
Building Blocks for a Safer Open Source Supply Chain
Reproducible Builds and Software Heritage

Stefano Zacchiroli

Software Heritage
Télécom Paris, Polytechnic Institute of Paris

29 May 2024
INFORTECH Day 2024, Université de Mons

Mons, Belgium

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 1 / 30

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 2 / 30

About the speaker

Professor of Computer Science, Télécom Paris, Polytechnic Institute of Paris

Free/Open Source Software activist (20+ years)

Debian Developer & Former 3x Debian Project Leader

Former Open Source Initiative (OSI) director

Software Heritage co-founder & CTO

Reproducible Builds board member

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 2 / 30

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 3 / 30

The software supply chain

Supply chain: the set of activities required by an organization to deliver goods or
services to consumers.
Software supply chain: the set of software components and software services
required to deliver an IT product or service to users.

libraries, runtimes, and other software component dependencies
base system (operating system, package manager, compiler, . . .)
development tools and platform (e.g., IDEs, build system, GitHub/GitLab, CI/CD, . . .)
etc.

Key artifact for audits: SBOM = Software Bill of Materials

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 3 / 30

(An) open source development workflow

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 4 / 30

Supply chain attacks

A software supply chain attack is a particular kind of cyber-attack that aims at injecting
malicious code into an otherwise legitimate software product.

Notable examples

NotPetya (2017): ransomware concealed in an update of a popular accounting
software, hitting Ukranian banks and major corps (B$)

CCleaner (2017): malicious version of a popular MS Windows maintenance tool,
distributed via the vendor website

SolarWinds (2020): malicious update of the SolarWinds Orion monitoring software,
shipping a delayed-activation trojan. Breached into several US Gov. branches as
well as Microsoft

XZ (2024): "Jia Tan" social engineers their way into becoming maintainer of XZ and
plant a backdoor targeting SSH, allowing remote command execution

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 5 / 30

Open source supply chain attacks

Is this specific to Free/Open Source Software (FOSS)? No.

But modern FOSS package ecosystems are heavily intertwined.
Examples: NPM (JavaScript), PyPI (Python), Crates (Rust), Gems (Ruby), etc.
100/10k/1M packages, depending on each other due to code reuse opportunities.
Reverse transitive dependencies grow fast. A single package could be required by
thousands of others.

Example: removing left-pad, a 8-line(!) library to align strings, from NPM broke
"many thousands of projects" in 2016, including high-profile ones from Big Tech.

For an attacker, code injection into (transitively) popular leaf packages has a low
opportunity cost.

Also, entirely open FOSS package ecosystems (!= Linux distros) can be easy to
infiltrate.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 6 / 30

Attack tree — Injection

(image from: Ohm et al. Backstabber’s Knife Collection: A Review of Open Source Software Supply Chain Attacks.
DIMVA 2020)

Attacker’s goal: package P containing malicious code is available from download from a
distribution platform and P is a reverse transitive dependency of a legitimate package.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 7 / 30

Attack vector — Compromise build system

Injection of Malicious Code� Infect Existing Package� Inject during the Build�
Compromise Build System

Often, code run by users is written but not built by maintainers

Rather, it is built by 3rd-party vendors
e.g., GNU/Linux distros, app store operators, arch "porters"

It hence becomes attractive to break into vendor build systems, compromising
binaries "downstream", without anybody auditing source code noticing

Related attack vectors: Inject into [Package] Repository System (!= VCS)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 8 / 30

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 9 / 30

Problem statement

How can we increase users’ trust when running (trusted) FOSS code built by (untrusted)
3rd-party vendors?

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 9 / 30

A reproducible build (r-b) process

Precondition/hypothesis: we can "reproducibly build" all relevant (FOSS) products, i.e.:

The build process of a software product is [bitwise] reproducible if, after desig-
nating a specific version of its source code and all of its build dependencies, every
build produces bit-for-bit identical artifacts, no matter the environment in which
the build is performed. — [Lamb22]

(we’ll verify later how realistic this is)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 10 / 30

R-B approach

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 11 / 30

Build reproducibility in the small

How hard could it be to ensure build reproducibility?

After controlling for source code, build deps., and toolchain, two main classes of issues
arise in practice:

1 Uncontrolled build inputs: when toolchains allow the build process to be affected
by the surrounding environment.

Intuition: this is the build engineering equivalent of breaking encapsulation in
programming

2 Build non-determinism that gets encoded in final built artifacts.

Let’s see some real-world examples. . .

