
Environnements et Outils de Développement
Cours 2 — Text editing with Emacs

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot - Paris 7

URL http://upsilon.cc/~zack/teaching/1112/ed6/
Copyright © 2012 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris 7) ED6 — Introduction 1 / 12

http://upsilon.cc/~zack/teaching/1112/ed6/
http://creativecommons.org/licenses/by-sa/3.0/


It’s all about text

Which tool, as programmer, will you use the most ?

A text editor.

coding

debugging

searching / reading

writing documentation

configuration files

(textual) program data

. . .

Stefano Zacchiroli (Paris 7) ED6 — Introduction 2 / 12



It’s all about text

Which tool, as programmer, will you use the most ?
A text editor.

coding

debugging

searching / reading

writing documentation

configuration files

(textual) program data

. . .

Stefano Zacchiroli (Paris 7) ED6 — Introduction 2 / 12



one Editor to rule them all

complex software projects are often written using multiple
programming languages

ñ system lang. for the engine + application lang. for business logic
ñ DSL
ñ separation logic / presentation
ñ documentation

you’ll work on several development projects at the “same time”

You’ll change many languages ; changing your editor at each change
wouldn’t be wise.

Most programmers choose one editor and use it for every text
editing task, no matter the language.

Stefano Zacchiroli (Paris 7) ED6 — Introduction 3 / 12



Which editor ?

Doesn’t matter, really, . . . as long as it is flexible enough to adapt to
your changing needs.

Two popular choices in the UNIX / Free Software world :

Vim modal editor ; the editor responds differently to the
same keys, depending on the editor state
simple key strokes, to be concatenated like video
game “combos”
traditionally small and fast
used with many instances at a time

Emacs non-modal
key combinations and modifier keys (Ctrl+Alt+. . . )
traditionally highly customizable, using Emacs Lisp
use with a single instance running + clients

Biased !
See http://en.wikipedia.org/wiki/Editor_war

Stefano Zacchiroli (Paris 7) ED6 — Introduction 4 / 12

http://en.wikipedia.org/wiki/Editor_war


Choosing Emacs

For this class we got to choose (time constraints. . . ).
And we’ve chosen Emacs.

Feel free to choose the one you like, really.

learn to learn using your editor

compare

pick the one that makes you most efficient

Editing concepts, as well as coordination of other development
utilities from your editor, are portable.

Stefano Zacchiroli (Paris 7) ED6 — Introduction 5 / 12



Learning Emacs

We’ll follow the excellent tutorial “Being productive with Emacs”, by
Phil Sung : http://web.psung.name/emacs/

Part 1 : Introduction
http://web.psung.name/emacs/2009/part1.html

Part 2 : Emacs lisp
http://web.psung.name/emacs/2009/part2.html
(no time today to complete this ; for the interested reader)

Stefano Zacchiroli (Paris 7) ED6 — Introduction 6 / 12

http://web.psung.name/emacs/
http://web.psung.name/emacs/2009/part1.html
http://web.psung.name/emacs/2009/part2.html


Tutorial

Stefano Zacchiroli (Paris 7) ED6 — Introduction 7 / 12



Programming major modes

major modes to edit code in a specific programming language

available for most (un)known programming languages

auto-loaded based on file name extensions

manually toggled by M-X lang-mode
ñ c-mode
ñ java-mode
ñ caml-mode
ñ python-mode
ñ latex-mode
ñ etc.

Stefano Zacchiroli (Paris 7) ED6 — Introduction 8 / 12



Common tasks

Most programming major modes support a common set of tasks, via
a common interface.

indenting : <TAB> is bound to (re-)indent the current line ; you’ll
use it a lot. . .

commenting : M-x comment-region, M-x uncomment-region

reformat paragraph : M-q, mostly for text modes, but very
useful in comments

completion : M-/, trigger (word-based) completion, extensible

quickfix cycle (edit/compile/fix)
Idea : run an external compiler and parse its output to detect
errors and locate them in source code

ñ M-x compile : compile (ask for compile command)
ñ M-x recompile : compile (silent)
ñ C-x ‘ : go to next error

Stefano Zacchiroli (Paris 7) ED6 — Introduction 9 / 12



Navigating through code

Generalize the idea behind the quickfix cycle

occur : M-x occur navigate through occurrences in the current
buffer

grep : M-x grep navigate through occurrences, elsewhere

Stefano Zacchiroli (Paris 7) ED6 — Introduction 10 / 12



Rectangles

Consider point and mark, but look at the smallest rectangular area
of text denoted by them

C-x r k — kill rectangle

C-x r y — yank rectangle

C-x r o — open rectangle

Useful / alternative / non-standard way of re-indenting several lines
at once.

Stefano Zacchiroli (Paris 7) ED6 — Introduction 11 / 12



Processing text with external tools

What if Emacs can’t do a specific text manipulation that an external
tool—more precisely a UNIX filter—could ?

1 select the region you want to operate on

2 M-x shell-command-on-region
bound by default to M-| (mnemonic for “pipe”, as on the shell)

read-onlyciao mode (default) : pipe the text to the filter, but do
not change the text in return

read-write mode : pipe the text to the filter and replace it with
filter’s output

ñ C-u M-|

Stefano Zacchiroli (Paris 7) ED6 — Introduction 12 / 12


