
Méthodes de Test
Cours 1 — Introduction to Test-Driven Development

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2013–2014

URL http://upsilon.cc/zack/teaching/1314/methtest/
Copyright © 2013 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 1 / 38

http://upsilon.cc/zack/teaching/1314/methtest/
http://creativecommons.org/licenses/by-sa/3.0/


Outline

1 Development processes

2 Test-Driven Development

3 xUnit & jUnit

4 Bibliography

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 2 / 38



Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e. develop better software, less
stressfully.

The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process

the xUnit family of testing frameworks
ñ e.g. JUnit, [Python] unittest, cppUnit, OUnit, NUnit, PHPUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 3 / 38



Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e. develop better software, less
stressfully.

The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process

the xUnit family of testing frameworks
ñ e.g. JUnit, [Python] unittest, cppUnit, OUnit, NUnit, PHPUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 3 / 38



Outline

1 Development processes

2 Test-Driven Development

3 xUnit & jUnit

4 Bibliography

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 4 / 38



Reminder — Development process

Definition (Software development process)

A software development process is a structured set of activities
which lead to the production of some software.

Some software development activities:
1 requirement specification

2 design

3 implementation
4 verification
5 maintenance

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 5 / 38



Waterfall model

Requirements

Design

Implementation

Verification

Maintenance

https://en.wikipedia.org/wiki/File:

Waterfall_model_(1).svg

that’s the theory

in practice:
ñ feedback loops
ñ increasingly more costly
ñ that need to be prevented

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 6 / 38

https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg
https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg


Waterfall model

Requirements

Design

Implementation

Verification

Maintenance

https://en.wikipedia.org/wiki/File:

Waterfall_model_(1).svg

that’s the theory

in practice:
ñ feedback loops
ñ increasingly more costly
ñ that need to be prevented

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 6 / 38

https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg
https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg


Iterative development

A family of models where development happens incrementally,
through repeated iterations of development activities.

https://en.wikipedia.org/wiki/File:Iterative_development_model_V2.jpg

Key benefit: feedback loop.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 7 / 38

https://en.wikipedia.org/wiki/File:Iterative_development_model_V2.jpg


Rational Unified Process (RUP)

IBM’s Rationale Unified Process is a well-established example of an
iterative development model, tailored for OOP.

https://en.wikipedia.org/wiki/File:Development-iterative

phases vs work-flow
notable work-flows: deployment, testing

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 8 / 38

https://en.wikipedia.org/wiki/File:Development-iterative


V-Model

Not really a software development model.

Verification
and

Validation
Project

Definition

Concept of
Operations

Requirements
and

Architecture

Detailed
Design

Integration,
Test, and

Verification

System
Verification

and Validation

Operation
and

Maintenance

Project
Test and

Integration

ImplementationImplementation

Time

https://en.wikipedia.org/wiki/File:Systems_Engineering_Process_II.svg

Rather a (simplistic) view on the waterfall model that correlates the
initial “definition” phases with the final “delivery” ones.

The V-model helps to think about test purposes.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 9 / 38

https://en.wikipedia.org/wiki/File:Systems_Engineering_Process_II.svg


A hierarchy of tests

Disclaimers:

there are other hierarchies/taxonomies, on different angles

(as it often happens in SWE) terminology is not clear cut

the granularity trend—from small to big—however matters and
is agreed upon

Test hierarchy

acceptance does the whole system work?
integration does our code work against (other) code (we

can’t change)?
unit do our code unitsa do the right thing and are

convenient to work with?
ain a broad sense: might be classes, objects, modules, etc. depending

on the available abstraction mechanisms

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 10 / 38



Acceptance test

Does the whole system work?

Acceptance tests represent features that the system should have.
Both their lack and their misbehaviour imply that the system is not
working as it should. Intuition:

1 feature → 1+ acceptance test(s)

1 user story → 1+ acceptance test(s) (when using user stories)

Exercise (name 2+ acceptance tests for this “user login” story)

After creating a user, the system will know that you are that user when
you login with that user’s id and password; if you are not authenticated,
or if you supply a bad id/password pair, or other error cases, the login
page is displayed. If a CMS folder is marked as requiring authentication,
access to any page under that folder will result in an authentication
check. http://c2.com/cgi/wiki?AcceptanceTestExamples

Preview: we will use acceptance tests to guide feature development
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 11 / 38

http://c2.com/cgi/wiki?AcceptanceTestExamples


Integration test

Does our code work against (other) code (we can’t change)?

