive source code in Software Heritage

track it and verify its integrity using its SWHID

And much more!
an open source, open data source code scanner for open compliance
(swh-scanner)
security (large project with French Government)

supply chain management, long term archive add your use case here

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 34 / 39

Industry use cases (selection)

Open Source complete and corresponding source code distribution (Intel)

Software Heritage members can:

archive source code in Software Heritage, distribute only the SWHID

Traceability and integrity (OIN for the Linux System Definition)

Software Heritage members can:

archive source code in Software Heritage

track it and verify its integrity using its SWHID

And much more!
an open source, open data source code scanner for open compliance
(swh-scanner)
security (large project with French Government)

supply chain management, long term archive add your use case here
Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 34 / 39

swh-scanner

Vision
swh-scanner is an open source and open data source code scanner for open
compliance workflows, backed by the largest public archive of FOSS source code.

Design

Query Software Heritage as source of truth about public code
Leverages the Merkle DAG model and SWHIDs for maximum scanning efficiency

E.g., no need to query the back-end for files contained in a known directory

File-level granularity

Output: source tree partition into known (= published before) v. unknown

Source: gitlab.softwareheritage.org/swh/devel/swh-scanner
License: GPL-3+
Package: pypi.org/project/swh.scanner

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 35 / 39

https://gitlab.softwareheritage.org/swh/devel/swh-scanner
https://pypi.org/project/swh.scanner/

The Software Heritage archive as an open dataset
https://registry.opendata.aws/software-heritage/

all the file contents (the leaves of the graph ~1PB uncompressed)

regular dumps of the graph (in ORC file format)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 36 / 39

https://registry.opendata.aws/software-heritage/

Selected research works using Software Heritage

Davide Rossi, Stefano Zacchiroli
Worldwide Gender Differences in Public Code Contributions [...]
ICSE SEIS 2022: The 44th International Conference on Software Engineering

Daniele Serafini, Stefano Zacchiroli
Efficient Prior Publication Identification for Open Source Code
OSS+OpenSym 2022: 18th International Conference on Open Source Systems

Thibault Allançon, Antoine Pietri, Stefano Zacchiroli
The Software Heritage Filesystem (SwhFS): Integrating Source Code Archival with Development
ICSE 2021: The 43rd International Conference on Software Engineering

Antoine Pietri, Guillaume Rousseau, Stefano Zacchiroli
Forking Without Clicking: on How to Identify Software Repository Forks
MSR 2020: 17th Intl. Conf. on Mining Software Repositories. IEEE

Paolo Boldi, Antoine Pietri, Sebastiano Vigna, Stefano Zacchiroli
Ultra-Large-Scale Repository Analysis via Graph Compression
SANER 2020, 27th Intl. Conf. on Software Analysis, Evolution and Reengineering. IEEE

Roberto Di Cosmo, Guillaume Rousseau, Stefano Zacchiroli
Software Provenance Tracking at the Scale of Public Source Code
Empirical Software Engineering 25(4): 2930-2959 (2020)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 37 / 39

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 38 / 39

Reproducible Builds <-> Software Heritage

Software Heritage provides key ingredients for R-B pipelines: on-demand archival
(e.g., of VCS commits referenced by build recipes) + long-term availability

We have implemented this by integrating the GNU Guix package manager with
Software Heritage

https://www.softwareheritage.org/2019/04/18/
software-heritage-and-gnu-guix-join-forces-to-enable-long-term-reproducibility/
https://guix.gnu.org/blog/2019/
connecting-reproducible-deployment-to-a-long-term-source-code-archive/

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 38 / 39

https://www.softwareheritage.org/2019/04/18/software-heritage-and-gnu-guix-join-forces-to-enable-long-term-reproducibility/
https://www.softwareheritage.org/2019/04/18/software-heritage-and-gnu-guix-join-forces-to-enable-long-term-reproducibility/
https://guix.gnu.org/blog/2019/connecting-reproducible-deployment-to-a-long-term-source-code-archive/
https://guix.gnu.org/blog/2019/connecting-reproducible-deployment-to-a-long-term-source-code-archive/

Learn more

reproducible-builds.org softwareheritage.org

Roberto Di Cosmo, Stefano Zacchiroli
Software Heritage: Why and How to Preserve Software Source Code
iPRES 2017: Intl. Conf. on Digital Preservation

Chris Lamb, Stefano Zacchiroli
Reproducible Builds: Increasing the Integrity of Software Supply Chains
IEEE Softw. 39(2): 62-70 (2022)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 39 / 39

https://reproducible-builds.org/
https://www.softwareheritage.org/

Appendix

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 1 / 12

Outline

7 swh-scanner

8 Software Heritage Datasets

9 Efficient traversal of the full graph

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 2 / 12

Open compliance vs Source code scanning

Definition (Open Compliance)

The pursuit of compliance with license obligations and other best practices for the
management of open source software components, using only open technologies such
as: open source software, open data information, and open access documentation.

Why

Reduced lock-in risks, lower total cost of ownership (TCO), crowdsourcing, alignment
with FOSS community ethos.

We still lack a source code scanning tool that is compliant with Open
Compliance principles and addresses industry practical needs.