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 12 / 30

Build reproducibility in the small

How hard could it be to ensure build reproducibility?

After controlling for source code, build deps., and toolchain, two main classes of issues
arise in practice:

1 Uncontrolled build inputs: when toolchains allow the build process to be affected
by the surrounding environment.

Intuition: this is the build engineering equivalent of breaking encapsulation in
programming

2 Build non-determinism that gets encoded in final built artifacts.

Let’s see some real-world examples. . .

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 12 / 30

Build reproducibility in the small

How hard could it be to ensure build reproducibility?

After controlling for source code, build deps., and toolchain, two main classes of issues
arise in practice:

1 Uncontrolled build inputs: when toolchains allow the build process to be affected
by the surrounding environment.

Intuition: this is the build engineering equivalent of breaking encapsulation in
programming

2 Build non-determinism that gets encoded in final built artifacts.

Let’s see some real-world examples. . .

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 12 / 30

Build paths

fprintf (stderr,
"DEBUG: boop (%s:%s\n",
__FILE__, __LINE__);

The __FILE__ C preprocessor macro "expands to the name of the current input
file". This results in non reproducibility when the program is built from different
directories, e.g., /home/lamby/tmp vs. /home/zack/tmp.
Fix: introducted gcc -ffile-prefix-map option (and related
-fdebug-prefix-map) to support embedding relative (rather than absolute)
paths

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 13 / 30

Filesystem ordering

NAME
readdir - read a directory

SYNOPSIS
#include <dirent.h>
struct dirent *readdir(DIR *dirp);

[...] The order in which filenames are read by successive
calls to readdir() depends on the filesystem implementation;
it is unlikely that the names will be sorted in any fashion.
[...]

Fix: impose a deterministic order in build systems/recipes, e.g., via an explicit
sort()

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 14 / 30

Build reproducibility in the large

Let’s now assume we have fixed all micro-issues that impede build reproducibility

How do we go about making large FOSS software collections reproducible?

Experiment: making all Debian packages build reproducibly from source

Debian: one of the most popular GNU/Linux distro, esp. in the server market

30’000+ (source) packages, 1+B lines of code

Goals:
1 Empirical experiment to identify common causes of non-reproducibility
2 Real impact (if successful) due to Debian popularity in the market

Approach

Establish a correspondingQuality Assurance process and soft-enforce it using
Continuous Integration (CI).

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 15 / 30

Adversarial rebuilding

How do you find build reproducibility issues, at scale?

Mass-rebuild all packages. . .

. . . building each of them twice. . .

. . . in two build environments configured to differ as much as possible:
Clock set 18 months in the future in 2nd build
Changing: host name, locales, kernel
Reverse filesystem ordering using disorderfs
. . .

30+ variations in total

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 16 / 30

https://salsa.debian.org/reproducible-builds/disorderfs

Reproducible Debian — Evolution over time

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 17 / 30

The Reproducible Builds ecosystem

https://reproducible-builds.org/
2014: project started by Debian developers for Debian needs fun

Joined since: Arch Linux, coreboot, F-Droid, Fedora, FreeBSD, Guix, NixOS,
openSUSE, Qubes, Tails, . . .

2017 milestone: Tails (live distro used by Snowden to exfiltrate NSA documents)
publishes a fully reproducible ISO to improve end-user verifiability

R-B is an independent project hosted by Software Freedom Conservancy and
supported by 3rd-party sponsors (e.g., Google, The Linux Foundation, Ford
Foundation, Siemens)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 18 / 30

https://reproducible-builds.org/
https://sfconservancy.org/

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 19 / 30

KYSW (Know Your SoftWare)

Like KYC in banking, KYSW is now essential all over IT. . .

Vertical approach: secure your software

Improve security of each component separately

By law: e.g. EU Cyber Resilience Act

By practice: e.g. https://best.openssf.org/

Horizontal approach: all the supply chain

Sec. 4. Enhancing Software Supply Chain Security
ensuring and attesting, to the extent practicable, to the integrity
and provenance of open source software

May 2021 POTUS Executive Order

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 19 / 30

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://best.openssf.org/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

KYSW (Know Your SoftWare)

Like KYC in banking, KYSW is now essential all over IT. . .