“Code we can’t change” =
3rd party libraries/framework

ñ be them proprietary or open source
code developed by other teams that we don’t “own”

ñ (strict code ownership is bad, though)
code that we do not want to/cannot modify in the current phase
of development, for whatever reason

Example

our BankClient should not call the getBalance method on
BankingService before calling login and having verified that it
didn’t throw an exception

xmlInitParser should be called before any other parsing function
of libxml2

the DocBook markup returned by CMSEditor.save should be
parsable by PDFPublisher’s constructor

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 12 / 38



Unit test

Do our code units do the right thing and are convenient to
work with?

Before implementing any unit of our software, we have (to have) an
idea of what the code should do. Unit tests show convincing
evidence that—in a limited number of cases—it is actually the case.1

Example (some unit tests for a List module)

calling List.length on an empty list returns 0

calling List.length on a singleton list returns 1

calling List.last after List.append returns the inserted element

calling List.head on an empty list raises an exception

calling List.length on the concatenation of two lists returns the
sum of the respective List.lengths

. . .

1remember: tests reveal bugs, but don’t prove their absence!
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 13 / 38



Unit test

Do our code units do the right thing and are convenient to
work with?

Before implementing any unit of our software, we have (to have) an
idea of what the code should do. Unit tests show convincing
evidence that—in a limited number of cases—it is actually the case.1

Example (some unit tests for a List module)
calling List.length on an empty list returns 0

calling List.length on a singleton list returns 1

calling List.last after List.append returns the inserted element

calling List.head on an empty list raises an exception

calling List.length on the concatenation of two lists returns the
sum of the respective List.lengths

. . .
1remember: tests reveal bugs, but don’t prove their absence!

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 13 / 38



Tests in the V-Model

https://en.wikipedia.org/wiki/File:V-model.JPG

For TDD we will “hack” unit, integration, acceptance tests, and use
them in an arguably more clever way. . .

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 14 / 38

https://en.wikipedia.org/wiki/File:V-model.JPG


Tests in the V-Model

https://en.wikipedia.org/wiki/File:V-model.JPG

For TDD we will “hack” unit, integration, acceptance tests, and use
them in an arguably more clever way. . .

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 14 / 38

https://en.wikipedia.org/wiki/File:V-model.JPG


Outline

1 Development processes

2 Test-Driven Development

3 xUnit & jUnit

4 Bibliography

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 15 / 38



Development as learning

every software development project tries something that has
never been tried before

ñ otherwise you wouldn’t be doing it. . .

due to constraints, developers often use technologies they don’t
completely master

ñ new technologies, old technologies used in unfamiliar contexts,
etc

all stakeholders (developers, managers, customers) learn as the
project progresses

Problem: as we don’t know everything at the beginning, there will be
unexpected changes during the project.
How do we cope with them?

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 16 / 38



Nested feedback loops

Idea
1 we use empirical feedback to learn about the system

2 we store what we learn in the system itself, for future use

To do so, we organize development as nested feedback loops with
increasing time periods and scopes in the organization (file, unit,
product, team, etc.), e.g.:

pair programming period: seconds

unit tests seconds–1 minute

acceptance tests minutes

daily meeting 1 day

iterations 1 day–1 week

releases 1 week–months

We want feedback as quickly as possible. If something slips through
an inner loop, it will (hopefully) be catched by an outer one.
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 17 / 38



Expecting the unexpected

Practices that (empirically) help coping with unexpected changes:

constant testing
ñ when we change something we might introduce regressions
ñ to avoid that we need to constantly test our system
ñ doing it manually doesn’t scale ⇒ automated testing

simple design
keep the code as simple as possible
optimize for simplicity

ñ as we will have to change it, we want code that is easy to
understand and modify

ñ empirical studies show that developers spend more time reading
code than writing it

ñ clean design doesn’t come for free, to achieve it we must
constantly refactor

ñ test suites give you courage to refactor, and do other changes,
thanks to their tight feedback loop

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 18 / 38



TDD principle

So we have test suites. Why do we need TDD?

Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e. a judo move on the above problem)

write test before code

don’t writes test only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design idea
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 19 / 38



TDD principle

So we have test suites. Why do we need TDD? Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e. a judo move on the above problem)

write test before code

don’t writes test only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design idea
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 19 / 38



TDD principle

So we have test suites. Why do we need TDD? Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e. a judo move on the above problem)

write test before code

don’t writes test only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design idea
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 19 / 38



TDD in a nutshell

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 20 / 38



The TDD development cycle

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 21 / 38



The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

By writing the test we:

clarify acceptance criteria

are pushed to design loosely
coupled components

ñ otherwise they are difficult to test

document the code, via an
executable description of it

incrementally build a regression
suite

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 21 / 38



The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

By running the test we:

detect errors when the context is
fresh in our mind

have a measure of progress, know
when to stop (i.e. when we are “done
enough”)