Can we build one on top of Software Heritage?

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 2 / 12

swh-scanner

Vision
swh-scanner is an open source and open data source code scanner for open
compliance workflows, backed by the largest public archive of FOSS source code.

Design

Query Software Heritage as source of truth about public code
Leverages the Merkle DAG model and SWHIDs for maximum scanning efficiency

E.g., no need to query the back-end for files contained in a known directory

File-level granularity

Output: source tree partition into known (= published before) v. unknown

Source: gitlab.softwareheritage.org/swh/devel/swh-scanner
License: GPL-3+
Package: pypi.org/project/swh.scanner

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 3 / 12

https://gitlab.softwareheritage.org/swh/devel/swh-scanner
https://pypi.org/project/swh.scanner/

swh-scanner demo — Summary output

$ pip install swh.scanner

$ swh scanner scan /srv/src/linux/linux-5.9.1/kernel
Files: 471

known: 471 (100%)
directories: 20

fully-known: 20 (100%)
partially-known: 0 (0%)

(see other --output-format for more details)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 4 / 12

swh-scanner demo — Machine-readable output

$ swh scanner scan --help
...
-f, --output-format [summary|text|json|ndjson|sunburst]
The output format [default: summary]
-i, --interactive Show the result in a dashboard

...

$ swh scanner scan --output-format ndjson /srv/src/linux/linux-5.9.1/kernel
{".": {"swhid": "swh:1:dir:5f18abc022c8aa2652008...", "known": true}}
{"cpu_pm.c": {"swhid": "swh:1:cnt:44a259338e33d1...", "known": true}}
{"sys.c": {"swhid": "swh:1:cnt:ab6c409b1159b1538...", "known": true}}
{"audit.c": {"swhid": "swh:1:cnt:7efaece534a9f69...", "known": true}}
{"torture.c": {"swhid": "swh:1:cnt:1061492f14bd9...", "known": true}}
{"smpboot.c": {"swhid": "swh:1:cnt:2efe1e206167c...", "known": true}}
{"gen_kheaders.sh": {"swhid": "swh:1:cnt:c1510f0...", "known": true}}
{"task_work.c": {"swhid": "swh:1:cnt:d621006f007...", "known": true}}
{"Kconfig.hz": {"swhid": "swh:1:cnt:38ef6d06888e...", "known": true}}
{"up.c": {"swhid": "swh:1:cnt:c6f323dcd45bb9efe1...", "known": true}}
...

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 5 / 12

swh-scanner demo — Efficiency

$ du -sh --exclude=.git /srv/src/linux/git
4,1G /srv/src/linux/git

$ time swh scanner scan /srv/src/linux
Files: 78277

known: 78267 (99%)
directories: 5085

fully-known: 5081 (99%)
partially-known: 4 (0%)

38,65s user 4,71s system 81% cpu 53,127 total

$ swh scanner scan --output-format ndjson /srv/src/linux/git | grep false
...
{"scripts/kconfig/symbol.o": {"swhid": "swh:1:cnt:874f19...", "known": false}}
...

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 6 / 12

swh-scanner — Going further

Roadmap

License information → in-house scanning + forge metadata (e.g., GitHub)

Provenance information → Software Heritage crawling info

"Serious UI" for interactive dashboard, based on UX design and user testing

Increase granularity to snippet/SLOC investments

(Some of these are low-hanging fruits, some require substantial R&D investments.)

Feedback welcome
Feel free to play with swh-scanner, feedback is very welcome!

Caveat: API rate-limit (talk to us for lifting it)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 7 / 12

Outline

7 swh-scanner

8 Software Heritage Datasets

9 Efficient traversal of the full graph

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 8 / 12

A peek at the dataset

Accessing graph leaves (a.k.a. contents)

$ aws s3 ls --no-sign-request s3://softwareheritage/
PRE content/
PRE graph/

File contents can be accessed using their SHA1 checksum

$ aws s3 cp --no-sign-request \
s3://softwareheritage/content/8624bcdae55baeef00cd11d5dfcfa60f68710a02 .

Notice that file contents are compressed:

$ zcat 8624bcdae55baeef00cd11d5dfcfa60f68710a02 | head
GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 8 / 12

A peek at the dataset

Accessing graph leaves (a.k.a. contents)

$ aws s3 ls --no-sign-request s3://softwareheritage/
PRE content/
PRE graph/

File contents can be accessed using their SHA1 checksum

$ aws s3 cp --no-sign-request \
s3://softwareheritage/content/8624bcdae55baeef00cd11d5dfcfa60f68710a02 .