Vertical approach: secure your software

Improve security of each component separately

By law: e.g. EU Cyber Resilience Act

By practice: e.g. https://best.openssf.org/

Horizontal approach: all the supply chain

Sec. 4. Enhancing Software Supply Chain Security
ensuring and attesting, to the extent practicable, to the integrity
and provenance of open source software

May 2021 POTUS Executive Order

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 19 / 30

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://best.openssf.org/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

KYSW (Know Your SoftWare)

Like KYC in banking, KYSW is now essential all over IT. . .

Vertical approach: secure your software

Improve security of each component separately

By law: e.g. EU Cyber Resilience Act

By practice: e.g. https://best.openssf.org/

Horizontal approach: all the supply chain

Sec. 4. Enhancing Software Supply Chain Security
ensuring and attesting, to the extent practicable, to the integrity
and provenance of open source software

May 2021 POTUS Executive Order

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 19 / 30

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://best.openssf.org/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

A long road ahead

Vertical approach

improve security of each component separately

Horizontal approach

explore the whole supply chain

A few key challenging properties

findability needs qualified metadata

availability needs an archive and a system of identifiers

integrity needs crypto

traceability needs a global provenance database

reproducibility needs groundbreaking tools

We need a global coordinated effort. . .
and a common, open, shared infrastructure to track all (open source) software!

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 20 / 30

A long road ahead

Vertical approach

improve security of each component separately

Horizontal approach

explore the whole supply chain

A few key challenging properties

findability needs qualified metadata

availability needs an archive and a system of identifiers

integrity needs crypto

traceability needs a global provenance database

reproducibility needs groundbreaking tools

We need a global coordinated effort. . .
and a common, open, shared infrastructure to track all (open source) software!

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 20 / 30

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 21 / 30

Software Heritage, in a nutshell www.softwareheritage.org

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Collect, preserve and share all software source code

Preserving our heritage, enabling better software and better science for all

Reference catalog

find and reference all
software source code

Universal archive

preserve and share all
software source code

Research infrastructure

enable analysis of all
software source code

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 21 / 30

Software Heritage, in a nutshell www.softwareheritage.org

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Collect, preserve and share all software source code

Preserving our heritage, enabling better software and better science for all

Reference catalog

find and reference all
software source code

Universal archive

preserve and share all
software source code

Research infrastructure

enable analysis of all
software source code

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 21 / 30

Software Heritage, in a nutshell www.softwareheritage.org

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Collect, preserve and share all software source code

Preserving our heritage, enabling better software and better science for all

Reference catalog

find and reference all
software source code

Universal archive

preserve and share all
software source code

Research infrastructure

enable analysis of all
software source code

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 21 / 30

Software Heritage, in a nutshell www.softwareheritage.org

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Collect, preserve and share all software source code

Preserving our heritage, enabling better software and better science for all

Reference catalog

find and reference all
software source code

Universal archive

preserve and share all
software source code

Research infrastructure

enable analysis of all
software source code

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 21 / 30

The largest software archive, a shared infrastructure

One infrastructure
open and shared

The largest archive ever built

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 22 / 30

The largest software archive, a shared infrastructure

One infrastructure
open and shared

The largest archive ever built

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 22 / 30

The largest software archive, a shared infrastructure

One infrastructure
open and shared

The largest archive ever built

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 22 / 30

A peek under the hood: a universal archive

dsc

dsc

hg

hg
hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Forges
GitHub
lister

GitLab
lister

Debian
lister

PyPi
lister

.

.

.
Distros

...

Listing
(full/incremental)

tar

Global development history permanently archived in a uniform data model

over 18 billion unique source files from over 290 million software projects

~1.5PB (compressed) blobs, ~35 B nodes, ~500 B edges

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 23 / 30

A peek under the hood: a universal archive

Git
loader

Mercurial
loader

Debian source
package loader

pypi source
package loader

.

.

.

Software Heritage Archive
Merkle DAG + blob storage

Loading
& deduplication

dsc

dsc

hg

hg
hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Forges
GitHub
lister

GitLab
lister

Debian
lister

PyPi
lister

.

.

.
Distros

...

Scheduling

Listing
(full/incremental)

tar

origins

snapshots

releases

revisionsrevisions

directoriesdirectories

contents

Global development history permanently archived in a uniform data model

over 18 billion unique source files from over 290 million software projects

~1.5PB (compressed) blobs, ~35 B nodes, ~500 B edges

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 23 / 30

A peek under the hood: a universal archive

Git
loader

Mercurial
loader

Debian source
package loader

pypi source
package loader

.