ñ avoid over-coding, “gold plating”

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 21 / 38



The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

GOOS, Figure 1.1

TDD golden rule

Never write a new functionality without a failing test.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 21 / 38



Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (≈3), write helper methods.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the tests fail in unexpected
ways, fix it

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not methods
ñ for TDD test coverage is less

important than readable tests

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 22 / 38



Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (≈3), write helper methods.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the tests fail in unexpected
ways, fix it

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not methods
ñ for TDD test coverage is less

important than readable tests

GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 22 / 38



Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (≈3), write helper methods.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the tests fail in unexpected
ways, fix it

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not methods
ñ for TDD test coverage is less

important than readable tests
GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 22 / 38



Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sort of dirty tricks
ñ e.g. return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e. test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 23 / 38



Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sort of dirty tricks
ñ e.g. return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e. test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 23 / 38



Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sort of dirty tricks
ñ e.g. return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e. test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 23 / 38



Step 3 — refactor

At this point: we have a test, some new code, and we are reasonably
convinced that it is that code that makes the test pass.
We can now improve the code design, using tests as a safety net.

The goal of refactoring is to improve the design of existing code,
without altering its external behavior (see Fowler 1999). We only
give some of its intuitions here:

Code smells

duplicate code

long methods / large class

too many parameters

inappropriate intimacy

Liskov principle violation

complex conditionals

. . .

Techniques

encapsulate field

generalize type

conditionals → polymorphism

extract class / method

rename method / field

pull up / push down

. . .

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 24 / 38



TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ i.e. with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one it still succeeds

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 25 / 38



TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ i.e. with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one it still succeeds

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 25 / 38



TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ i.e. with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one it still succeeds

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 25 / 38



TDD cycle — exercise

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

?

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 26 / 38



TDD cycle — exercise

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

Possible work-flow:

0 receive bug report
1 run all tests to ensure clean slate
2 create a new test that

ñ recreates the context of the (alleged) bug
ñ would succeed if the bug didn’t exist

3 run all tests
ñ new test fails → reproducible bug
ñ new test passes → unreproducible bug → investigate with

submitter

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 26 / 38



TDD cycle — exercise (cont.)

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

Possible work-flow:
5 fix the bug

ñ even with dirty workarounds, to ensure you’ve cornered it
6 run all tests

ñ all test passes → bingo!
ñ new test fails → try again
ñ old tests fail → regression, try again

7 refactor as needed
ñ from workaround, to proper fix

8 release fix (including the new test!)

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 26 / 38



Outline

1 Development processes

2 Test-Driven Development

3 xUnit & jUnit

4 Bibliography

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 27 / 38



xUnit

xUnit collectively refers to a set of frameworks for automated unit
testing which share a common test coding style.
Each xUnit framework includes:

test case abstraction used to define tests

test suite abstraction used to organize test in test suites

test fixture mechanisms to factorize test initialization and clean up
code

test runner end-user program to discover and run test suites,
summarizing their results

xUnit frameworks exist for most languages and platforms, e.g.:2

SUnit (Smalltalk)

JUnit (Java)

CppUnit (C++)

OUnit (OCaml)

Test::Unit (Ruby)

HUnit (Haskell)

NUnit (.NET)

unittest (Python)

Check (C)

2https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 28 / 38

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks


xUnit

xUnit collectively refers to a set of frameworks for automated unit
testing which share a common test coding style.
Each xUnit framework includes:

test case abstraction used to define tests

test suite abstraction used to organize test in test suites

test fixture mechanisms to factorize test initialization and clean up
code

test runner end-user program to discover and run test suites,
summarizing their results

xUnit frameworks exist for most languages and platforms, e.g.:2

SUnit (Smalltalk)

JUnit (Java)

CppUnit (C++)

OUnit (OCaml)

Test::Unit (Ruby)

HUnit (Haskell)

NUnit (.NET)

unittest (Python)

Check (C)
2https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 28 / 38

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks


JUnit

JUnit is the original Java port of SUnit by Kent Beck and Erich Gamma.

It’s still the most established xUnit Java test framework.
We will JUnit, and in particular JUnit 4, for this lecture examples. The
notions we will see are portable to other xUnit frameworks.

JUnit is Free Software, released under the Eclipse Public License; it is
available at http://junit.org/ and in most FOSS distributions
(package junit4 in distros of the Debian family).