Notice that file contents are compressed:

$ zcat 8624bcdae55baeef00cd11d5dfcfa60f68710a02 | head
GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 8 / 12

A peek at the dataset, cont’d

Annual dumps of (inner nodes of) the full graph

$ aws s3 ls --no-sign-request s3://softwareheritage/graph/

2018-09-25/
2019-01-28-popular-3k-python/
2019-01-28-popular-4k/
2020-05-20/
2020-12-15/

2021-03-23-cpython-3-5/
2021-03-23-popular-3k-python/
2021-03-23/
2022-04-25/

How to use
online full documentation

Antoine Pietri’s PhD Thesis

How to cite
Antoine Pietri, Diomidis Spinellis, Stefano Zacchiroli. The Software Heritage Graph
Dataset: Public software development under one roof. MSR 2019. (bibtex)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 9 / 12

https://docs.softwareheritage.org/devel/swh-dataset/graph/index.html
https://tel.archives-ouvertes.fr/tel-03515795v1
https://dblp.org/rec/conf/msr/PietriSZ20.html?view=bibtex

Example: most popular commit verbs (stemmed)

Query using Amazon Athena
SELECT COUNT(*) AS C, word FROM (

SELECT word_stem(lower(split_part(
trim(from_utf8(message)),’ ’, 1)))
AS word FROM revision
WHERE length(message) < 1000000)

WHERE word != ’’
GROUP BY word
ORDER BY C
DESC LIMIT 20;

Total cost: approximately .5 euros

Results

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 10 / 12

Example: most popular commit verbs (stemmed)

Query using Amazon Athena
SELECT COUNT(*) AS C, word FROM (

SELECT word_stem(lower(split_part(
trim(from_utf8(message)),’ ’, 1)))
AS word FROM revision
WHERE length(message) < 1000000)

WHERE word != ’’
GROUP BY word
ORDER BY C
DESC LIMIT 20;

Total cost: approximately .5 euros

Results

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 10 / 12

Outline

7 swh-scanner

8 Software Heritage Datasets

9 Efficient traversal of the full graph

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 11 / 12

Going beyond SQL

State-of-the-art graph compression from social networks

Paolo Boldi, Antoine Pietri, Sebastiano Vigna, Stefano Zacchiroli
Ultra-Large-Scale Repository Analysis via Graph Compression
SANER 2020, 27th Intl. Conf. on Software Analysis, Evolution and Reengineering. IEEE

Results
Full graph structure (25 B nodes, 350 B edges) in 200 GiB RAM

traversal time is tens of ns per edge

bidirectional traversals implemented

beware: metadata access is still off RAM

Java and gRPC APIs available

docs.softwareheritage.org/devel/swh-graph/grpc-api.html

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 11 / 12

https://docs.softwareheritage.org/devel/swh-graph/grpc-api.html

Examples assume graph service on localhost:50091

Find all origins containing a given content
grpc_cli call localhost:50091 swh.graph.TraversalService.Traverse "\
src: ’swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0’, direction: BACKWARD, \
mask: {paths: [’swhid’,’ori.url’]}, return_nodes: {types: ’ori’}"

Gives a list of origins including "https://github.com/rdicosmo/parmap", encoded as
"swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86" (beware: this is not a SWHID!)

Shortest provenance path of a content in a given origin
grpc_cli call localhost:50091 swh.graph.TraversalService.FindPathBetween "\
src: ’swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86’, \
dst: ’swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0’, \
mask: {paths: [’swhid’]}" | egrep ’swhid’
connecting to localhost:50091

swhid: "swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86"
swhid: "swh:1:snp:1527a93b039d70f6a781b05d76b77c6209912887"
swhid: "swh:1:rev:82df563aecf86b9164eee7d10d40f2d8cbd1c78d"
swhid: "swh:1:dir:484db39bb2825886191837bb0960b7450f9099bb"
swhid: "swh:1:dir:4d15e44b378fe39dd23817abee756cd47ad14575"
swhid: "swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0"

Rpc succeeded with OK status

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 12 / 12

https://github.com/rdicosmo/parmap

Examples assume graph service on localhost:50091

Find all origins containing a given content
grpc_cli call localhost:50091 swh.graph.TraversalService.Traverse "\
src: ’swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0’, direction: BACKWARD, \
mask: {paths: [’swhid’,’ori.url’]}, return_nodes: {types: ’ori’}"

Gives a list of origins including "https://github.com/rdicosmo/parmap", encoded as
"swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86" (beware: this is not a SWHID!)

Shortest provenance path of a content in a given origin
grpc_cli call localhost:50091 swh.graph.TraversalService.FindPathBetween "\
src: ’swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86’, \
dst: ’swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0’, \
mask: {paths: [’swhid’]}" | egrep ’swhid’
connecting to localhost:50091
swhid: "swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86"
swhid: "swh:1:snp:1527a93b039d70f6a781b05d76b77c6209912887"
swhid: "swh:1:rev:82df563aecf86b9164eee7d10d40f2d8cbd1c78d"
swhid: "swh:1:dir:484db39bb2825886191837bb0960b7450f9099bb"
swhid: "swh:1:dir:4d15e44b378fe39dd23817abee756cd47ad14575"
swhid: "swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0"

Rpc succeeded with OK status
Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 21 April 2023 12 / 12

https://github.com/rdicosmo/parmap

	Introduction
	Open Source Software Supply Chain — Attacks
	Reproducible Builds
	Open Source Software Supply Chain — KYSW
	Software Heritage
	Conclusion
	Appendix
	swh-scanner
	Software Heritage Datasets
	Efficient traversal of the full graph