.

.

Software Heritage Archive
Merkle DAG + blob storage

Loading
& deduplication

dsc

dsc

hg

hg
hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Forges
GitHub
lister

GitLab
lister

Debian
lister

PyPi
lister

.

.

.
Distros

...

Scheduling

Listing
(full/incremental)

tar

origins

snapshots

releases

revisionsrevisions

directoriesdirectories

contents

Global development history permanently archived in a uniform data model

over 18 billion unique source files from over 290 million software projects

~1.5PB (compressed) blobs, ~35 B nodes, ~500 B edges

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 23 / 30

Referencing all source code artifacts with SWHIDs

Software Heritage Identifiers (SWHID) link to full docs

35+B
intrinsic,
decentralised,
cryptographic

Full fledged source code references for traceability, integrity and reproducibility

Linux Foundation SPDX 2.2

IANA-registered "swh:"
WikiData property P6138

Examples: Apollo 11 AGC excerpt, Quake III rsqrt
Guidelines available, see the HOWTO

ISO standardization underway, see swhid.org

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 24 / 30

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://www.softwareheritage.org/howto-archive-and-reference-your-code/
https://swhid.org

Referencing all source code artifacts with SWHIDs

Software Heritage Identifiers (SWHID) link to full docs

35+B
intrinsic,
decentralised,
cryptographic

Full fledged source code references for traceability, integrity and reproducibility

Linux Foundation SPDX 2.2

IANA-registered "swh:"
WikiData property P6138

Examples: Apollo 11 AGC excerpt, Quake III rsqrt
Guidelines available, see the HOWTO

ISO standardization underway, see swhid.org

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 24 / 30

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://www.softwareheritage.org/howto-archive-and-reference-your-code/
https://swhid.org

Referencing all source code artifacts with SWHIDs

Software Heritage Identifiers (SWHID) link to full docs

35+B
intrinsic,
decentralised,
cryptographic

Full fledged source code references for traceability, integrity and reproducibility

Linux Foundation SPDX 2.2

IANA-registered "swh:"
WikiData property P6138

Examples: Apollo 11 AGC excerpt, Quake III rsqrt
Guidelines available, see the HOWTO

ISO standardization underway, see swhid.org

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 24 / 30

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://www.softwareheritage.org/howto-archive-and-reference-your-code/
https://swhid.org

Referencing all source code artifacts with SWHIDs

Software Heritage Identifiers (SWHID) link to full docs

35+B
intrinsic,
decentralised,
cryptographic

Full fledged source code references for traceability, integrity and reproducibility

Linux Foundation SPDX 2.2

IANA-registered "swh:"
WikiData property P6138

Examples: Apollo 11 AGC excerpt, Quake III rsqrt
Guidelines available, see the HOWTO

ISO standardization underway, see swhid.org

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 24 / 30

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://spdx.github.io/spdx-spec/appendix-VI-external-repository-identifiers/#persistent-id
https://www.wikidata.org/wiki/Property:P6138
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;lines=245-261/
https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;lines=549-572/
https://www.softwareheritage.org/howto-archive-and-reference-your-code/
https://swhid.org

The Software Heritage archive as an open dataset
1 All the file contents (the leaves of the graph ~1.5 PiB uncompressed)
2 Regular dumps of the graph (with all metadata, in ORC file format)

Antoine Pietri, Diomidis Spinellis, Stefano Zacchiroli
The Software Heritage Graph Dataset: Public software development under one roof
MSR 2019: 16th Intl. Conf. on Mining Software Repositories. IEEE

Self-hosted (10-20 TiB)
docs.softwareheritage.org/devel/swh-
dataset/graph/dataset.html

Hosted on public clouds
registry.opendata.aws/software-heritage

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 25 / 30

https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html
https://registry.opendata.aws/software-heritage/

Selected research works using Software Heritage

Jesús M. González-Barahona, Sergio Raúl Montes León, Gregorio Robles, Stefano Zacchiroli
The Software Heritage license dataset (2022 edition)
Empir. Softw. Eng. 28(6): 147 (2023)

Romain Lefeuvre, Jessie Galasso, Benoît Combemale, Houari A. Sahraoui, Stefano Zacchiroli:
Fingerprinting and Building Large Reproducible Datasets
ACM-REP 2023: 27-36