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 29 / 38

http://junit.org/


JUnit — test discovery

import org.junit.Test ;
import static org.junit.Assert.* ;

public class TreeTest { // no inheritance needed

@Test
public void emptyTreeCreation ( ) {

// prepare
// execute
// assert

}

@Test
public void treeAddition ( ) {

// prepare
// execute
// assert

}
}
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 30 / 38



JUnit — assertions

The junit.framework.Assert (whose content you should import)
provides a plethora of assertion methods, e.g.:

assertTrue(String msg, Boolean test)
assertFalse(String msg, Boolean test)
assertNull(String msg, Boolean test)
assertEquals(String msg, Object expected, Object actual)
assertSame(String msg, Object expected, Object actual)

// note: order does matter
assertNot*(...)
fail (String msg) // fail unconditionally

Assertion methods also come in msg-less variants.

@Test
public void emptyTreeSize ( ) {

Tree t = new BinaryTree ( ) ; // prepare
int s = t . size ( ) ; // execute
assertEquals (0 , s ) ; // assert

}
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 31 / 38



JUnit — asserting exceptions

Asserting that a test throws an exception is ugly:

wrap the whole test in try ... catch

do nothing in the catch branch

fail() at the end of the try branch

JUnit offers a nicer declarative alternative:

@Test (expected = IndexOutOfBoundsException.class )
public void arrayListBoundaries ( ) {

L ist <String > l = new ArrayList <String > ( ) ; // prepare
l . get ( 1 ) ; // execute

} // test w i l l f a i l i f i t reaches this point

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 32 / 38



Test isolation

The running of a test should not influence that of another.

I.e. test should be isolated.
Consequences:

test execution is order independent

to achieve isolation you need to split your system accordingly
ñ separation of concern, low coupling & high cohesion
ñ once again: tests help good design

each test should initialize its context (set up) before execution
and clean it up completely (tear down) afterwards

But we don’t want duplications in setup/teardown code!
Test fixtures to the rescue!

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 33 / 38



JUnit — fixtures
import org . jun i t . Before ;
import org . jun i t . After ;
public class ArrayTest {

private List <String > l ;

@Before // i . e . ca l l th is before each @Test method
public void setUp ( ) {

l = new ArrayList <String > ( ) ;
l . add( " foo " ) ; l . add( " bar " ) ; l . add( "baz" ) ; }

@After // i . e . ca l l th is after each @Test method
public void tearDown ( ) { l = null ; }

@Test
public void removeFirst ( ) {

assertEquals ( " foo " , l . remove ( 0 ) ) ; }

@Test
public void removeSecond ( ) {

assertEquals ( " bar " , l . remove ( 1 ) ) ; }
}
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 34 / 38



JUnit — test suites

You can (and should) organize your tests in test suites.

import org . jun i t . runners . Suite ;
import org . jun i t . runner . RunWith ;

@RunWith ( Suite . class )
@Suite . SuiteClasses ( { // l i s t classes containing @Test

Behavior1Test . class ,
Behavior2Test . class ,
. . . ,
BehaviorNTest . class ,

} )
public class BehaviorTestSuite { }

Unfortunately, there is no nice way to run all available tests (in a
package, for example). External test runners (Eclipse, Ant, etc.) use
reflection to address this problem.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 35 / 38



JUnit — running tests

Test outcome
Each @Test method has a 3-state outcome:

success the test criteria have been met (i.e. all assertions were
correct)

failure the test criteria have not been met (i.e. one or more
assertion were incorrect)

error test execution didn’t complete properly (e.g. an
exception not under test interrupted test execution)

Running tests will collect outcomes and provide a summary.
on the command line:

java -cp /usr/share/java/junit4.jar \
org.junit.runner.JUnitCore \
ClassName

in Eclipse: Run → Run as → JUnit Test Shift+Alt+X T
JUnit integration available for build tools, e.g. Ant, Maven, etc.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 36 / 38



Outline

1 Development processes

2 Test-Driven Development

3 xUnit & jUnit

4 Bibliography

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 37 / 38



Bibliography

Steve Freeman and Nat Pryce
Growing Object-Oriented Software, Guided by Tests3

Addison-Wesley, 2009.

Kent Beck
Test Driven Development: By Example
Addison-Wesley, 2002.

Martin Fowler
Refactoring: Improving the Design of Existing Code
Addison-Wesley Professional, 1999.

Kent Beck
Simple smalltalk testing: With patterns
The Smalltalk Report 4.2 (1994): 16-18.
available at http://www.xprogramming.com/testfram.htm

3referred to as the “GOOS” book in this course slides
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2013–2014 38 / 38

http://www.xprogramming.com/testfram.htm

	Development processes
	Test-Driven Development
	xUnit & jUnit
	Bibliography