Davide Rossi, Stefano Zacchiroli
Worldwide Gender Differences in Public Code Contributions [...]
ICSE SEIS 2022: The 44th International Conference on Software Engineering

Antoine Pietri, Guillaume Rousseau, Stefano Zacchiroli
Forking Without Clicking: on How to Identify Software Repository Forks
MSR 2020: 17th Intl. Conf. on Mining Software Repositories. IEEE

Paolo Boldi, Antoine Pietri, Sebastiano Vigna, Stefano Zacchiroli
Ultra-Large-Scale Repository Analysis via Graph Compression
SANER 2020, 27th Intl. Conf. on Software Analysis, Evolution and Reengineering. IEEE

Roberto Di Cosmo, Guillaume Rousseau, Stefano Zacchiroli
Software Provenance Tracking at the Scale of Public Source Code
Empirical Software Engineering 25(4): 2930-2959 (2020)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 26 / 30

Industry use cases (selection)

Open Source complete and corresponding source code distribution (Intel)

Software Heritage members can:

archive source code in Software Heritage, distribute only the SWHID

Traceability and integrity (OIN for the Linux System Definition)

Software Heritage members can:

archive source code in Software Heritage

track it and verify its integrity using its SWHID

And much more!
cybersecurity: just launched SWHSec project swhsec.github.io

AI: providing high-quality data for ethical code LLMs

an open (source & data) source code scanner for open compliance

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 27 / 30

https://swhsec.github.io

Industry use cases (selection)

Open Source complete and corresponding source code distribution (Intel)

Software Heritage members can:

archive source code in Software Heritage, distribute only the SWHID

Traceability and integrity (OIN for the Linux System Definition)

Software Heritage members can:

archive source code in Software Heritage

track it and verify its integrity using its SWHID

And much more!
cybersecurity: just launched SWHSec project swhsec.github.io

AI: providing high-quality data for ethical code LLMs

an open (source & data) source code scanner for open compliance

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 27 / 30

https://swhsec.github.io

Industry use cases (selection)

Open Source complete and corresponding source code distribution (Intel)

Software Heritage members can:

archive source code in Software Heritage, distribute only the SWHID

Traceability and integrity (OIN for the Linux System Definition)

Software Heritage members can:

archive source code in Software Heritage

track it and verify its integrity using its SWHID

And much more!
cybersecurity: just launched SWHSec project swhsec.github.io

AI: providing high-quality data for ethical code LLMs

an open (source & data) source code scanner for open compliance

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 27 / 30

https://swhsec.github.io

swh-scanner

Vision
swh-scanner is an open source and open data source code scanner for open
compliance workflows, backed by the largest public archive of FOSS source code.

Design

Query Software Heritage as source of truth about public code
Leverages the Merkle DAG model and SWHIDs for maximum scanning efficiency

E.g., no need to query the back-end for files contained in a known directory

File-level granularity

Output: source tree partition into known (= published before) v. unknown

Source: gitlab.softwareheritage.org/swh/devel/swh-scanner
License: GPL-3+
Package: pypi.org/project/swh.scanner

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 28 / 30

https://gitlab.softwareheritage.org/swh/devel/swh-scanner
https://pypi.org/project/swh.scanner/

Outline

1 Introduction

2 Open Source Software Supply Chain — Attacks

3 Reproducible Builds

4 Open Source Software Supply Chain — KYSW

5 Software Heritage

6 Conclusion

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 29 / 30

Reproducible Builds↔ Software Heritage

Software Heritage provides key ingredients for R-B pipelines: on-demand archival
(e.g., of VCS commits referenced by build recipes) + long-term availability

We have implemented this by integrating the GNU Guix package manager with
Software Heritage

Ludovic Courtès, Timothy Sample, Simon Tournier, Stefano Zacchiroli
Source Code Archiving to the Rescue of Reproducible Deployment.
ACM REP 2024 (to appear)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 29 / 30

Learn more

reproducible-builds.org softwareheritage.org

Piergiorgio Ladisa, Henrik Plate, Matias Martinez, Olivier Barais
SoK: Taxonomy of Attacks on Open-Source Software Supply Chains
IEEE S&P 2023

Chris Lamb, Stefano Zacchiroli
Reproducible Builds: Increasing the Integrity of Software Supply Chains
IEEE Softw. 39(2): 62-70 (2022)

Roberto Di Cosmo, Stefano Zacchiroli
Software Heritage: Why and How to Preserve Software Source Code
iPRES 2017: Intl. Conf. on Digital Preservation

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 30 / 30

https://reproducible-builds.org/
https://www.softwareheritage.org/

Appendix

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 1 / 8

Outline

7 Reproducible Builds

8 Software Heritage

9 Software Heritage — Datasets

10 Efficient traversal of the full graph

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 2 / 8

Challenges

Debian reached 95% reproducible packages, can we go all the way?
Yes, it’s just busy/constant maintenance work.
Working with upstream and spreading r-b culture helps a lot.

How to make signed buld artifacts reproducible (without distributing signing keys)?
Detached signatures. (Painful for distribution channels.)

How do end-user verify build artifacts before installation?
Particularly challenging on locked-down mobile environments/stores.

How little trusted code is acceptable?
Bootstrappable Builds managed to bootstrap from a 6 KiB trusted ELF binary to GCC
via TCC.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 2 / 8

https://bootstrappable.org/
https://bellard.org/tcc/

Outline

7 Reproducible Builds

8 Software Heritage

9 Software Heritage — Datasets

10 Efficient traversal of the full graph

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 3 / 8

An international, non profit initiative built for the long term

Sharing the vision

And many more ...
www.softwareheritage.org/support/testimonials

Donors, members, sponsors

Diamond sponsor

Bronze sponsors

Gold sponsors

Silver sponsors

Platinum sponsors

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 3 / 8

www.softwareheritage.org/support/testimonials

An international, non profit initiative built for the long term

Sharing the vision

And many more ...
www.softwareheritage.org/support/testimonials

Donors, members, sponsors

Diamond sponsor

Bronze sponsors

Gold sponsors

Silver sponsors

Platinum sponsors

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 3 / 8

www.softwareheritage.org/support/testimonials

Outline

7 Reproducible Builds

8 Software Heritage

9 Software Heritage — Datasets

10 Efficient traversal of the full graph

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 4 / 8

A peek at the dataset

Accessing graph leaves (a.k.a. contents)

$ aws s3 ls --no-sign-request s3://softwareheritage/
PRE content/
PRE graph/

File contents can be accessed using their SHA1 checksum

$ aws s3 cp --no-sign-request \
s3://softwareheritage/content/8624bcdae55baeef00cd11d5dfcfa60f68710a02 .

Notice that file contents are compressed:

$ zcat 8624bcdae55baeef00cd11d5dfcfa60f68710a02 | head
GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 4 / 8

A peek at the dataset

Accessing graph leaves (a.k.a. contents)

$ aws s3 ls --no-sign-request s3://softwareheritage/
PRE content/
PRE graph/

File contents can be accessed using their SHA1 checksum

$ aws s3 cp --no-sign-request \
s3://softwareheritage/content/8624bcdae55baeef00cd11d5dfcfa60f68710a02 .

Notice that file contents are compressed:

$ zcat 8624bcdae55baeef00cd11d5dfcfa60f68710a02 | head
GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 4 / 8

A peek at the dataset, cont’d

Annual dumps of (inner nodes of) the full graph

$ aws s3 ls --no-sign-request s3://softwareheritage/graph/

2018-09-25/
2019-01-28-popular-3k-python/
2019-01-28-popular-4k/
2020-05-20/
2020-12-15/

2021-03-23-cpython-3-5/
2021-03-23-popular-3k-python/
2021-03-23/
2022-04-25/

How to use
online full documentation

Antoine Pietri’s PhD Thesis

How to cite
Antoine Pietri, Diomidis Spinellis, Stefano Zacchiroli. The Software Heritage Graph
Dataset: Public software development under one roof. MSR 2019. (bibtex)

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 5 / 8

https://docs.softwareheritage.org/devel/swh-dataset/graph/index.html
https://tel.archives-ouvertes.fr/tel-03515795v1
https://dblp.org/rec/conf/msr/PietriSZ20.html?view=bibtex

Example: most popular commit verbs (stemmed)

Query using Amazon Athena
SELECT COUNT(*) AS C, word FROM (

SELECT word_stem(lower(split_part(
trim(from_utf8(message)),’ ’, 1)))
AS word FROM revision
WHERE length(message) < 1000000)

WHERE word != ’’
GROUP BY word
ORDER BY C
DESC LIMIT 20;

Total cost: approximately .5 euros

Results

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 6 / 8

Example: most popular commit verbs (stemmed)

Query using Amazon Athena
SELECT COUNT(*) AS C, word FROM (

SELECT word_stem(lower(split_part(
trim(from_utf8(message)),’ ’, 1)))
AS word FROM revision
WHERE length(message) < 1000000)

WHERE word != ’’
GROUP BY word
ORDER BY C
DESC LIMIT 20;

Total cost: approximately .5 euros

Results

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 6 / 8

Outline

7 Reproducible Builds

8 Software Heritage

9 Software Heritage — Datasets

10 Efficient traversal of the full graph

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 7 / 8

Going beyond SQL

State-of-the-art graph compression from social networks

Paolo Boldi, Antoine Pietri, Sebastiano Vigna, Stefano Zacchiroli
Ultra-Large-Scale Repository Analysis via Graph Compression
SANER 2020, 27th Intl. Conf. on Software Analysis, Evolution and Reengineering. IEEE

Results
Full graph structure (25 B nodes, 350 B edges) in 200 GiB RAM

traversal time is tens of ns per edge

bidirectional traversals implemented

beware: metadata access is still off RAM

Java and gRPC APIs available

docs.softwareheritage.org/devel/swh-graph/grpc-api.html

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 7 / 8

https://docs.softwareheritage.org/devel/swh-graph/grpc-api.html

Examples assume graph service on localhost:50091

Find all origins containing a given content
grpc_cli call localhost:50091 swh.graph.TraversalService.Traverse "\
src: ’swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0’, direction: BACKWARD, \
mask: {paths: [’swhid’,’ori.url’]}, return_nodes: {types: ’ori’}"

Gives a list of origins including "https://github.com/rdicosmo/parmap", encoded as
"swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86" (beware: this is not a SWHID!)

Shortest provenance path of a content in a given origin
grpc_cli call localhost:50091 swh.graph.TraversalService.FindPathBetween "\
src: ’swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86’, \
dst: ’swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0’, \
mask: {paths: [’swhid’]}" | egrep ’swhid’
connecting to localhost:50091

swhid: "swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86"
swhid: "swh:1:snp:1527a93b039d70f6a781b05d76b77c6209912887"
swhid: "swh:1:rev:82df563aecf86b9164eee7d10d40f2d8cbd1c78d"
swhid: "swh:1:dir:484db39bb2825886191837bb0960b7450f9099bb"
swhid: "swh:1:dir:4d15e44b378fe39dd23817abee756cd47ad14575"
swhid: "swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0"

Rpc succeeded with OK status

Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 8 / 8

https://github.com/rdicosmo/parmap

Examples assume graph service on localhost:50091

Find all origins containing a given content
grpc_cli call localhost:50091 swh.graph.TraversalService.Traverse "\
src: ’swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0’, direction: BACKWARD, \
mask: {paths: [’swhid’,’ori.url’]}, return_nodes: {types: ’ori’}"

Gives a list of origins including "https://github.com/rdicosmo/parmap", encoded as
"swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86" (beware: this is not a SWHID!)

Shortest provenance path of a content in a given origin
grpc_cli call localhost:50091 swh.graph.TraversalService.FindPathBetween "\
src: ’swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86’, \
dst: ’swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0’, \
mask: {paths: [’swhid’]}" | egrep ’swhid’
connecting to localhost:50091
swhid: "swh:1:ori:8903a90cff8f07159be7aed69f19d66d33db3f86"
swhid: "swh:1:snp:1527a93b039d70f6a781b05d76b77c6209912887"
swhid: "swh:1:rev:82df563aecf86b9164eee7d10d40f2d8cbd1c78d"
swhid: "swh:1:dir:484db39bb2825886191837bb0960b7450f9099bb"
swhid: "swh:1:dir:4d15e44b378fe39dd23817abee756cd47ad14575"
swhid: "swh:1:cnt:8722d84d658e5e11519b807abb5c05bfbfc531f0"

Rpc succeeded with OK status
Stefano Zacchiroli zack@upsilon.cc (CC-BY-SA 4.0) Building Blocks for a Safer Open Source Supply Chain 29 May 2024 8 / 8

https://github.com/rdicosmo/parmap

	Introduction
	Open Source Software Supply Chain — Attacks
	Reproducible Builds
	Open Source Software Supply Chain — KYSW
	Software Heritage
	Conclusion
	Appendix
	Reproducible Builds
	Software Heritage
	Software Heritage — Datasets
	Efficient traversal of the full graph

